LCOV - code coverage report
Current view: top level - src - qs_ks_methods.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:dc8eeee) Lines: 463 504 91.9 %
Date: 2025-05-15 08:34:30 Functions: 7 8 87.5 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief routines that build the Kohn-Sham matrix (i.e calculate the coulomb
      10             : !>        and xc parts
      11             : !> \author Fawzi Mohamed
      12             : !> \par History
      13             : !>      - 05.2002 moved from qs_scf (see there the history) [fawzi]
      14             : !>      - JGH [30.08.02] multi-grid arrays independent from density and potential
      15             : !>      - 10.2002 introduced pools, uses updated rho as input,
      16             : !>                removed most temporary variables, renamed may vars,
      17             : !>                began conversion to LSD [fawzi]
      18             : !>      - 10.2004 moved calculate_w_matrix here [Joost VandeVondele]
      19             : !>                introduced energy derivative wrt MOs [Joost VandeVondele]
      20             : !>      - SCCS implementation (16.10.2013,MK)
      21             : ! **************************************************************************************************
      22             : MODULE qs_ks_methods
      23             :    USE admm_dm_methods,                 ONLY: admm_dm_calc_rho_aux,&
      24             :                                               admm_dm_merge_ks_matrix
      25             :    USE admm_methods,                    ONLY: admm_mo_calc_rho_aux,&
      26             :                                               admm_mo_calc_rho_aux_kp,&
      27             :                                               admm_mo_merge_ks_matrix,&
      28             :                                               admm_update_ks_atom,&
      29             :                                               calc_admm_mo_derivatives,&
      30             :                                               calc_admm_ovlp_forces,&
      31             :                                               calc_admm_ovlp_forces_kp
      32             :    USE admm_types,                      ONLY: admm_type,&
      33             :                                               get_admm_env
      34             :    USE cell_types,                      ONLY: cell_type
      35             :    USE cp_control_types,                ONLY: dft_control_type
      36             :    USE cp_dbcsr_api,                    ONLY: &
      37             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_filter, dbcsr_get_info, dbcsr_multiply, &
      38             :         dbcsr_p_type, dbcsr_release, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
      39             :         dbcsr_type_symmetric
      40             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      41             :    USE cp_dbcsr_operations,             ONLY: dbcsr_allocate_matrix_set,&
      42             :                                               dbcsr_copy_columns_hack
      43             :    USE cp_ddapc,                        ONLY: qs_ks_ddapc
      44             :    USE cp_fm_types,                     ONLY: cp_fm_type
      45             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      46             :                                               cp_logger_get_default_io_unit,&
      47             :                                               cp_logger_type
      48             :    USE cp_output_handling,              ONLY: cp_p_file,&
      49             :                                               cp_print_key_should_output
      50             :    USE dft_plus_u,                      ONLY: plus_u
      51             :    USE hartree_local_methods,           ONLY: Vh_1c_gg_integrals
      52             :    USE hartree_local_types,             ONLY: ecoul_1center_type
      53             :    USE hfx_admm_utils,                  ONLY: hfx_admm_init,&
      54             :                                               hfx_ks_matrix,&
      55             :                                               hfx_ks_matrix_kp
      56             :    USE input_constants,                 ONLY: do_ppl_grid,&
      57             :                                               outer_scf_becke_constraint,&
      58             :                                               outer_scf_hirshfeld_constraint,&
      59             :                                               smeagol_runtype_emtransport
      60             :    USE input_section_types,             ONLY: section_vals_get,&
      61             :                                               section_vals_get_subs_vals,&
      62             :                                               section_vals_type,&
      63             :                                               section_vals_val_get
      64             :    USE kg_correction,                   ONLY: kg_ekin_subset
      65             :    USE kinds,                           ONLY: default_string_length,&
      66             :                                               dp
      67             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      68             :                                               kpoint_type
      69             :    USE lri_environment_methods,         ONLY: v_int_ppl_energy
      70             :    USE lri_environment_types,           ONLY: lri_density_type,&
      71             :                                               lri_environment_type,&
      72             :                                               lri_kind_type
      73             :    USE mathlib,                         ONLY: abnormal_value
      74             :    USE message_passing,                 ONLY: mp_para_env_type
      75             :    USE pw_env_types,                    ONLY: pw_env_get,&
      76             :                                               pw_env_type
      77             :    USE pw_methods,                      ONLY: pw_axpy,&
      78             :                                               pw_copy,&
      79             :                                               pw_integral_ab,&
      80             :                                               pw_integrate_function,&
      81             :                                               pw_scale,&
      82             :                                               pw_transfer,&
      83             :                                               pw_zero
      84             :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
      85             :    USE pw_poisson_types,                ONLY: pw_poisson_implicit,&
