Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2026 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief routines that build the Kohn-Sham matrix (i.e calculate the coulomb
10 : !> and xc parts
11 : !> \author Fawzi Mohamed
12 : !> \par History
13 : !> - 05.2002 moved from qs_scf (see there the history) [fawzi]
14 : !> - JGH [30.08.02] multi-grid arrays independent from density and potential
15 : !> - 10.2002 introduced pools, uses updated rho as input,
16 : !> removed most temporary variables, renamed may vars,
17 : !> began conversion to LSD [fawzi]
18 : !> - 10.2004 moved calculate_w_matrix here [Joost VandeVondele]
19 : !> introduced energy derivative wrt MOs [Joost VandeVondele]
20 : !> - SCCS implementation (16.10.2013,MK)
21 : ! **************************************************************************************************
22 : MODULE qs_ks_methods
23 : USE accint_weights_forces, ONLY: accint_weight_force
24 : USE admm_dm_methods, ONLY: admm_dm_calc_rho_aux,&
25 : admm_dm_merge_ks_matrix
26 : USE admm_methods, ONLY: admm_mo_calc_rho_aux,&
27 : admm_mo_calc_rho_aux_kp,&
28 : admm_mo_merge_ks_matrix,&
29 : admm_update_ks_atom,&
30 : calc_admm_mo_derivatives,&
31 : calc_admm_ovlp_forces,&
32 : calc_admm_ovlp_forces_kp
33 : USE admm_types, ONLY: admm_type,&
34 : get_admm_env
35 : USE cell_types, ONLY: cell_type
36 : USE cp_control_types, ONLY: dft_control_type
37 : USE cp_dbcsr_api, ONLY: &
38 : dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_filter, dbcsr_get_info, dbcsr_multiply, &
39 : dbcsr_p_type, dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
40 : dbcsr_type_symmetric
41 : USE cp_dbcsr_cp2k_link, ONLY: cp_dbcsr_alloc_block_from_nbl
42 : USE cp_dbcsr_operations, ONLY: dbcsr_allocate_matrix_set,&
43 : dbcsr_copy_columns_hack
44 : USE cp_ddapc, ONLY: qs_ks_ddapc
45 : USE cp_fm_types, ONLY: cp_fm_type
46 : USE cp_log_handling, ONLY: cp_get_default_logger,&
47 : cp_logger_get_default_io_unit,&
48 : cp_logger_type
49 : USE cp_output_handling, ONLY: cp_p_file,&
50 : cp_print_key_should_output
51 : USE dft_plus_u, ONLY: plus_u
52 : USE hartree_local_methods, ONLY: Vh_1c_gg_integrals
53 : USE hartree_local_types, ONLY: ecoul_1center_type
54 : USE hfx_admm_utils, ONLY: hfx_admm_init,&
55 : hfx_ks_matrix,&
56 : hfx_ks_matrix_kp
57 : USE input_constants, ONLY: do_ppl_grid,&
58 : outer_scf_becke_constraint,&
59 : outer_scf_hirshfeld_constraint,&
60 : smeagol_runtype_emtransport
61 : USE input_section_types, ONLY: section_vals_get,&
62 : section_vals_get_subs_vals,&
63 : section_vals_type
64 : USE kg_correction, ONLY: kg_ekin_subset
65 : USE kinds, ONLY: default_string_length,&
66 : dp
67 : USE kpoint_types, ONLY: get_kpoint_info,&
68 : kpoint_type
69 : USE lri_environment_methods, ONLY: v_int_ppl_energy
70 : USE lri_environment_types, ONLY: lri_density_type,&
71 : lri_environment_type,&
72 : lri_kind_type
73 : USE mathlib, ONLY: abnormal_value
74 : USE message_passing, ONLY: mp_para_env_type
75 : USE pw_env_types, ONLY: pw_env_get,&
76 : pw_env_type
77 : USE pw_methods, ONLY: pw_axpy,&
78 : pw_copy,&
79 : pw_integral_ab,&
80 : pw_integrate_function,&
81 : pw_scale,&
82 : pw_transfer,&
83 : pw_zero
84 : USE pw_poisson_methods, ONLY: pw_poisson_solve
85 : USE pw_poisson_types, ONLY: pw_poisson_implicit,&
86 : pw_poisson_type
87 : USE pw_pool_types, ONLY: pw_pool_type
88 : USE pw_types, ONLY: pw_c1d_gs_type,&
89 : pw_r3d_rs_type
90 : USE qmmm_image_charge, ONLY: add_image_pot_to_hartree_pot,&
91 : calculate_image_pot,&
92 : integrate_potential_devga_rspace
93 : USE qs_cdft_types, ONLY: cdft_control_type
94 : USE qs_charges_types, ONLY: qs_charges_type
95 : USE qs_core_energies, ONLY: calculate_ptrace
96 : USE qs_dftb_matrices, ONLY: build_dftb_ks_matrix
97 : USE qs_efield_berry, ONLY: qs_efield_berry_phase
98 : USE qs_efield_local, ONLY: qs_efield_local_operator
99 : USE qs_energy_types, ONLY: qs_energy_type
100 : USE qs_environment_types, ONLY: get_qs_env,&
101 : qs_environment_type
102 : USE qs_gapw_densities, ONLY: prepare_gapw_den
103 : USE qs_harris_types, ONLY: harris_type
104 : USE qs_harris_utils, ONLY: harris_set_potentials
105 : USE qs_integrate_potential, ONLY: integrate_ppl_rspace,&
106 : integrate_rho_nlcc,&
107 : integrate_v_core_rspace
108 : USE qs_ks_apply_restraints, ONLY: qs_ks_cdft_constraint,&
109 : qs_ks_mulliken_restraint,&
110 : qs_ks_s2_restraint
111 : USE qs_ks_atom, ONLY: update_ks_atom
112 : USE qs_ks_qmmm_methods, ONLY: qmmm_calculate_energy,&
113 : qmmm_modify_hartree_pot
114 : USE qs_ks_types, ONLY: qs_ks_env_type,&
115 : set_ks_env
116 : USE qs_ks_utils, ONLY: &
117 : calc_v_sic_rspace, calculate_zmp_potential, compute_matrix_vxc, &
118 : get_embed_potential_energy, low_spin_roks, print_densities, print_detailed_energy, &
119 : sic_explicit_orbitals, sum_up_and_integrate
120 : USE qs_local_rho_types, ONLY: local_rho_type
121 : USE qs_mo_types, ONLY: get_mo_set,&
122 : mo_set_type
123 : USE qs_neighbor_list_types, ONLY: neighbor_list_set_p_type
124 : USE qs_rho0_ggrid, ONLY: integrate_vhg0_rspace
125 : USE qs_rho_types, ONLY: qs_rho_get,&
126 : qs_rho_type
127 : USE qs_sccs, ONLY: sccs
128 : USE qs_vxc, ONLY: qs_vxc_create
129 : USE qs_vxc_atom, ONLY: calculate_vxc_atom
130 : USE rtp_admm_methods, ONLY: rtp_admm_calc_rho_aux,&
131 : rtp_admm_merge_ks_matrix
132 : USE se_fock_matrix, ONLY: build_se_fock_matrix
133 : USE smeagol_interface, ONLY: smeagol_shift_v_hartree
134 : USE surface_dipole, ONLY: calc_dipsurf_potential
135 : USE tblite_ks_matrix, ONLY: build_tblite_ks_matrix
136 : USE virial_types, ONLY: virial_type
137 : USE xtb_ks_matrix, ONLY: build_xtb_ks_matrix
138 : #include "./base/base_uses.f90"
139 :
140 : IMPLICIT NONE
141 :
142 : PRIVATE
143 :
144 : LOGICAL, PARAMETER :: debug_this_module = .TRUE.
145 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_ks_methods'
146 :
147 : PUBLIC :: calc_rho_tot_gspace, qs_ks_update_qs_env, qs_ks_build_kohn_sham_matrix, &
148 : qs_ks_allocate_basics, evaluate_core_matrix_traces
149 :
150 : CONTAINS
151 :
152 : ! **************************************************************************************************
153 : !> \brief routine where the real calculations are made: the
154 : !> KS matrix is calculated
155 : !> \param qs_env the qs_env to update
156 : !> \param calculate_forces if true calculate the quantities needed
157 : !> to calculate the forces. Defaults to false.
158 : !> \param just_energy if true updates the energies but not the
159 : !> ks matrix. Defaults to false
160 : !> \param print_active ...
161 : !> \param ext_ks_matrix ...
162 : !> \param ext_xc_section ...
163 : !> \par History
164 : !> 06.2002 moved from qs_scf to qs_ks_methods, use of ks_env
165 : !> new did_change scheme [fawzi]
166 : !> 10.2002 introduced pools, uses updated rho as input, LSD [fawzi]
167 : !> 10.2004 build_kohn_sham matrix now also computes the derivatives
168 : !> of the total energy wrt to the MO coefs, if instructed to
169 : !> do so. This appears useful for orbital dependent functionals
170 : !> where the KS matrix alone (however this might be defined)
171 : !> does not contain the info to construct this derivative.
172 : !> \author Matthias Krack
173 : !> \note
174 : !> make rho, energy and qs_charges optional, defaulting
175 : !> to qs_env components?
176 : ! **************************************************************************************************
177 330897 : SUBROUTINE qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, &
178 : print_active, ext_ks_matrix, ext_xc_section)
179 : TYPE(qs_environment_type), POINTER :: qs_env
180 : LOGICAL, INTENT(in) :: calculate_forces, just_energy
181 : LOGICAL, INTENT(IN), OPTIONAL :: print_active
182 : TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL, &
183 : POINTER :: ext_ks_matrix
184 : TYPE(section_vals_type), OPTIONAL, POINTER :: ext_xc_section
185 :
186 : CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_ks_build_kohn_sham_matrix'
187 :
188 : CHARACTER(len=default_string_length) :: name
189 : INTEGER :: handle, iatom, img, ispin, nimages, &
190 : nspins
191 : LOGICAL :: do_adiabatic_rescaling, do_ddapc, do_hfx, do_ppl, dokp, gapw, gapw_xc, &
192 : just_energy_xc, lrigpw, my_print, rigpw, use_virial
193 : REAL(KIND=dp) :: ecore_ppl, edisp, ee_ener, ekin_mol, &
194 : mulliken_order_p, vscale
195 : REAL(KIND=dp), DIMENSION(3, 3) :: h_stress, pv_loc
196 : TYPE(admm_type), POINTER :: admm_env
197 : TYPE(cdft_control_type), POINTER :: cdft_control
198 : TYPE(cell_type), POINTER :: cell
199 : TYPE(cp_logger_type), POINTER :: logger
200 110299 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ksmat, matrix_vxc, mo_derivs
201 110299 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: ks_matrix, ks_matrix_im, matrix_h, &
202 110299 : matrix_h_im, matrix_s, my_rho, rho_ao
203 : TYPE(dft_control_type), POINTER :: dft_control
204 110299 : TYPE(ecoul_1center_type), DIMENSION(:), POINTER :: ecoul_1c
205 : TYPE(harris_type), POINTER :: harris_env
206 : TYPE(local_rho_type), POINTER :: local_rho_set
207 : TYPE(lri_density_type), POINTER :: lri_density
208 : TYPE(lri_environment_type), POINTER :: lri_env
209 110299 : TYPE(lri_kind_type), DIMENSION(:), POINTER :: lri_v_int
210 : TYPE(mp_para_env_type), POINTER :: para_env
211 : TYPE(pw_c1d_gs_type) :: rho_tot_gspace, v_hartree_gspace
212 : TYPE(pw_c1d_gs_type), POINTER :: rho_core
213 : TYPE(pw_env_type), POINTER :: pw_env
214 : TYPE(pw_poisson_type), POINTER :: poisson_env
215 : TYPE(pw_pool_type), POINTER :: auxbas_pw_pool
216 110299 : TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER :: rho_r, v_rspace_embed, v_rspace_new, &
217 110299 : v_rspace_new_aux_fit, v_tau_rspace, &
218 110299 : v_tau_rspace_aux_fit
219 : TYPE(pw_r3d_rs_type), POINTER :: rho0_s_rs, rho_nlcc, rhoz_cneo_s_rs, v_hartree_rspace, &
220 : v_sccs_rspace, v_sic_rspace, v_spin_ddapc_rest_r, vee, vppl_rspace
221 : TYPE(qs_energy_type), POINTER :: energy
222 : TYPE(qs_ks_env_type), POINTER :: ks_env
223 : TYPE(qs_rho_type), POINTER :: rho, rho1, rho_struct, rho_xc
224 : TYPE(section_vals_type), POINTER :: adiabatic_rescaling_section, &
225 : hfx_sections, input, scf_section, &
226 : xc_section
227 : TYPE(virial_type), POINTER :: virial
228 :
229 110299 : CALL timeset(routineN, handle)
230 110299 : NULLIFY (admm_env, cell, dft_control, logger, mo_derivs, my_rho, &
231 110299 : rho_struct, para_env, pw_env, virial, vppl_rspace, &
232 110299 : adiabatic_rescaling_section, hfx_sections, &
233 110299 : input, scf_section, xc_section, matrix_h, matrix_h_im, matrix_s, &
234 110299 : auxbas_pw_pool, poisson_env, v_rspace_new, v_rspace_new_aux_fit, &
235 110299 : v_tau_rspace, v_tau_rspace_aux_fit, matrix_vxc, vee, rho_nlcc, &
236 110299 : ks_env, ks_matrix, ks_matrix_im, rho, energy, rho_xc, rho_r, rho_ao, rho_core)
237 :
238 110299 : CPASSERT(ASSOCIATED(qs_env))
239 :
240 110299 : logger => cp_get_default_logger()
241 110299 : my_print = .TRUE.
242 110299 : IF (PRESENT(print_active)) my_print = print_active
243 :
244 : CALL get_qs_env(qs_env, &
245 : ks_env=ks_env, &
246 : dft_control=dft_control, &
247 : matrix_h_kp=matrix_h, &
248 : matrix_h_im_kp=matrix_h_im, &
249 : matrix_s_kp=matrix_s, &
250 : matrix_ks_kp=ks_matrix, &
251 : matrix_ks_im_kp=ks_matrix_im, &
252 : matrix_vxc=matrix_vxc, &
253 : pw_env=pw_env, &
254 : cell=cell, &
255 : para_env=para_env, &
256 : input=input, &
257 : virial=virial, &
258 : v_hartree_rspace=v_hartree_rspace, &
259 : vee=vee, &
260 : rho_nlcc=rho_nlcc, &
261 : rho=rho, &
262 : rho_core=rho_core, &
263 : rho_xc=rho_xc, &
264 110299 : energy=energy)
265 :
266 110299 : CALL qs_rho_get(rho, rho_r=rho_r, rho_ao_kp=rho_ao)
267 :
268 110299 : nimages = dft_control%nimages
269 110299 : nspins = dft_control%nspins
270 :
271 : ! remap pointer to allow for non-kpoint external ks matrix
272 110299 : IF (PRESENT(ext_ks_matrix)) ks_matrix(1:nspins, 1:1) => ext_ks_matrix(1:nspins)
273 :
274 110299 : use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
275 :
276 110299 : adiabatic_rescaling_section => section_vals_get_subs_vals(input, "DFT%XC%ADIABATIC_RESCALING")
277 110299 : CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
278 110299 : just_energy_xc = just_energy
279 110299 : IF (do_adiabatic_rescaling) THEN
280 : !! If we perform adiabatic rescaling, the xc potential has to be scaled by the xc- and
281 : !! HFX-energy. Thus, let us first calculate the energy
282 44 : just_energy_xc = .TRUE.
283 : END IF
284 :
285 110299 : CPASSERT(ASSOCIATED(matrix_h))
286 110299 : CPASSERT(ASSOCIATED(matrix_s))
287 110299 : CPASSERT(ASSOCIATED(rho))
288 110299 : CPASSERT(ASSOCIATED(pw_env))
289 110299 : CPASSERT(SIZE(ks_matrix, 1) > 0)
290 110299 : dokp = (nimages > 1)
291 :
292 : ! Setup the possible usage of DDAPC charges
293 : do_ddapc = dft_control%qs_control%ddapc_restraint .OR. &
294 : qs_env%cp_ddapc_ewald%do_decoupling .OR. &
295 : qs_env%cp_ddapc_ewald%do_qmmm_periodic_decpl .OR. &
296 110299 : qs_env%cp_ddapc_ewald%do_solvation
297 :
298 : ! Check if LRIGPW is used
299 110299 : lrigpw = dft_control%qs_control%lrigpw
300 110299 : rigpw = dft_control%qs_control%rigpw
301 110299 : IF (rigpw) THEN
302 26 : CPASSERT(nimages == 1)
303 : END IF
304 26 : IF (lrigpw .AND. rigpw) THEN
305 0 : CPABORT(" LRI and RI are not compatible")
306 : END IF
307 :
308 : ! Check for GAPW method : additional terms for local densities
309 110299 : gapw = dft_control%qs_control%gapw
310 110299 : gapw_xc = dft_control%qs_control%gapw_xc
311 110299 : IF (gapw_xc .AND. gapw) THEN
312 0 : CPABORT(" GAPW and GAPW_XC are not compatible")
313 : END IF
314 110299 : IF ((gapw .AND. lrigpw) .OR. (gapw_xc .AND. lrigpw)) THEN
315 0 : CPABORT(" GAPW/GAPW_XC and LRIGPW are not compatible")
316 : END IF
317 110299 : IF ((gapw .AND. rigpw) .OR. (gapw_xc .AND. rigpw)) THEN
318 0 : CPABORT(" GAPW/GAPW_XC and RIGPW are not compatible")
319 : END IF
320 :
321 110299 : do_ppl = dft_control%qs_control%do_ppl_method == do_ppl_grid
322 110299 : IF (do_ppl) THEN
323 60 : CPASSERT(.NOT. gapw)
324 60 : CALL get_qs_env(qs_env=qs_env, vppl=vppl_rspace)
325 : END IF
326 :
327 110299 : IF (gapw_xc) THEN
328 3690 : CPASSERT(ASSOCIATED(rho_xc))
329 : END IF
330 :
331 : ! gets the tmp grids
332 110299 : CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
333 :
334 110299 : IF (gapw .AND. (poisson_env%parameters%solver == pw_poisson_implicit)) THEN
335 0 : CPABORT("The implicit Poisson solver cannot be used in conjunction with GAPW.")