      86             :                                               pw_poisson_type
      87             :    USE pw_pool_types,                   ONLY: pw_pool_type
      88             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      89             :                                               pw_r3d_rs_type
      90             :    USE qmmm_image_charge,               ONLY: add_image_pot_to_hartree_pot,&
      91             :                                               calculate_image_pot,&
      92             :                                               integrate_potential_devga_rspace
      93             :    USE qs_cdft_types,                   ONLY: cdft_control_type
      94             :    USE qs_charges_types,                ONLY: qs_charges_type
      95             :    USE qs_core_energies,                ONLY: calculate_ptrace
      96             :    USE qs_dftb_matrices,                ONLY: build_dftb_ks_matrix
      97             :    USE qs_efield_berry,                 ONLY: qs_efield_berry_phase
      98             :    USE qs_efield_local,                 ONLY: qs_efield_local_operator
      99             :    USE qs_energy_types,                 ONLY: qs_energy_type
     100             :    USE qs_environment_types,            ONLY: get_qs_env,&
     101             :                                               qs_environment_type
     102             :    USE qs_gapw_densities,               ONLY: prepare_gapw_den
     103             :    USE qs_harris_types,                 ONLY: harris_type
     104             :    USE qs_harris_utils,                 ONLY: harris_set_potentials
     105             :    USE qs_integrate_potential,          ONLY: integrate_ppl_rspace,&
     106             :                                               integrate_rho_nlcc,&
     107             :                                               integrate_v_core_rspace
     108             :    USE qs_ks_apply_restraints,          ONLY: qs_ks_cdft_constraint,&
     109             :                                               qs_ks_mulliken_restraint,&
     110             :                                               qs_ks_s2_restraint
     111             :    USE qs_ks_atom,                      ONLY: update_ks_atom
     112             :    USE qs_ks_qmmm_methods,              ONLY: qmmm_calculate_energy,&
     113             :                                               qmmm_modify_hartree_pot
     114             :    USE qs_ks_types,                     ONLY: qs_ks_env_type,&
     115             :                                               set_ks_env
     116             :    USE qs_ks_utils,                     ONLY: &
     117             :         calc_v_sic_rspace, calculate_zmp_potential, compute_matrix_vxc, &
     118             :         get_embed_potential_energy, low_spin_roks, print_densities, print_detailed_energy, &
     119             :         sic_explicit_orbitals, sum_up_and_integrate
     120             :    USE qs_local_rho_types,              ONLY: local_rho_type
     121             :    USE qs_mo_types,                     ONLY: get_mo_set,&
     122             :                                               mo_set_type
     123             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
     124             :    USE qs_rho0_ggrid,                   ONLY: integrate_vhg0_rspace
     125             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     126             :                                               qs_rho_type
     127             :    USE qs_sccs,                         ONLY: sccs
     128             :    USE qs_scf_types,                    ONLY: qs_scf_env_type
     129             :    USE qs_vxc,                          ONLY: qs_vxc_create
     130             :    USE qs_vxc_atom,                     ONLY: calculate_vxc_atom
     131             :    USE rtp_admm_methods,                ONLY: rtp_admm_calc_rho_aux,&
     132             :                                               rtp_admm_merge_ks_matrix
     133             :    USE se_fock_matrix,                  ONLY: build_se_fock_matrix
     134             :    USE smeagol_interface,               ONLY: smeagol_shift_v_hartree
     135             :    USE surface_dipole,                  ONLY: calc_dipsurf_potential
     136             :    USE tblite_ks_matrix,                ONLY: build_tblite_ks_matrix
     137             :    USE virial_types,                    ONLY: virial_type
     138             :    USE xtb_ks_matrix,                   ONLY: build_xtb_ks_matrix
     139             : #include "./base/base_uses.f90"
     140             : 
     141             :    IMPLICIT NONE
     142             : 
     143             :    PRIVATE
     144             : 
     145             :    LOGICAL, PARAMETER :: debug_this_module = .TRUE.
     146             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_ks_methods'
     147             : 
     148             :    PUBLIC :: calc_rho_tot_gspace, qs_ks_update_qs_env, qs_ks_build_kohn_sham_matrix, &
     149             :              qs_ks_allocate_basics, evaluate_core_matrix_p_mix_new
     150             : 
     151             : CONTAINS
     152             : 
     153             : ! **************************************************************************************************
     154             : !> \brief routine where the real calculations are made: the
     155             : !>      KS matrix is calculated
     156             : !> \param qs_env the qs_env to update
     157             : !> \param calculate_forces if true calculate the quantities needed
     158             : !>        to calculate the forces. Defaults to false.
     159             : !> \param just_energy if true updates the energies but not the
     160             : !>        ks matrix. Defaults to false
     161             : !> \param print_active ...
     162             : !> \param ext_ks_matrix ...
     163             : !> \par History
     164             : !>      06.2002 moved from qs_scf to qs_ks_methods, use of ks_env
     165             : !>              new did_change scheme [fawzi]
     166             : !>      10.2002 introduced pools, uses updated rho as input, LSD [fawzi]
     167             : !>      10.2004 build_kohn_sham matrix now also computes the derivatives
     168             : !>              of the total energy wrt to the MO coefs, if instructed to
     169             : !>              do so. This appears useful for orbital dependent functionals
     170             : !>              where the KS matrix alone (however this might be defined)
     171             : !>               does not contain the info to construct this derivative.
     172             : !> \author Matthias Krack
     173             : !> \note
     174             : !>      make rho, energy and qs_charges optional, defaulting
     175             : !>      to qs_env components?
     176             : ! **************************************************************************************************
     177      308919 :    SUBROUTINE qs_ks_build_kohn_sham_matrix(qs_env, calculate_forces, just_energy, &
     178             :                                            print_active, ext_ks_matrix)
     179             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     180             :       LOGICAL, INTENT(in)                                :: calculate_forces, just_energy
     181             :       LOGICAL, INTENT(IN), OPTIONAL                      :: print_active
     182             :       TYPE(dbcsr_p_type), DIMENSION(:), OPTIONAL, &
     183             :          POINTER                                         :: ext_ks_matrix
     184             : 
     185             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_ks_build_kohn_sham_matrix'
     186             : 
     187             :       CHARACTER(len=default_string_length)               :: name
     188             :       INTEGER                                            :: handle, iatom, img, ispin, nimages, &
     189             :                                                             nspins
     190             :       LOGICAL :: do_adiabatic_rescaling, do_ddapc, do_hfx, do_ppl, dokp, gapw, gapw_xc, &
     191             :          hfx_treat_lsd_in_core, just_energy_xc, lrigpw, my_print, rigpw, use_virial
     192             :       REAL(KIND=dp)                                      :: ecore_ppl, edisp, ee_ener, ekin_mol, &
     193             :                                                             mulliken_order_p, vscale
     194             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_stress, pv_loc
     195             :       TYPE(admm_type), POINTER                           :: admm_env
     196             :       TYPE(cdft_control_type), POINTER                   :: cdft_control
     197             :       TYPE(cell_type), POINTER                           :: cell
     198             :       TYPE(cp_logger_type), POINTER                      :: logger
     199      102973 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ksmat, matrix_vxc, mo_derivs
     200      102973 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: ks_matrix, ks_matrix_im, matrix_h, &
     201      102973 :                                                             matrix_h_im, matrix_s, my_rho, rho_ao
     202             :       TYPE(dft_control_type), POINTER                    :: dft_control
     203      102973 :       TYPE(ecoul_1center_type), DIMENSION(:), POINTER    :: ecoul_1c
     204             :       TYPE(harris_type), POINTER                         :: harris_env
     205             :       TYPE(local_rho_type), POINTER                      :: local_rho_set
     206             :       TYPE(lri_density_type), POINTER                    :: lri_density
     207             :       TYPE(lri_environment_type), POINTER                :: lri_env
     208      102973 :       TYPE(lri_kind_type), DIMENSION(:), POINTER         :: lri_v_int
     209             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     210             :       TYPE(pw_c1d_gs_type)                               :: rho_tot_gspace, v_hartree_gspace
     211             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho_core
     212             :       TYPE(pw_env_type), POINTER                         :: pw_env
     213             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
     214             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     215      102973 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r, v_rspace_embed, v_rspace_new, &
     216      102973 :                                                             v_rspace_new_aux_fit, v_tau_rspace, &
     217      102973 :                                                             v_tau_rspace_aux_fit
     218             :       TYPE(pw_r3d_rs_type), POINTER                      :: rho0_s_rs, rho_nlcc, v_hartree_rspace, &
     219             :                                                             v_sccs_rspace, v_sic_rspace, &
     220             :                                                             v_spin_ddapc_rest_r, vee, vppl_rspace
     221             :       TYPE(qs_energy_type), POINTER                      :: energy
     222             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     223             :       TYPE(qs_rho_type), POINTER                         :: rho, rho_struct, rho_xc
     224             :       TYPE(section_vals_type), POINTER                   :: adiabatic_rescaling_section, &
     225             :                                                             hfx_sections, input, scf_section, &
     226             :                                                             xc_section
     227             :       TYPE(virial_type), POINTER                         :: virial
     228             : 
     229      102973 :       CALL timeset(routineN, handle)
     230      102973 :       NULLIFY (admm_env, cell, dft_control, logger, mo_derivs, my_rho, &
     231      102973 :                rho_struct, para_env, pw_env, virial, vppl_rspace, &
     232      102973 :                adiabatic_rescaling_section, hfx_sections, &
     233      102973 :                input, scf_section, xc_section, matrix_h, matrix_h_im, matrix_s, &
     234      102973 :                auxbas_pw_pool, poisson_env, v_rspace_new, v_rspace_new_aux_fit, &
     235      102973 :                v_tau_rspace, v_tau_rspace_aux_fit, matrix_vxc, vee, rho_nlcc, &
     236      102973 :                ks_env, ks_matrix, ks_matrix_im, rho, energy, rho_xc, rho_r, rho_ao, rho_core)
     237             : 
     238      102973 :       CPASSERT(ASSOCIATED(qs_env))
     239             : 
     240      102973 :       logger => cp_get_default_logger()
     241      102973 :       my_print = .TRUE.