336 : END IF
337 :
338 : ! *** Prepare densities for gapw ***
339 110299 : IF (gapw .OR. gapw_xc) THEN
340 22270 : CALL prepare_gapw_den(qs_env, do_rho0=(.NOT. gapw_xc))
341 : END IF
342 :
343 : ! Calculate the Hartree potential
344 110299 : CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
345 110299 : CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
346 :
347 110299 : scf_section => section_vals_get_subs_vals(input, "DFT%SCF")
348 : IF (BTEST(cp_print_key_should_output(logger%iter_info, scf_section, &
349 : "PRINT%DETAILED_ENERGY"), &
350 : cp_p_file) .AND. &
351 110299 : (.NOT. gapw) .AND. (.NOT. gapw_xc) .AND. &
352 : (.NOT. (poisson_env%parameters%solver == pw_poisson_implicit))) THEN
353 912 : CALL pw_zero(rho_tot_gspace)
354 912 : CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density=.TRUE.)
355 : CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%e_hartree, &
356 912 : v_hartree_gspace)
357 912 : CALL pw_zero(rho_tot_gspace)
358 912 : CALL pw_zero(v_hartree_gspace)
359 : END IF
360 :
361 : ! Get the total density in g-space [ions + electrons]
362 110299 : CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
363 :
364 110299 : IF (my_print) THEN
365 110277 : CALL print_densities(qs_env, rho)
366 : END IF
367 :
368 110299 : IF (dft_control%do_sccs) THEN
369 : ! Self-consistent continuum solvation (SCCS) model
370 : NULLIFY (v_sccs_rspace)
371 132 : ALLOCATE (v_sccs_rspace)
372 132 : CALL auxbas_pw_pool%create_pw(v_sccs_rspace)
373 :
374 132 : IF (poisson_env%parameters%solver == pw_poisson_implicit) THEN
375 0 : CPABORT("The implicit Poisson solver cannot be used together with SCCS.")
376 : END IF
377 :
378 132 : IF (use_virial .AND. calculate_forces) THEN
379 : CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace, &
380 0 : h_stress=h_stress)
381 0 : virial%pv_ehartree = virial%pv_ehartree + h_stress/REAL(para_env%num_pe, dp)
382 0 : virial%pv_virial = virial%pv_virial + h_stress/REAL(para_env%num_pe, dp)
383 : ELSE
384 132 : CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace)
385 : END IF
386 : ELSE
387 : ! Getting the Hartree energy and Hartree potential. Also getting the stress tensor
388 : ! from the Hartree term if needed. No nuclear force information here
389 110167 : IF (use_virial .AND. calculate_forces) THEN
390 400 : h_stress(:, :) = 0.0_dp
391 : CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
392 : v_hartree_gspace, h_stress=h_stress, &
393 400 : rho_core=rho_core)
394 5200 : virial%pv_ehartree = virial%pv_ehartree + h_stress/REAL(para_env%num_pe, dp)
395 5200 : virial%pv_virial = virial%pv_virial + h_stress/REAL(para_env%num_pe, dp)
396 : ELSE
397 : CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
398 109767 : v_hartree_gspace, rho_core=rho_core)
399 : END IF
400 : END IF
401 :
402 : ! In case decouple periodic images and/or apply restraints to charges
403 110299 : IF (do_ddapc) THEN
404 : CALL qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, &
405 : v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, &
406 1378 : just_energy)
407 : ELSE
408 108921 : dft_control%qs_control%ddapc_explicit_potential = .FALSE.
409 108921 : dft_control%qs_control%ddapc_restraint_is_spin = .FALSE.
410 108921 : IF (.NOT. just_energy) THEN
411 99869 : CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
412 99869 : CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
413 : END IF
414 : END IF
415 110299 : CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
416 :
417 110299 : IF (dft_control%correct_surf_dip) THEN
418 110 : IF (dft_control%surf_dip_correct_switch) THEN
419 110 : CALL calc_dipsurf_potential(qs_env, energy)
420 110 : energy%hartree = energy%hartree + energy%surf_dipole
421 : END IF
422 : END IF
423 :
424 : ! SIC
425 : CALL calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, &
426 110299 : just_energy, calculate_forces, auxbas_pw_pool)
427 :
428 : ! Check if CDFT constraint is needed
429 110299 : CALL qs_ks_cdft_constraint(qs_env, auxbas_pw_pool, calculate_forces, cdft_control)
430 :
431 : ! Adds the External Potential if requested
432 110299 : IF (dft_control%apply_external_potential) THEN
433 : ! Compute the energy due to the external potential
434 : ee_ener = 0.0_dp
435 728 : DO ispin = 1, nspins
436 728 : ee_ener = ee_ener + pw_integral_ab(rho_r(ispin), vee)
437 : END DO
438 364 : IF (.NOT. just_energy) THEN
439 364 : IF (gapw) THEN
440 : CALL get_qs_env(qs_env=qs_env, &
441 : rho0_s_rs=rho0_s_rs, &
442 42 : rhoz_cneo_s_rs=rhoz_cneo_s_rs)
443 42 : CPASSERT(ASSOCIATED(rho0_s_rs))
444 42 : IF (ASSOCIATED(rhoz_cneo_s_rs)) THEN
445 0 : CALL pw_axpy(rhoz_cneo_s_rs, rho0_s_rs)
446 : END IF
447 42 : ee_ener = ee_ener + pw_integral_ab(rho0_s_rs, vee)
448 42 : IF (ASSOCIATED(rhoz_cneo_s_rs)) THEN
449 0 : CALL pw_axpy(rhoz_cneo_s_rs, rho0_s_rs, -1.0_dp)
450 : END IF
451 : END IF
452 : END IF
453 : ! the sign accounts for the charge of the electrons
454 364 : energy%ee = -ee_ener
455 : END IF
456 :
457 : ! Adds the QM/MM potential
458 110299 : IF (qs_env%qmmm) THEN
459 : CALL qmmm_calculate_energy(qs_env=qs_env, &
460 : rho=rho_r, &
461 : v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, &
462 6318 : qmmm_energy=energy%qmmm_el)
463 6318 : IF (qs_env%qmmm_env_qm%image_charge) THEN
464 : CALL calculate_image_pot(v_hartree_rspace=v_hartree_rspace, &
465 : rho_hartree_gspace=rho_tot_gspace, &
466 : energy=energy, &
467 : qmmm_env=qs_env%qmmm_env_qm, &
468 60 : qs_env=qs_env)
469 60 : IF (.NOT. just_energy) THEN
470 : CALL add_image_pot_to_hartree_pot(v_hartree=v_hartree_rspace, &
471 : v_metal=qs_env%ks_qmmm_env%v_metal_rspace, &
472 60 : qs_env=qs_env)
473 60 : IF (calculate_forces) THEN
474 : CALL integrate_potential_devga_rspace( &
475 : potential=v_hartree_rspace, coeff=qs_env%image_coeff, &
476 : forces=qs_env%qmmm_env_qm%image_charge_pot%image_forcesMM, &
477 20 : qmmm_env=qs_env%qmmm_env_qm, qs_env=qs_env)
478 : END IF
479 : END IF
480 60 : CALL qs_env%ks_qmmm_env%v_metal_rspace%release()
481 60 : DEALLOCATE (qs_env%ks_qmmm_env%v_metal_rspace)
482 : END IF
483 6318 : IF (.NOT. just_energy) THEN
484 : CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
485 6228 : v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, scale=1.0_dp)
486 : END IF
487 : END IF
488 110299 : CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
489 :
490 : ! SMEAGOL interface
491 110299 : IF (dft_control%smeagol_control%smeagol_enabled .AND. &
492 : dft_control%smeagol_control%run_type == smeagol_runtype_emtransport) THEN
493 0 : CPASSERT(ASSOCIATED(dft_control%smeagol_control%aux))
494 : CALL smeagol_shift_v_hartree(v_hartree_rspace, cell, &
495 : dft_control%smeagol_control%aux%HartreeLeadsLeft, &
496 : dft_control%smeagol_control%aux%HartreeLeadsRight, &
497 : dft_control%smeagol_control%aux%HartreeLeadsBottom, &
498 : dft_control%smeagol_control%aux%VBias, &
499 : dft_control%smeagol_control%aux%minL, &
500 : dft_control%smeagol_control%aux%maxR, &
501 : dft_control%smeagol_control%aux%isexplicit_maxR, &
502 0 : dft_control%smeagol_control%aux%isexplicit_HartreeLeadsBottom)
503 : END IF
504 :
505 : ! calculate the density matrix for the fitted mo_coeffs
506 110299 : IF (dft_control%do_admm) THEN
507 12584 : IF (PRESENT(ext_xc_section)) THEN
508 0 : CALL hfx_admm_init(qs_env, calculate_forces, ext_xc_section)
509 : ELSE
510 12584 : CALL hfx_admm_init(qs_env, calculate_forces)
511 : END IF
512 :
513 12584 : IF (dft_control%do_admm_mo) THEN
514 12370 : IF (qs_env%run_rtp) THEN
515 76 : CALL rtp_admm_calc_rho_aux(qs_env)
516 : ELSE
517 12294 : IF (dokp) THEN
518 138 : CALL admm_mo_calc_rho_aux_kp(qs_env)
519 : ELSE
520 12156 : CALL admm_mo_calc_rho_aux(qs_env)
521 : END IF
522 : END IF
523 214 : ELSEIF (dft_control%do_admm_dm) THEN
524 214 : CALL admm_dm_calc_rho_aux(qs_env)
525 : END IF
526 : END IF
527 :
528 : ! only activate stress calculation if
529 110299 : IF (use_virial .AND. calculate_forces) virial%pv_calculate = .TRUE.