     242      102973 :       IF (PRESENT(print_active)) my_print = print_active
     243             : 
     244             :       CALL get_qs_env(qs_env, &
     245             :                       ks_env=ks_env, &
     246             :                       dft_control=dft_control, &
     247             :                       matrix_h_kp=matrix_h, &
     248             :                       matrix_h_im_kp=matrix_h_im, &
     249             :                       matrix_s_kp=matrix_s, &
     250             :                       matrix_ks_kp=ks_matrix, &
     251             :                       matrix_ks_im_kp=ks_matrix_im, &
     252             :                       matrix_vxc=matrix_vxc, &
     253             :                       pw_env=pw_env, &
     254             :                       cell=cell, &
     255             :                       para_env=para_env, &
     256             :                       input=input, &
     257             :                       virial=virial, &
     258             :                       v_hartree_rspace=v_hartree_rspace, &
     259             :                       vee=vee, &
     260             :                       rho_nlcc=rho_nlcc, &
     261             :                       rho=rho, &
     262             :                       rho_core=rho_core, &
     263             :                       rho_xc=rho_xc, &
     264      102973 :                       energy=energy)
     265             : 
     266      102973 :       CALL qs_rho_get(rho, rho_r=rho_r, rho_ao_kp=rho_ao)
     267             : 
     268      102973 :       nimages = dft_control%nimages
     269      102973 :       nspins = dft_control%nspins
     270             : 
     271             :       ! remap pointer to allow for non-kpoint external ks matrix
     272      102973 :       IF (PRESENT(ext_ks_matrix)) ks_matrix(1:nspins, 1:1) => ext_ks_matrix(1:nspins)
     273             : 
     274      102973 :       use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
     275             : 
     276      102973 :       hfx_sections => section_vals_get_subs_vals(input, "DFT%XC%HF")
     277      102973 :       CALL section_vals_get(hfx_sections, explicit=do_hfx)
     278      102973 :       IF (do_hfx) THEN
     279             :          CALL section_vals_val_get(hfx_sections, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
     280       24402 :                                    i_rep_section=1)
     281             :       END IF
     282      102973 :       adiabatic_rescaling_section => section_vals_get_subs_vals(input, "DFT%XC%ADIABATIC_RESCALING")
     283      102973 :       CALL section_vals_get(adiabatic_rescaling_section, explicit=do_adiabatic_rescaling)
     284      102973 :       just_energy_xc = just_energy
     285      102973 :       IF (do_adiabatic_rescaling) THEN
     286             :          !! If we perform adiabatic rescaling, the xc potential has to be scaled by the xc- and
     287             :          !! HFX-energy. Thus, let us first calculate the energy
     288          44 :          just_energy_xc = .TRUE.
     289             :       END IF
     290             : 
     291      102973 :       CPASSERT(ASSOCIATED(matrix_h))
     292      102973 :       CPASSERT(ASSOCIATED(matrix_s))
     293      102973 :       CPASSERT(ASSOCIATED(rho))
     294      102973 :       CPASSERT(ASSOCIATED(pw_env))
     295      102973 :       CPASSERT(SIZE(ks_matrix, 1) > 0)
     296      102973 :       dokp = (nimages > 1)
     297             : 
     298             :       ! Setup the possible usage of DDAPC charges
     299             :       do_ddapc = dft_control%qs_control%ddapc_restraint .OR. &
     300             :                  qs_env%cp_ddapc_ewald%do_decoupling .OR. &
     301             :                  qs_env%cp_ddapc_ewald%do_qmmm_periodic_decpl .OR. &
     302      102973 :                  qs_env%cp_ddapc_ewald%do_solvation
     303             : 
     304             :       ! Check if LRIGPW is used
     305      102973 :       lrigpw = dft_control%qs_control%lrigpw
     306      102973 :       rigpw = dft_control%qs_control%rigpw
     307      102973 :       IF (rigpw) THEN
     308           0 :          CPASSERT(nimages == 1)
     309             :       END IF
     310           0 :       IF (lrigpw .AND. rigpw) THEN
     311           0 :          CPABORT(" LRI and RI are not compatible")
     312             :       END IF
     313             : 
     314             :       ! Check for GAPW method : additional terms for local densities
     315      102973 :       gapw = dft_control%qs_control%gapw
     316      102973 :       gapw_xc = dft_control%qs_control%gapw_xc
     317      102973 :       IF (gapw_xc .AND. gapw) THEN
     318           0 :          CPABORT(" GAPW and GAPW_XC are not compatible")
     319             :       END IF
     320      102973 :       IF ((gapw .AND. lrigpw) .OR. (gapw_xc .AND. lrigpw)) THEN
     321           0 :          CPABORT(" GAPW/GAPW_XC and LRIGPW are not compatible")
     322             :       END IF
     323      102973 :       IF ((gapw .AND. rigpw) .OR. (gapw_xc .AND. rigpw)) THEN
     324           0 :          CPABORT(" GAPW/GAPW_XC and RIGPW are not compatible")
     325             :       END IF
     326             : 
     327      102973 :       do_ppl = dft_control%qs_control%do_ppl_method == do_ppl_grid
     328      102973 :       IF (do_ppl) THEN
     329          60 :          CPASSERT(.NOT. gapw)
     330          60 :          CALL get_qs_env(qs_env=qs_env, vppl=vppl_rspace)
     331             :       END IF
     332             : 
     333      102973 :       IF (gapw_xc) THEN
     334        2608 :          CPASSERT(ASSOCIATED(rho_xc))
     335             :       END IF
     336             : 
     337             :       ! gets the tmp grids
     338      102973 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
     339             : 
     340      102973 :       IF (gapw .AND. (poisson_env%parameters%solver .EQ. pw_poisson_implicit)) THEN
     341           0 :          CPABORT("The implicit Poisson solver cannot be used in conjunction with GAPW.")
     342             :       END IF
     343             : 
     344             :       ! ***  Prepare densities for gapw ***
     345      102973 :       IF (gapw .OR. gapw_xc) THEN
     346       16064 :          CALL prepare_gapw_den(qs_env, do_rho0=(.NOT. gapw_xc))
     347             :       END IF
     348             : 
     349             :       ! Calculate the Hartree potential
     350      102973 :       CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
     351      102973 :       CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
     352             : 
     353      102973 :       scf_section => section_vals_get_subs_vals(input, "DFT%SCF")
     354             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, scf_section, &
     355             :                                            "PRINT%DETAILED_ENERGY"), &
     356             :                 cp_p_file) .AND. &
     357      102973 :           (.NOT. gapw) .AND. (.NOT. gapw_xc) .AND. &
     358             :           (.NOT. (poisson_env%parameters%solver .EQ. pw_poisson_implicit))) THEN
     359         916 :          CALL pw_zero(rho_tot_gspace)
     360         916 :          CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density=.TRUE.)
     361             :          CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%e_hartree, &
     362         916 :                                v_hartree_gspace)
     363         916 :          CALL pw_zero(rho_tot_gspace)
     364         916 :          CALL pw_zero(v_hartree_gspace)
     365             :       END IF
     366             : 
     367             :       ! Get the total density in g-space [ions + electrons]
     368      102973 :       CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
     369             : 
     370      102973 :       IF (my_print) THEN
     371      102951 :          CALL print_densities(qs_env, rho)
     372             :       END IF
     373             : 
     374      102973 :       IF (dft_control%do_sccs) THEN
     375             :          ! Self-consistent continuum solvation (SCCS) model
     376             :          NULLIFY (v_sccs_rspace)
     377         132 :          ALLOCATE (v_sccs_rspace)
     378         132 :          CALL auxbas_pw_pool%create_pw(v_sccs_rspace)
     379             : 
     380         132 :          IF (poisson_env%parameters%solver .EQ. pw_poisson_implicit) THEN
     381           0 :             CPABORT("The implicit Poisson solver cannot be used together with SCCS.")
     382             :          END IF
     383             : 
     384         132 :          IF (use_virial .AND. calculate_forces) THEN
     385             :             CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace, &
     386           0 :                       h_stress=h_stress)
     387           0 :             virial%pv_ehartree = virial%pv_ehartree + h_stress/REAL(para_env%num_pe, dp)
     388           0 :             virial%pv_virial = virial%pv_virial + h_stress/REAL(para_env%num_pe, dp)
     389             :          ELSE
     390         132 :             CALL sccs(qs_env, rho_tot_gspace, v_hartree_gspace, v_sccs_rspace)
     391             :          END IF
     392             :       ELSE
     393             :          ! Getting the Hartree energy and Hartree potential.  Also getting the stress tensor
     394             :          ! from the Hartree term if needed.  No nuclear force information here
     395      102841 :          IF (use_virial .AND. calculate_forces) THEN
     396         378 :             h_stress(:, :) = 0.0_dp
     397             :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
     398             :                                   v_hartree_gspace, h_stress=h_stress, &
     399         378 :                                   rho_core=rho_core)
     400        4914 :             virial%pv_ehartree = virial%pv_ehartree + h_stress/REAL(para_env%num_pe, dp)
     401        4914 :             virial%pv_virial = virial%pv_virial + h_stress/REAL(para_env%num_pe, dp)
     402             :          ELSE
     403             :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
     404      102463 :                                   v_hartree_gspace, rho_core=rho_core)
     405             :          END IF
     406             :       END IF
     407             : 
     408             :       ! In case decouple periodic images and/or apply restraints to charges
     409      102973 :       IF (do_ddapc) THEN
     410             :          CALL qs_ks_ddapc(qs_env, auxbas_pw_pool, rho_tot_gspace, v_hartree_gspace, &
     411             :                           v_spin_ddapc_rest_r, energy, calculate_forces, ks_matrix, &
     412        1378 :                           just_energy)
     413             :       ELSE
     414      101595 :          dft_control%qs_control%ddapc_explicit_potential = .FALSE.