530 :
531 : ! *** calculate the xc potential on the pw density ***
532 : ! *** associates v_rspace_new if the xc potential needs to be computed.
533 : ! If we do wavefunction fitting, we need the vxc_potential in the auxiliary basis set
534 110299 : IF (dft_control%do_admm) THEN
535 12584 : CALL get_qs_env(qs_env, admm_env=admm_env)
536 12584 : xc_section => admm_env%xc_section_aux
537 12584 : CALL get_admm_env(admm_env, rho_aux_fit=rho_struct)
538 :
539 : ! here we ignore a possible vdW section in admm_env%xc_section_aux
540 : CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
541 : vxc_rho=v_rspace_new_aux_fit, vxc_tau=v_tau_rspace_aux_fit, exc=energy%exc_aux_fit, &
542 12584 : just_energy=just_energy_xc)
543 :
544 12584 : IF (admm_env%do_gapw) THEN
545 : !compute the potential due to atomic densities
546 : CALL calculate_vxc_atom(qs_env, energy_only=just_energy_xc, exc1=energy%exc1_aux_fit, &
547 : kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
548 : xc_section_external=xc_section, &
549 4038 : rho_atom_set_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set)
550 :
551 : END IF
552 :
553 12584 : NULLIFY (rho_struct)
554 :
555 12584 : IF (use_virial .AND. calculate_forces) THEN
556 12 : vscale = 1.0_dp
557 : !Note: ADMMS and ADMMP stress tensor only for closed-shell calculations
558 12 : IF (admm_env%do_admms) vscale = admm_env%gsi(1)**(2.0_dp/3.0_dp)
559 12 : IF (admm_env%do_admmp) vscale = admm_env%gsi(1)**2
560 156 : virial%pv_exc = virial%pv_exc - vscale*virial%pv_xc
561 156 : virial%pv_virial = virial%pv_virial - vscale*virial%pv_xc
562 : ! virial%pv_xc will be zeroed in the xc routines
563 : END IF
564 12584 : xc_section => admm_env%xc_section_primary
565 : ELSE
566 97715 : xc_section => section_vals_get_subs_vals(input, "DFT%XC")
567 : ! build ks matrix with an xc section potentially different from the one defined in input
568 97715 : IF (PRESENT(ext_xc_section)) xc_section => ext_xc_section
569 : END IF
570 :
571 110299 : IF (gapw_xc) THEN
572 3690 : CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
573 : ELSE
574 106609 : CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
575 : END IF
576 :
577 : ! zmp
578 110299 : IF (dft_control%apply_external_density .OR. dft_control%apply_external_vxc) THEN
579 0 : energy%exc = 0.0_dp
580 0 : CALL calculate_zmp_potential(qs_env, v_rspace_new, rho, exc=energy%exc)
581 : ELSE
582 : ! Embedding potential
583 110299 : IF (dft_control%apply_embed_pot) THEN
584 868 : NULLIFY (v_rspace_embed)
585 868 : energy%embed_corr = 0.0_dp
586 : CALL get_embed_potential_energy(qs_env, rho, v_rspace_embed, dft_control, &
587 868 : energy%embed_corr, just_energy)
588 : END IF
589 : ! Everything else
590 : CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
591 : vxc_rho=v_rspace_new, vxc_tau=v_tau_rspace, exc=energy%exc, &
592 : edisp=edisp, dispersion_env=qs_env%dispersion_env, &
593 110299 : just_energy=just_energy_xc)
594 110299 : IF (edisp /= 0.0_dp) energy%dispersion = edisp
595 110299 : IF (qs_env%requires_matrix_vxc .AND. ASSOCIATED(v_rspace_new)) THEN
596 2 : CALL compute_matrix_vxc(qs_env=qs_env, v_rspace=v_rspace_new, matrix_vxc=matrix_vxc)
597 2 : CALL set_ks_env(ks_env, matrix_vxc=matrix_vxc)
598 : END IF
599 :
600 110299 : IF (gapw .OR. gapw_xc) THEN
601 22270 : CALL calculate_vxc_atom(qs_env, just_energy_xc, energy%exc1, xc_section_external=xc_section)
602 : ! test for not implemented (bug) option
603 22270 : IF (use_virial .AND. calculate_forces) THEN
604 26 : IF (ASSOCIATED(v_tau_rspace)) THEN
605 0 : CPABORT("MGGA STRESS with GAPW/GAPW_XC not implemneted")
606 : END IF
607 : END IF
608 : END IF
609 :
610 : END IF
611 :
612 : ! set hartree and xc potentials for use in Harris method
613 110299 : IF (qs_env%harris_method) THEN
614 54 : CALL get_qs_env(qs_env, harris_env=harris_env)
615 54 : CALL harris_set_potentials(harris_env, v_hartree_rspace, v_rspace_new)
616 : END IF
617 :
618 110299 : NULLIFY (rho_struct)
619 110299 : IF (use_virial .AND. calculate_forces) THEN
620 5200 : virial%pv_exc = virial%pv_exc - virial%pv_xc
621 5200 : virial%pv_virial = virial%pv_virial - virial%pv_xc
622 : END IF
623 :
624 : ! *** Add Hartree-Fock contribution if required ***
625 110299 : hfx_sections => section_vals_get_subs_vals(xc_section, "HF")
626 110299 : CALL section_vals_get(hfx_sections, explicit=do_hfx)
627 110299 : IF (do_hfx) THEN
628 27416 : IF (dokp) THEN
629 248 : CALL hfx_ks_matrix_kp(qs_env, ks_matrix, energy, calculate_forces)
630 : ELSE
631 : ! ext_xc_section may contain a hfx section
632 : CALL hfx_ks_matrix(qs_env, ks_matrix, rho, energy, calculate_forces, &
633 27168 : just_energy, v_rspace_new, v_tau_rspace, ext_xc_section=xc_section)
634 : END IF
635 : END IF !do_hfx
636 :
637 110299 : IF (do_ppl .AND. calculate_forces) THEN
638 12 : CPASSERT(.NOT. gapw)
639 26 : DO ispin = 1, nspins
640 26 : CALL integrate_ppl_rspace(rho_r(ispin), qs_env)
641 : END DO
642 : END IF
643 :
644 110299 : IF (ASSOCIATED(rho_nlcc) .AND. calculate_forces) THEN
645 68 : DO ispin = 1, nspins
646 34 : CALL integrate_rho_nlcc(v_rspace_new(ispin), qs_env)
647 68 : IF (dft_control%do_admm) CALL integrate_rho_nlcc(v_rspace_new_aux_fit(ispin), qs_env)
648 : END DO
649 : END IF
650 :
651 : ! calculate KG correction
652 110299 : IF (dft_control%qs_control%do_kg .AND. just_energy) THEN
653 :
654 12 : CPASSERT(.NOT. (gapw .OR. gapw_xc))
655 12 : CPASSERT(nimages == 1)
656 12 : ksmat => ks_matrix(:, 1)
657 12 : CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.FALSE.)