     415      101595 :          dft_control%qs_control%ddapc_restraint_is_spin = .FALSE.
     416      101595 :          IF (.NOT. just_energy) THEN
     417       92649 :             CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
     418       92649 :             CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
     419             :          END IF
     420             :       END IF
     421      102973 :       CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
     422             : 
     423      102973 :       IF (dft_control%correct_surf_dip) THEN
     424         110 :          IF (dft_control%surf_dip_correct_switch) THEN
     425         110 :             CALL calc_dipsurf_potential(qs_env, energy)
     426         110 :             energy%hartree = energy%hartree + energy%surf_dipole
     427             :          END IF
     428             :       END IF
     429             : 
     430             :       ! SIC
     431             :       CALL calc_v_sic_rspace(v_sic_rspace, energy, qs_env, dft_control, rho, poisson_env, &
     432      102973 :                              just_energy, calculate_forces, auxbas_pw_pool)
     433             : 
     434      102973 :       IF (gapw) THEN
     435       13456 :          CALL get_qs_env(qs_env, ecoul_1c=ecoul_1c, local_rho_set=local_rho_set)
     436             :          CALL Vh_1c_gg_integrals(qs_env, energy%hartree_1c, ecoul_1c, local_rho_set, para_env, tddft=.FALSE., &
     437       13456 :                                  core_2nd=.FALSE.)
     438             :       END IF
     439             : 
     440             :       ! Check if CDFT constraint is needed
     441      102973 :       CALL qs_ks_cdft_constraint(qs_env, auxbas_pw_pool, calculate_forces, cdft_control)
     442             : 
     443             :       ! Adds the External Potential if requested
     444      102973 :       IF (dft_control%apply_external_potential) THEN
     445             :          ! Compute the energy due to the external potential
     446             :          ee_ener = 0.0_dp
     447         728 :          DO ispin = 1, nspins
     448         728 :             ee_ener = ee_ener + pw_integral_ab(rho_r(ispin), vee)
     449             :          END DO
     450         364 :          IF (.NOT. just_energy) THEN
     451         364 :             IF (gapw) THEN
     452             :                CALL get_qs_env(qs_env=qs_env, &
     453          42 :                                rho0_s_rs=rho0_s_rs)
     454          42 :                CPASSERT(ASSOCIATED(rho0_s_rs))
     455          42 :                ee_ener = ee_ener + pw_integral_ab(rho0_s_rs, vee)
     456             :             END IF
     457             :          END IF
     458             :          ! the sign accounts for the charge of the electrons
     459         364 :          energy%ee = -ee_ener
     460             :       END IF
     461             : 
     462             :       ! Adds the QM/MM potential
     463      102973 :       IF (qs_env%qmmm) THEN
     464             :          CALL qmmm_calculate_energy(qs_env=qs_env, &
     465             :                                     rho=rho_r, &
     466             :                                     v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, &
     467        6318 :                                     qmmm_energy=energy%qmmm_el)
     468        6318 :          IF (qs_env%qmmm_env_qm%image_charge) THEN
     469             :             CALL calculate_image_pot(v_hartree_rspace=v_hartree_rspace, &
     470             :                                      rho_hartree_gspace=rho_tot_gspace, &
     471             :                                      energy=energy, &
     472             :                                      qmmm_env=qs_env%qmmm_env_qm, &
     473          60 :                                      qs_env=qs_env)
     474          60 :             IF (.NOT. just_energy) THEN
     475             :                CALL add_image_pot_to_hartree_pot(v_hartree=v_hartree_rspace, &
     476             :                                                  v_metal=qs_env%ks_qmmm_env%v_metal_rspace, &
     477          60 :                                                  qs_env=qs_env)
     478          60 :                IF (calculate_forces) THEN
     479             :                   CALL integrate_potential_devga_rspace( &
     480             :                      potential=v_hartree_rspace, coeff=qs_env%image_coeff, &
     481             :                      forces=qs_env%qmmm_env_qm%image_charge_pot%image_forcesMM, &
     482          20 :                      qmmm_env=qs_env%qmmm_env_qm, qs_env=qs_env)
     483             :                END IF
     484             :             END IF
     485          60 :             CALL qs_env%ks_qmmm_env%v_metal_rspace%release()
     486          60 :             DEALLOCATE (qs_env%ks_qmmm_env%v_metal_rspace)
     487             :          END IF
     488        6318 :          IF (.NOT. just_energy) THEN
     489             :             CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
     490        6228 :                                          v_qmmm=qs_env%ks_qmmm_env%v_qmmm_rspace, scale=1.0_dp)
     491             :          END IF
     492             :       END IF
     493      102973 :       CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
     494             : 
     495             :       ! SMEAGOL interface
     496      102973 :       IF (dft_control%smeagol_control%smeagol_enabled .AND. &
     497             :           dft_control%smeagol_control%run_type == smeagol_runtype_emtransport) THEN
     498           0 :          CPASSERT(ASSOCIATED(dft_control%smeagol_control%aux))
     499             :          CALL smeagol_shift_v_hartree(v_hartree_rspace, cell, &
     500             :                                       dft_control%smeagol_control%aux%HartreeLeadsLeft, &
     501             :                                       dft_control%smeagol_control%aux%HartreeLeadsRight, &
     502             :                                       dft_control%smeagol_control%aux%HartreeLeadsBottom, &
     503             :                                       dft_control%smeagol_control%aux%VBias, &
     504             :                                       dft_control%smeagol_control%aux%minL, &
     505             :                                       dft_control%smeagol_control%aux%maxR, &
     506             :                                       dft_control%smeagol_control%aux%isexplicit_maxR, &
     507           0 :                                       dft_control%smeagol_control%aux%isexplicit_HartreeLeadsBottom)
     508             :       END IF
     509             : 
     510             :       ! calculate the density matrix for the fitted mo_coeffs
     511      102973 :       IF (dft_control%do_admm) THEN
     512       11100 :          CALL hfx_admm_init(qs_env, calculate_forces)
     513             : 
     514       11100 :          IF (dft_control%do_admm_mo) THEN
     515       10886 :             IF (qs_env%run_rtp) THEN
     516          76 :                CALL rtp_admm_calc_rho_aux(qs_env)
     517             :             ELSE
     518       10810 :                IF (dokp) THEN
     519          90 :                   CALL admm_mo_calc_rho_aux_kp(qs_env)
     520             :                ELSE
     521       10720 :                   CALL admm_mo_calc_rho_aux(qs_env)
     522             :                END IF
     523             :             END IF
     524         214 :          ELSEIF (dft_control%do_admm_dm) THEN
     525         214 :             CALL admm_dm_calc_rho_aux(qs_env)
     526             :          END IF
     527             :       END IF
     528             : 
     529             :       ! only activate stress calculation if
     530      102973 :       IF (use_virial .AND. calculate_forces) virial%pv_calculate = .TRUE.
     531             : 
     532             :       ! *** calculate the xc potential on the pw density ***
     533             :       ! *** associates v_rspace_new if the xc potential needs to be computed.
     534             :       ! If we do wavefunction fitting, we need the vxc_potential in the auxiliary basis set
     535      102973 :       IF (dft_control%do_admm) THEN
     536       11100 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     537       11100 :          xc_section => admm_env%xc_section_aux
     538       11100 :          CALL get_admm_env(admm_env, rho_aux_fit=rho_struct)
     539             : 
     540             :          ! here we ignore a possible vdW section in admm_env%xc_section_aux
     541             :          CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
     542             :                             vxc_rho=v_rspace_new_aux_fit, vxc_tau=v_tau_rspace_aux_fit, exc=energy%exc_aux_fit, &
     543       11100 :                             just_energy=just_energy_xc)
     544             : 
     545       11100 :          IF (admm_env%do_gapw) THEN
     546             :             !compute the potential due to atomic densities
     547             :             CALL calculate_vxc_atom(qs_env, energy_only=just_energy_xc, exc1=energy%exc1_aux_fit, &
     548             :                                     kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
     549             :                                     xc_section_external=xc_section, &
     550        2628 :                                     rho_atom_set_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set)
     551             : 
     552             :          END IF
     553             : 
     554       11100 :          NULLIFY (rho_struct)
     555             : 
     556       11100 :          IF (use_virial .AND. calculate_forces) THEN
     557          12 :             vscale = 1.0_dp
     558             :             !Note: ADMMS and ADMMP stress tensor only for closed-shell calculations
     559          12 :             IF (admm_env%do_admms) vscale = admm_env%gsi(1)**(2.0_dp/3.0_dp)
     560          12 :             IF (admm_env%do_admmp) vscale = admm_env%gsi(1)**2
     561         156 :             virial%pv_exc = virial%pv_exc - vscale*virial%pv_xc
     562         156 :             virial%pv_virial = virial%pv_virial - vscale*virial%pv_xc
     563             :             ! virial%pv_xc will be zeroed in the xc routines
     564             :          END IF
     565       11100 :          xc_section => admm_env%xc_section_primary
     566             :       ELSE
     567       91873 :          xc_section => section_vals_get_subs_vals(input, "DFT%XC")
     568             :       END IF
     569             : 
     570      102973 :       IF (gapw_xc) THEN
     571        2608 :          CALL get_qs_env(qs_env=qs_env, rho_xc=rho_struct)
     572             :       ELSE
     573      100365 :          CALL get_qs_env(qs_env=qs_env, rho=rho_struct)