658 :
659 : ! subtract kg corr from the total energy
660 12 : energy%exc = energy%exc - ekin_mol
661 :
662 : END IF
663 :
664 : ! *** Single atom contributions ***
665 110299 : IF (.NOT. just_energy) THEN
666 100857 : IF (calculate_forces) THEN
667 : ! Getting nuclear force contribution from the core charge density
668 5663 : IF ((poisson_env%parameters%solver == pw_poisson_implicit) .AND. &
669 : (poisson_env%parameters%dielectric_params%dielec_core_correction)) THEN
670 28 : BLOCK
671 : TYPE(pw_r3d_rs_type) :: v_minus_veps
672 28 : CALL auxbas_pw_pool%create_pw(v_minus_veps)
673 28 : CALL pw_copy(v_hartree_rspace, v_minus_veps)
674 28 : CALL pw_axpy(poisson_env%implicit_env%v_eps, v_minus_veps, -v_hartree_rspace%pw_grid%dvol)
675 28 : CALL integrate_v_core_rspace(v_minus_veps, qs_env)
676 28 : CALL auxbas_pw_pool%give_back_pw(v_minus_veps)
677 : END BLOCK
678 : ELSE
679 5635 : CALL integrate_v_core_rspace(v_hartree_rspace, qs_env)
680 : END IF
681 : END IF
682 :
683 100857 : IF (.NOT. do_hfx) THEN
684 : ! Initialize the Kohn-Sham matrix with the core Hamiltonian matrix
685 : ! (sets ks sparsity equal to matrix_h sparsity)
686 165481 : DO ispin = 1, nspins
687 362001 : DO img = 1, nimages
688 196520 : CALL dbcsr_get_info(ks_matrix(ispin, img)%matrix, name=name) ! keep the name
689 286182 : CALL dbcsr_copy(ks_matrix(ispin, img)%matrix, matrix_h(1, img)%matrix, name=name)
690 : END DO
691 : END DO
692 : ! imaginary part if required
693 75819 : IF (qs_env%run_rtp) THEN
694 1992 : IF (dft_control%rtp_control%velocity_gauge) THEN
695 150 : CPASSERT(ASSOCIATED(matrix_h_im))
696 150 : CPASSERT(ASSOCIATED(ks_matrix_im))
697 300 : DO ispin = 1, nspins
698 450 : DO img = 1, nimages
699 150 : CALL dbcsr_get_info(ks_matrix_im(ispin, img)%matrix, name=name) ! keep the name
700 300 : CALL dbcsr_copy(ks_matrix_im(ispin, img)%matrix, matrix_h_im(1, img)%matrix, name=name)
701 : END DO
702 : END DO
703 : END IF
704 : END IF
705 : END IF
706 :
707 100857 : IF (use_virial .AND. calculate_forces) THEN
708 5200 : pv_loc = virial%pv_virial
709 : END IF
710 : ! sum up potentials and integrate
711 : ! Pointing my_rho to the density matrix rho_ao
712 100857 : my_rho => rho_ao
713 :
714 : CALL sum_up_and_integrate(qs_env, ks_matrix, rho, my_rho, vppl_rspace, &
715 : v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, &
716 : v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, &
717 100857 : cdft_control, calculate_forces)
718 :
719 100857 : IF (calculate_forces) THEN
720 5663 : IF (gapw_xc) THEN
721 88 : CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
722 : ELSE
723 5575 : CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
724 : END IF
725 5663 : NULLIFY (rho1)
726 5663 : CALL accint_weight_force(qs_env, rho_struct, rho1, 0, xc_section)
727 : !
728 5663 : IF (dft_control%do_admm) THEN
729 286 : CALL get_qs_env(qs_env, admm_env=admm_env)
730 286 : xc_section => admm_env%xc_section_aux
731 286 : CALL get_admm_env(admm_env, rho_aux_fit=rho_struct)
732 286 : CALL accint_weight_force(qs_env, rho_struct, rho1, 0, xc_section)
733 : END IF
734 : END IF
735 :
736 100857 : IF (use_virial .AND. calculate_forces) THEN
737 5200 : virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
738 : END IF
739 100857 : IF (dft_control%qs_control%do_kg) THEN
740 776 : CPASSERT(.NOT. (gapw .OR. gapw_xc))
741 776 : CPASSERT(nimages == 1)
742 776 : ksmat => ks_matrix(:, 1)
743 :
744 776 : IF (use_virial .AND. calculate_forces) THEN
745 0 : pv_loc = virial%pv_virial
746 : END IF
747 :
748 776 : CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.FALSE.)
749 : ! subtract kg corr from the total energy
750 776 : energy%exc = energy%exc - ekin_mol
751 :
752 : ! virial corrections
753 776 : IF (use_virial .AND. calculate_forces) THEN
754 :
755 : ! Integral contribution
756 0 : virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
757 :
758 : ! GGA contribution
759 0 : virial%pv_exc = virial%pv_exc + virial%pv_xc
760 0 : virial%pv_virial = virial%pv_virial + virial%pv_xc
761 0 : virial%pv_xc = 0.0_dp
762 : END IF
763 : END IF
764 :
765 : ELSE
766 : IF (do_hfx) THEN
767 : IF (.FALSE.) THEN
768 : CPWARN("KS matrix no longer correct. Check possible problems with property calculations!")
769 : END IF
770 : END IF
771 : END IF ! .NOT. just energy
772 :
773 110299 : IF (dft_control%qs_control%ddapc_explicit_potential) THEN
774 164 : CALL auxbas_pw_pool%give_back_pw(v_spin_ddapc_rest_r)
775 164 : DEALLOCATE (v_spin_ddapc_rest_r)
776 : END IF
777 :
778 110299 : IF (calculate_forces .AND. dft_control%qs_control%cdft) THEN
779 118 : IF (.NOT. cdft_control%transfer_pot) THEN
780 212 : DO iatom = 1, SIZE(cdft_control%group)
781 114 : CALL auxbas_pw_pool%give_back_pw(cdft_control%group(iatom)%weight)
782 212 : DEALLOCATE (cdft_control%group(iatom)%weight)
783 : END DO
784 98 : IF (cdft_control%atomic_charges) THEN
785 78 : DO iatom = 1, cdft_control%natoms
786 78 : CALL auxbas_pw_pool%give_back_pw(cdft_control%charge(iatom))
787 : END DO
788 26 : DEALLOCATE (cdft_control%charge)
789 : END IF
790 98 : IF (cdft_control%type == outer_scf_becke_constraint .AND. &
791 : cdft_control%becke_control%cavity_confine) THEN
792 88 : IF (.NOT. ASSOCIATED(cdft_control%becke_control%cavity_mat)) THEN
793 64 : CALL auxbas_pw_pool%give_back_pw(cdft_control%becke_control%cavity)
794 : ELSE
795 24 : DEALLOCATE (cdft_control%becke_control%cavity_mat)
796 : END IF
797 10 : ELSE IF (cdft_control%type == outer_scf_hirshfeld_constraint) THEN
798 2 : IF (ASSOCIATED(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)) THEN
799 0 : CALL auxbas_pw_pool%give_back_pw(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)
800 : END IF
801 : END IF
802 98 : IF (ASSOCIATED(cdft_control%charges_fragment)) DEALLOCATE (cdft_control%charges_fragment)
803 98 : cdft_control%save_pot = .FALSE.
804 98 : cdft_control%need_pot = .TRUE.
805 98 : cdft_control%external_control = .FALSE.
806 : END IF
807 : END IF
808 :
809 110299 : IF (dft_control%do_sccs) THEN
810 132 : CALL auxbas_pw_pool%give_back_pw(v_sccs_rspace)
811 132 : DEALLOCATE (v_sccs_rspace)
812 : END IF
813 :
814 110299 : IF (gapw) THEN
815 18580 : IF (dft_control%apply_external_potential) THEN
816 : ! Integrals of the Hartree potential with g0_soft
817 : CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
818 42 : v_qmmm=vee, scale=-1.0_dp)
819 : END IF
820 18580 : CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace, para_env, calculate_forces)
821 : ! Place Vh_1c_gg_integrals after integrate_vhg0_rspace for CNEO calculations
822 : ! because vhg0 integral is needed to build the complete nuclear equation
823 18580 : CALL get_qs_env(qs_env, ecoul_1c=ecoul_1c, local_rho_set=local_rho_set)
824 : CALL Vh_1c_gg_integrals(qs_env, energy%hartree_1c, ecoul_1c, local_rho_set, para_env, tddft=.FALSE., &
825 18580 : core_2nd=.FALSE.)
826 : ! CNEO quantum nuclear core energy (kinetic + Z*erfc(r)/r potential from classical nuclei)
827 18580 : energy%core_cneo = 0.0_dp
828 18580 : IF (ASSOCIATED(local_rho_set%rhoz_cneo_set)) THEN
829 184 : DO iatom = 1, SIZE(local_rho_set%rhoz_cneo_set)
830 184 : energy%core_cneo = energy%core_cneo + local_rho_set%rhoz_cneo_set(iatom)%e_core
831 : END DO
832 : END IF
833 : END IF
834 :
835 110299 : IF (gapw .OR. gapw_xc) THEN
836 : ! Single atom contributions in the KS matrix ***
837 22270 : CALL update_ks_atom(qs_env, ks_matrix, rho_ao, calculate_forces)
838 22270 : IF (dft_control%do_admm) THEN
839 : !Single atom contribution to the AUX matrices
840 : !Note: also update ks_aux_fit matrix in case of rtp
841 4038 : CALL admm_update_ks_atom(qs_env, calculate_forces)
842 : END IF
843 : END IF
844 :
845 : !Calculation of Mulliken restraint, if requested
846 : CALL qs_ks_mulliken_restraint(energy, dft_control, just_energy, para_env, &
847 110299 : ks_matrix, matrix_s, rho, mulliken_order_p)
848 :
849 : ! Add DFT+U contribution, if requested
850 110299 : IF (dft_control%dft_plus_u) THEN
851 1616 : CPASSERT(nimages == 1)
852 1616 : IF (just_energy) THEN
853 616 : CALL plus_u(qs_env=qs_env)
854 : ELSE
855 1000 : ksmat => ks_matrix(:, 1)
856 1000 : CALL plus_u(qs_env=qs_env, matrix_h=ksmat)
857 : END IF
858 : ELSE
859 108683 : energy%dft_plus_u = 0.0_dp
860 : END IF
861 :
862 : ! At this point the ks matrix should be up to date, filter it if requested
863 242735 : DO ispin = 1, nspins
864 493831 : DO img = 1, nimages
865 : CALL dbcsr_filter(ks_matrix(ispin, img)%matrix, &
866 383532 : dft_control%qs_control%eps_filter_matrix)
867 : END DO
868 : END DO
869 :
870 : !** merge the auxiliary KS matrix and the primary one
871 110299 : IF (dft_control%do_admm_mo) THEN
872 12370 : IF (qs_env%run_rtp) THEN
873 76 : CALL rtp_admm_merge_ks_matrix(qs_env)
874 : ELSE
875 12294 : CALL admm_mo_merge_ks_matrix(qs_env)
876 : END IF
877 97929 : ELSEIF (dft_control%do_admm_dm) THEN
878 214 : CALL admm_dm_merge_ks_matrix(qs_env)
879 : END IF
880 :
881 : ! External field (nonperiodic case)
882 110299 : CALL qs_efield_local_operator(qs_env, just_energy, calculate_forces)
883 :
884 : ! Right now we can compute the orbital derivative here, as it depends currently only on the available
885 : ! Kohn-Sham matrix. This might change in the future, in which case more pieces might need to be assembled
886 : ! from this routine, notice that this part of the calculation in not linear scaling
887 : ! right now this operation is only non-trivial because of occupation numbers and the restricted keyword
888 110299 : IF (qs_env%requires_mo_derivs .AND. .NOT. just_energy .AND. .NOT. qs_env%run_rtp) THEN
889 42461 : CALL get_qs_env(qs_env, mo_derivs=mo_derivs)
890 42461 : CPASSERT(nimages == 1)
891 42461 : ksmat => ks_matrix(:, 1)
892 42461 : CALL calc_mo_derivatives(qs_env, ksmat, mo_derivs)
893 : END IF
894 :
895 : ! ADMM overlap forces
896 110299 : IF (calculate_forces .AND. dft_control%do_admm) THEN
897 286 : IF (dokp) THEN
898 26 : CALL calc_admm_ovlp_forces_kp(qs_env)
899 : ELSE
900 260 : CALL calc_admm_ovlp_forces(qs_env)
901 : END IF
902 : END IF
903 :
904 : ! deal with low spin roks
905 : CALL low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, &
906 110299 : calculate_forces, auxbas_pw_pool)
907 :
908 : ! deal with sic on explicit orbitals
909 : CALL sic_explicit_orbitals(energy, qs_env, dft_control, poisson_env, just_energy, &
910 110299 : calculate_forces, auxbas_pw_pool)
911 :
912 : ! Periodic external field
913 110299 : CALL qs_efield_berry_phase(qs_env, just_energy, calculate_forces)
914 :
915 : ! adds s2_restraint energy and orbital derivatives
916 : CALL qs_ks_s2_restraint(dft_control, qs_env, matrix_s, &
917 110299 : energy, calculate_forces, just_energy)
918 :
919 110299 : IF (do_ppl) THEN
920 : ! update core energy for grid based local pseudopotential
921 60 : ecore_ppl = 0._dp
922 126 : DO ispin = 1, nspins
923 126 : ecore_ppl = ecore_ppl + pw_integral_ab(vppl_rspace, rho_r(ispin))
924 : END DO
925 60 : energy%core = energy%core + ecore_ppl
926 : END IF
927 :
928 110299 : IF (lrigpw) THEN
929 : ! update core energy for ppl_ri method
930 428 : CALL get_qs_env(qs_env, lri_env=lri_env, lri_density=lri_density)
931 428 : IF (lri_env%ppl_ri) THEN
932 8 : ecore_ppl = 0._dp
933 16 : DO ispin = 1, nspins
934 8 : lri_v_int => lri_density%lri_coefs(ispin)%lri_kinds
935 16 : CALL v_int_ppl_energy(qs_env, lri_v_int, ecore_ppl)
936 : END DO
937 8 : energy%core = energy%core + ecore_ppl
938 : END IF
939 : END IF
940 :
941 : ! Sum all energy terms to obtain the total energy
942 : energy%total = energy%core_overlap + energy%core_self + energy%core_cneo + energy%core + &
943 : energy%hartree + energy%hartree_1c + energy%exc + energy%exc1 + energy%ex + &
944 : energy%dispersion + energy%gcp + energy%qmmm_el + energy%mulliken + &
945 : SUM(energy%ddapc_restraint) + energy%s2_restraint + &
946 : energy%dft_plus_u + energy%kTS + &
947 : energy%efield + energy%efield_core + energy%ee + &
948 : energy%ee_core + energy%exc_aux_fit + energy%image_charge + &
949 220702 : energy%sccs_pol + energy%cdft + energy%exc1_aux_fit
950 :
951 110299 : IF (dft_control%apply_embed_pot) energy%total = energy%total + energy%embed_corr
952 :
953 110299 : IF (abnormal_value(energy%total)) &
954 0 : CPABORT("KS energy is an abnormal value (NaN/Inf).")
955 :
956 : ! Print detailed energy
957 110299 : IF (my_print) THEN
958 110277 : CALL print_detailed_energy(qs_env, dft_control, input, energy, mulliken_order_p)
959 : END IF
960 :
961 110299 : CALL timestop(handle)
962 :
963 110299 : END SUBROUTINE qs_ks_build_kohn_sham_matrix
964 :
965 : ! **************************************************************************************************
966 : !> \brief ...
967 : !> \param rho_tot_gspace ...
968 : !> \param qs_env ...
969 : !> \param rho ...
970 : !> \param skip_nuclear_density ...
971 : ! **************************************************************************************************
972 113987 : SUBROUTINE calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density)
973 : TYPE(pw_c1d_gs_type), INTENT(INOUT) :: rho_tot_gspace
974 : TYPE(qs_environment_type), POINTER :: qs_env
975 : TYPE(qs_rho_type), POINTER :: rho
976 : LOGICAL, INTENT(IN), OPTIONAL :: skip_nuclear_density
977 :
978 : INTEGER :: ispin
979 : LOGICAL :: my_skip
980 : TYPE(dft_control_type), POINTER :: dft_control
981 113987 : TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER :: rho_g
982 : TYPE(pw_c1d_gs_type), POINTER :: rho0_s_gs, rho_core, rhoz_cneo_s_gs
983 : TYPE(qs_charges_type), POINTER :: qs_charges
984 :
985 113987 : my_skip = .FALSE.
986 926 : IF (PRESENT(skip_nuclear_density)) my_skip = skip_nuclear_density
987 :
988 113987 : CALL qs_rho_get(rho, rho_g=rho_g)
989 113987 : CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
990 :
991 113987 : IF (.NOT. my_skip) THEN
992 113071 : NULLIFY (rho_core)
993 113071 : CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
994 113071 : IF (dft_control%qs_control%gapw) THEN
995 18894 : NULLIFY (rho0_s_gs, rhoz_cneo_s_gs)
996 18894 : CALL get_qs_env(qs_env=qs_env, rho0_s_gs=rho0_s_gs, rhoz_cneo_s_gs=rhoz_cneo_s_gs)
997 18894 : CPASSERT(ASSOCIATED(rho0_s_gs))
998 18894 : CALL pw_copy(rho0_s_gs, rho_tot_gspace)
999 18894 : IF (ASSOCIATED(rhoz_cneo_s_gs)) THEN
1000 48 : CALL pw_axpy(rhoz_cneo_s_gs, rho_tot_gspace)
1001 : END IF
1002 18894 : IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
1003 1434 : CALL pw_axpy(rho_core, rho_tot_gspace)
1004 : END IF
1005 : ELSE
1006 94177 : CALL pw_copy(rho_core, rho_tot_gspace)
1007 : END IF
1008 248589 : DO ispin = 1, dft_control%nspins
1009 248589 : CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
1010 : END DO
1011 113071 : CALL get_qs_env(qs_env=qs_env, qs_charges=qs_charges)
1012 113071 : qs_charges%total_rho_gspace = pw_integrate_function(rho_tot_gspace, isign=-1)
1013 : ELSE
1014 1836 : DO ispin = 1, dft_control%nspins
1015 1836 : CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
1016 : END DO
1017 : END IF
1018 :
1019 113987 : END SUBROUTINE calc_rho_tot_gspace
1020 :
1021 : ! **************************************************************************************************
1022 : !> \brief compute MO derivatives
1023 : !> \param qs_env the qs_env to update
1024 : !> \param ks_matrix ...
1025 : !> \param mo_derivs ...
1026 : !> \par History
1027 : !> 01.2014 created, transferred from qs_ks_build_kohn_sham_matrix in
1028 : !> separate subroutine
1029 : !> \author Dorothea Golze
1030 : ! **************************************************************************************************
1031 42461 : SUBROUTINE calc_mo_derivatives(qs_env, ks_matrix, mo_derivs)
1032 : TYPE(qs_environment_type), POINTER :: qs_env
1033 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ks_matrix, mo_derivs
1034 :
1035 : INTEGER :: ispin
1036 : LOGICAL :: uniform_occupation
1037 42461 : REAL(KIND=dp), DIMENSION(:), POINTER :: occupation_numbers
1038 : TYPE(cp_fm_type), POINTER :: mo_coeff
1039 : TYPE(dbcsr_type) :: mo_derivs2_tmp1, mo_derivs2_tmp2
1040 : TYPE(dbcsr_type), POINTER :: mo_coeff_b
1041 : TYPE(dft_control_type), POINTER :: dft_control
1042 42461 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mo_array
1043 :
1044 42461 : NULLIFY (dft_control, mo_array, mo_coeff, mo_coeff_b, occupation_numbers)
1045 :
1046 : CALL get_qs_env(qs_env, &
1047 : dft_control=dft_control, &
1048 42461 : mos=mo_array)
1049 :
1050 92679 : DO ispin = 1, SIZE(mo_derivs)
1051 :
1052 : CALL get_mo_set(mo_set=mo_array(ispin), mo_coeff=mo_coeff, &
1053 50218 : mo_coeff_b=mo_coeff_b, occupation_numbers=occupation_numbers)
1054 : CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(ispin)%matrix, mo_coeff_b, &
1055 50218 : 0.0_dp, mo_derivs(ispin)%matrix)
1056 :
1057 92679 : IF (dft_control%restricted) THEN
1058 : ! only the first mo_set are actual variables, but we still need both
1059 636 : CPASSERT(ispin == 1)
1060 636 : CPASSERT(SIZE(mo_array) == 2)
1061 : ! use a temporary array with the same size as the first spin for the second spin
1062 :
1063 : ! uniform_occupation is needed for this case, otherwise we can no
1064 : ! reconstruct things in ot, since we irreversibly sum
1065 636 : CALL get_mo_set(mo_set=mo_array(1), uniform_occupation=uniform_occupation)
1066 636 : CPASSERT(uniform_occupation)
1067 636 : CALL get_mo_set(mo_set=mo_array(2), uniform_occupation=uniform_occupation)
1068 636 : CPASSERT(uniform_occupation)
1069 :
1070 : ! The beta-spin might have fewer orbitals than alpa-spin...
1071 : ! create tempoary matrices with beta_nmo columns
1072 636 : CALL get_mo_set(mo_set=mo_array(2), mo_coeff_b=mo_coeff_b)
1073 636 : CALL dbcsr_create(mo_derivs2_tmp1, template=mo_coeff_b)
1074 :
1075 : ! calculate beta derivatives
1076 636 : CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(2)%matrix, mo_coeff_b, 0.0_dp, mo_derivs2_tmp1)
1077 :
1078 : ! create larger matrix with alpha_nmo columns
1079 636 : CALL dbcsr_create(mo_derivs2_tmp2, template=mo_derivs(1)%matrix)
1080 636 : CALL dbcsr_set(mo_derivs2_tmp2, 0.0_dp)
1081 :
1082 : ! copy into larger matrix, fills the first beta_nmo columns
1083 : CALL dbcsr_copy_columns_hack(mo_derivs2_tmp2, mo_derivs2_tmp1, &
1084 : mo_array(2)%nmo, 1, 1, &
1085 : para_env=mo_array(1)%mo_coeff%matrix_struct%para_env, &
1086 636 : blacs_env=mo_array(1)%mo_coeff%matrix_struct%context)
1087 :
1088 : ! add beta contribution to alpa mo_derivs
1089 636 : CALL dbcsr_add(mo_derivs(1)%matrix, mo_derivs2_tmp2, 1.0_dp, 1.0_dp)
1090 636 : CALL dbcsr_release(mo_derivs2_tmp1)
1091 636 : CALL dbcsr_release(mo_derivs2_tmp2)
1092 : END IF
1093 : END DO
1094 :
1095 42461 : IF (dft_control%do_admm_mo) THEN
1096 6378 : CALL calc_admm_mo_derivatives(qs_env, mo_derivs)
1097 : END IF
1098 :
1099 42461 : END SUBROUTINE calc_mo_derivatives
1100 :
1101 : ! **************************************************************************************************
1102 : !> \brief updates the Kohn Sham matrix of the given qs_env (facility method)
1103 : !> \param qs_env the qs_env to update
1104 : !> \param calculate_forces if true calculate the quantities needed
1105 : !> to calculate the forces. Defaults to false.
1106 : !> \param just_energy if true updates the energies but not the
1107 : !> ks matrix. Defaults to false
1108 : !> \param print_active ...
1109 : !> \par History
1110 : !> 4.2002 created [fawzi]
1111 : !> 8.2014 kpoints [JGH]
1112 : !> 10.2014 refractored [Ole Schuett]
1113 : !> \author Fawzi Mohamed
1114 : ! **************************************************************************************************
1115 211350 : SUBROUTINE qs_ks_update_qs_env(qs_env, calculate_forces, just_energy, &
1116 : print_active)
1117 : TYPE(qs_environment_type), POINTER :: qs_env
1118 : LOGICAL, INTENT(IN), OPTIONAL :: calculate_forces, just_energy, &
1119 : print_active
1120 :
1121 : CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_ks_update_qs_env'
1122 :
1123 : INTEGER :: handle, unit_nr
1124 : LOGICAL :: c_forces, do_rebuild, energy_only, &
1125 : forces_up_to_date, potential_changed, &
1126 : rho_changed, s_mstruct_changed
1127 : TYPE(qs_ks_env_type), POINTER :: ks_env
1128 :
1129 211350 : NULLIFY (ks_env)
1130 211350 : unit_nr = cp_logger_get_default_io_unit()
1131 :
1132 211350 : c_forces = .FALSE.
1133 211350 : energy_only = .FALSE.
1134 211350 : IF (PRESENT(just_energy)) energy_only = just_energy
1135 211350 : IF (PRESENT(calculate_forces)) c_forces = calculate_forces
1136 :
1137 211350 : IF (c_forces) THEN
1138 9983 : CALL timeset(routineN//'_forces', handle)
1139 : ELSE
1140 201367 : CALL timeset(routineN, handle)
1141 : END IF
1142 :
1143 211350 : CPASSERT(ASSOCIATED(qs_env))
1144 :
1145 : CALL get_qs_env(qs_env, &
1146 : ks_env=ks_env, &
1147 : rho_changed=rho_changed, &
1148 : s_mstruct_changed=s_mstruct_changed, &
1149 : potential_changed=potential_changed, &
1150 211350 : forces_up_to_date=forces_up_to_date)
1151 :
1152 211350 : do_rebuild = .FALSE.
1153 211350 : do_rebuild = do_rebuild .OR. rho_changed
1154 8375 : do_rebuild = do_rebuild .OR. s_mstruct_changed
1155 8367 : do_rebuild = do_rebuild .OR. potential_changed
1156 8367 : do_rebuild = do_rebuild .OR. (c_forces .AND. .NOT. forces_up_to_date)
1157 :
1158 : IF (do_rebuild) THEN
1159 203339 : CALL evaluate_core_matrix_traces(qs_env)
1160 :
1161 : ! the ks matrix will be rebuilt so this is fine now
1162 203339 : CALL set_ks_env(ks_env, potential_changed=.FALSE.)
1163 :
1164 : CALL rebuild_ks_matrix(qs_env, &
1165 : calculate_forces=c_forces, &
1166 : just_energy=energy_only, &
1167 203339 : print_active=print_active)
1168 :
1169 203339 : IF (.NOT. energy_only) THEN
1170 : CALL set_ks_env(ks_env, &
1171 : rho_changed=.FALSE., &
1172 : s_mstruct_changed=.FALSE., &
1173 367439 : forces_up_to_date=forces_up_to_date .OR. c_forces)
1174 : END IF
1175 : END IF
1176 :
1177 211350 : CALL timestop(handle)
1178 :
1179 211350 : END SUBROUTINE qs_ks_update_qs_env
1180 :
1181 : ! **************************************************************************************************
1182 : !> \brief Calculates the traces of the core matrices and the density matrix.
1183 : !> \param qs_env ...
1184 : !> \param rho_ao_ext ...
1185 : !> \author Ole Schuett
1186 : ! **************************************************************************************************
1187 212987 : SUBROUTINE evaluate_core_matrix_traces(qs_env, rho_ao_ext)
1188 : TYPE(qs_environment_type), POINTER :: qs_env
1189 : TYPE(dbcsr_p_type), DIMENSION(:, :), OPTIONAL, &
1190 : POINTER :: rho_ao_ext
1191 :
1192 : CHARACTER(LEN=*), PARAMETER :: routineN = 'evaluate_core_matrix_traces'
1193 :
1194 : INTEGER :: handle
1195 : REAL(KIND=dp) :: energy_core_im
1196 212987 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrixkp_h, matrixkp_t, rho_ao_kp
1197 : TYPE(dft_control_type), POINTER :: dft_control
1198 : TYPE(qs_energy_type), POINTER :: energy
1199 : TYPE(qs_rho_type), POINTER :: rho
1200 :
1201 212987 : CALL timeset(routineN, handle)
1202 212987 : NULLIFY (energy, rho, dft_control, rho_ao_kp, matrixkp_t, matrixkp_h)
1203 :
1204 : CALL get_qs_env(qs_env, &
1205 : rho=rho, &
1206 : energy=energy, &
1207 : dft_control=dft_control, &
1208 : kinetic_kp=matrixkp_t, &
1209 212987 : matrix_h_kp=matrixkp_h)
1210 :
1211 212987 : IF (PRESENT(rho_ao_ext)) THEN
1212 9648 : rho_ao_kp => rho_ao_ext
1213 : ELSE
1214 203339 : CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp)
1215 : END IF
1216 :
1217 212987 : CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy%core, dft_control%nspins)
1218 :
1219 : ! Add the imaginary part in the RTP case
1220 212987 : IF (qs_env%run_rtp) THEN
1221 3168 : IF (dft_control%rtp_control%velocity_gauge) THEN
1222 150 : CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
1223 150 : CALL qs_rho_get(rho, rho_ao_im_kp=rho_ao_kp)
1224 150 : CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy_core_im, dft_control%nspins)
1225 150 : energy%core = energy%core - energy_core_im
1226 : END IF
1227 : END IF
1228 :
1229 : ! kinetic energy
1230 212987 : IF (ASSOCIATED(matrixkp_t)) &
1231 110097 : CALL calculate_ptrace(matrixkp_t, rho_ao_kp, energy%kinetic, dft_control%nspins)
1232 :
1233 212987 : CALL timestop(handle)
1234 212987 : END SUBROUTINE evaluate_core_matrix_traces
1235 :
1236 : ! **************************************************************************************************
1237 : !> \brief Constructs a new Khon-Sham matrix
1238 : !> \param qs_env ...
1239 : !> \param calculate_forces ...
1240 : !> \param just_energy ...
1241 : !> \param print_active ...
1242 : !> \author Ole Schuett
1243 : ! **************************************************************************************************
1244 203339 : SUBROUTINE rebuild_ks_matrix(qs_env, calculate_forces, just_energy, print_active)
1245 : TYPE(qs_environment_type), POINTER :: qs_env
1246 : LOGICAL, INTENT(IN) :: calculate_forces, just_energy
1247 : LOGICAL, INTENT(IN), OPTIONAL :: print_active
1248 :
1249 : CHARACTER(LEN=*), PARAMETER :: routineN = 'rebuild_ks_matrix'
1250 :
1251 : INTEGER :: handle
1252 : TYPE(dft_control_type), POINTER :: dft_control
1253 :
1254 203339 : CALL timeset(routineN, handle)
1255 203339 : NULLIFY (dft_control)
1256 :
1257 203339 : CALL get_qs_env(qs_env, dft_control=dft_control)
1258 :
1259 203339 : IF (dft_control%qs_control%semi_empirical) THEN
1260 : CALL build_se_fock_matrix(qs_env, &
1261 : calculate_forces=calculate_forces, &
1262 41268 : just_energy=just_energy)
1263 :
1264 162071 : ELSEIF (dft_control%qs_control%dftb) THEN
1265 : CALL build_dftb_ks_matrix(qs_env, &
1266 : calculate_forces=calculate_forces, &
1267 13174 : just_energy=just_energy)
1268 :
1269 148897 : ELSEIF (dft_control%qs_control%xtb) THEN
1270 38800 : IF (dft_control%qs_control%xtb_control%do_tblite) THEN
1271 : CALL build_tblite_ks_matrix(qs_env, &
1272 : calculate_forces=calculate_forces, &
1273 10514 : just_energy=just_energy)
1274 : ELSE
1275 : CALL build_xtb_ks_matrix(qs_env, &
1276 : calculate_forces=calculate_forces, &
1277 28286 : just_energy=just_energy)
1278 : END IF
1279 : ELSE
1280 : CALL qs_ks_build_kohn_sham_matrix(qs_env, &
1281 : calculate_forces=calculate_forces, &
1282 : just_energy=just_energy, &
1283 110097 : print_active=print_active)
1284 : END IF
1285 :
1286 203339 : CALL timestop(handle)
1287 :
1288 203339 : END SUBROUTINE rebuild_ks_matrix
1289 :
1290 : ! **************************************************************************************************
1291 : !> \brief Allocate ks_matrix if necessary, take current overlap matrix as template
1292 : !> \param qs_env ...
1293 : !> \param is_complex ...
1294 : !> \par History
1295 : !> refactoring 04.03.2011 [MI]
1296 : !> \author
1297 : ! **************************************************************************************************
1298 :
1299 23236 : SUBROUTINE qs_ks_allocate_basics(qs_env, is_complex)
1300 : TYPE(qs_environment_type), POINTER :: qs_env
1301 : LOGICAL, INTENT(in) :: is_complex
1302 :
1303 : CHARACTER(LEN=default_string_length) :: headline
1304 : INTEGER :: ic, ispin, nimages, nspins
1305 : LOGICAL :: do_kpoints
1306 23236 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: matrix_s_kp, matrixkp_im_ks, matrixkp_ks
1307 : TYPE(dbcsr_type), POINTER :: refmatrix
1308 : TYPE(dft_control_type), POINTER :: dft_control
1309 : TYPE(kpoint_type), POINTER :: kpoints
1310 : TYPE(neighbor_list_set_p_type), DIMENSION(:), &
1311 23236 : POINTER :: sab_orb
1312 : TYPE(qs_ks_env_type), POINTER :: ks_env
1313 :
1314 23236 : NULLIFY (dft_control, ks_env, matrix_s_kp, sab_orb, matrixkp_ks, refmatrix, matrixkp_im_ks, kpoints)
1315 :
1316 : CALL get_qs_env(qs_env, &
1317 : dft_control=dft_control, &
1318 : matrix_s_kp=matrix_s_kp, &
1319 : ks_env=ks_env, &
1320 : kpoints=kpoints, &
1321 : do_kpoints=do_kpoints, &
1322 : matrix_ks_kp=matrixkp_ks, &
1323 23236 : matrix_ks_im_kp=matrixkp_im_ks)
1324 :
1325 23236 : IF (do_kpoints) THEN
1326 934 : CALL get_kpoint_info(kpoints, sab_nl=sab_orb)
1327 : ELSE
1328 22302 : CALL get_qs_env(qs_env, sab_orb=sab_orb)
1329 : END IF
1330 :
1331 23236 : nspins = dft_control%nspins
1332 23236 : nimages = dft_control%nimages
1333 :
1334 23236 : IF (.NOT. ASSOCIATED(matrixkp_ks)) THEN
1335 23196 : CALL dbcsr_allocate_matrix_set(matrixkp_ks, nspins, nimages)
1336 23196 : refmatrix => matrix_s_kp(1, 1)%matrix
1337 49150 : DO ispin = 1, nspins
1338 172824 : DO ic = 1, nimages
1339 123674 : IF (nspins > 1) THEN
1340 25712 : IF (ispin == 1) THEN
1341 12856 : headline = "KOHN-SHAM MATRIX FOR ALPHA SPIN"
1342 : ELSE
1343 12856 : headline = "KOHN-SHAM MATRIX FOR BETA SPIN"
1344 : END IF
1345 : ELSE
1346 97962 : headline = "KOHN-SHAM MATRIX"
1347 : END IF
1348 123674 : ALLOCATE (matrixkp_ks(ispin, ic)%matrix)
1349 : CALL dbcsr_create(matrix=matrixkp_ks(ispin, ic)%matrix, template=refmatrix, &
1350 123674 : name=TRIM(headline), matrix_type=dbcsr_type_symmetric)
1351 123674 : CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_ks(ispin, ic)%matrix, sab_orb)
1352 149628 : CALL dbcsr_set(matrixkp_ks(ispin, ic)%matrix, 0.0_dp)
1353 : END DO
1354 : END DO
1355 23196 : CALL set_ks_env(ks_env, matrix_ks_kp=matrixkp_ks)
1356 : END IF
1357 :
1358 23236 : IF (is_complex) THEN
1359 138 : IF (.NOT. ASSOCIATED(matrixkp_im_ks)) THEN
1360 138 : CPASSERT(nspins == SIZE(matrixkp_ks, 1))
1361 138 : CPASSERT(nimages == SIZE(matrixkp_ks, 2))
1362 138 : CALL dbcsr_allocate_matrix_set(matrixkp_im_ks, nspins, nimages)
1363 288 : DO ispin = 1, nspins
1364 438 : DO ic = 1, nimages
1365 150 : IF (nspins > 1) THEN
1366 24 : IF (ispin == 1) THEN
1367 12 : headline = "IMAGINARY KOHN-SHAM MATRIX FOR ALPHA SPIN"
1368 : ELSE
1369 12 : headline = "IMAGINARY KOHN-SHAM MATRIX FOR BETA SPIN"
1370 : END IF
1371 : ELSE
1372 126 : headline = "IMAGINARY KOHN-SHAM MATRIX"
1373 : END IF
1374 150 : ALLOCATE (matrixkp_im_ks(ispin, ic)%matrix)
1375 150 : refmatrix => matrixkp_ks(ispin, ic)%matrix ! base on real part, but anti-symmetric
1376 : CALL dbcsr_create(matrix=matrixkp_im_ks(ispin, ic)%matrix, template=refmatrix, &
1377 150 : name=TRIM(headline), matrix_type=dbcsr_type_antisymmetric)
1378 150 : CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_im_ks(ispin, ic)%matrix, sab_orb)
1379 300 : CALL dbcsr_set(matrixkp_im_ks(ispin, ic)%matrix, 0.0_dp)
1380 : END DO
1381 : END DO
1382 138 : CALL set_ks_env(ks_env, matrix_ks_im_kp=matrixkp_im_ks)
1383 : END IF
1384 : END IF
1385 :
1386 23236 : END SUBROUTINE qs_ks_allocate_basics
1387 :
1388 : END MODULE qs_ks_methods
|