     574             :       END IF
     575             : 
     576             :       ! zmp
     577      102973 :       IF (dft_control%apply_external_density .OR. dft_control%apply_external_vxc) THEN
     578           0 :          energy%exc = 0.0_dp
     579           0 :          CALL calculate_zmp_potential(qs_env, v_rspace_new, rho, exc=energy%exc)
     580             :       ELSE
     581             :          ! Embedding potential
     582      102973 :          IF (dft_control%apply_embed_pot) THEN
     583         868 :             NULLIFY (v_rspace_embed)
     584         868 :             energy%embed_corr = 0.0_dp
     585             :             CALL get_embed_potential_energy(qs_env, rho, v_rspace_embed, dft_control, &
     586         868 :                                             energy%embed_corr, just_energy)
     587             :          END IF
     588             :          ! Everything else
     589             :          CALL qs_vxc_create(ks_env=ks_env, rho_struct=rho_struct, xc_section=xc_section, &
     590             :                             vxc_rho=v_rspace_new, vxc_tau=v_tau_rspace, exc=energy%exc, &
     591             :                             edisp=edisp, dispersion_env=qs_env%dispersion_env, &
     592      102973 :                             just_energy=just_energy_xc)
     593      102973 :          IF (edisp /= 0.0_dp) energy%dispersion = edisp
     594      102973 :          IF (qs_env%requires_matrix_vxc .AND. ASSOCIATED(v_rspace_new)) THEN
     595           0 :             CALL compute_matrix_vxc(qs_env=qs_env, v_rspace=v_rspace_new, matrix_vxc=matrix_vxc)
     596           0 :             CALL set_ks_env(ks_env, matrix_vxc=matrix_vxc)
     597             :          END IF
     598             : 
     599      102973 :          IF (gapw .OR. gapw_xc) THEN
     600       16064 :             CALL calculate_vxc_atom(qs_env, just_energy_xc, energy%exc1, xc_section_external=xc_section)
     601             :             ! test for not implemented (bug) option
     602       16064 :             IF (use_virial .AND. calculate_forces) THEN
     603          26 :                IF (ASSOCIATED(v_tau_rspace)) THEN
     604           0 :                   CPABORT("MGGA STRESS with GAPW/GAPW_XC not implemneted")
     605             :                END IF
     606             :             END IF
     607             :          END IF
     608             : 
     609             :       END IF
     610             : 
     611             :       ! set hartree and xc potentials for use in Harris method
     612      102973 :       IF (qs_env%harris_method) THEN
     613          54 :          CALL get_qs_env(qs_env, harris_env=harris_env)
     614          54 :          CALL harris_set_potentials(harris_env, v_hartree_rspace, v_rspace_new)
     615             :       END IF
     616             : 
     617      102973 :       NULLIFY (rho_struct)
     618      102973 :       IF (use_virial .AND. calculate_forces) THEN
     619        4914 :          virial%pv_exc = virial%pv_exc - virial%pv_xc
     620        4914 :          virial%pv_virial = virial%pv_virial - virial%pv_xc
     621             :       END IF
     622             : 
     623             :       ! *** Add Hartree-Fock contribution if required ***
     624      102973 :       IF (do_hfx) THEN
     625       24402 :          IF (dokp) THEN
     626         190 :             CALL hfx_ks_matrix_kp(qs_env, ks_matrix, energy, calculate_forces)
     627             :          ELSE
     628             :             CALL hfx_ks_matrix(qs_env, ks_matrix, rho, energy, calculate_forces, &
     629       24212 :                                just_energy, v_rspace_new, v_tau_rspace)
     630             :          END IF
     631             : !!    Adiabatic rescaling  only if do_hfx; right?????
     632             :       END IF !do_hfx
     633             : 
     634      102973 :       IF (do_ppl .AND. calculate_forces) THEN
     635          12 :          CPASSERT(.NOT. gapw)
     636          26 :          DO ispin = 1, nspins
     637          26 :             CALL integrate_ppl_rspace(rho_r(ispin), qs_env)
     638             :          END DO
     639             :       END IF
     640             : 
     641      102973 :       IF (ASSOCIATED(rho_nlcc) .AND. calculate_forces) THEN
     642          60 :          DO ispin = 1, nspins
     643          30 :             CALL integrate_rho_nlcc(v_rspace_new(ispin), qs_env)
     644          60 :             IF (dft_control%do_admm) CALL integrate_rho_nlcc(v_rspace_new_aux_fit(ispin), qs_env)
     645             :          END DO
     646             :       END IF
     647             : 
     648             :       ! calculate KG correction
     649      102973 :       IF (dft_control%qs_control%do_kg .AND. just_energy) THEN
     650             : 
     651          12 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
     652          12 :          CPASSERT(nimages == 1)
     653          12 :          ksmat => ks_matrix(:, 1)
     654          12 :          CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.FALSE.)
     655             : 
     656             :          ! subtract kg corr from the total energy
     657          12 :          energy%exc = energy%exc - ekin_mol
     658             : 
     659             :       END IF
     660             : 
     661             :       ! ***  Single atom contributions ***
     662      102973 :       IF (.NOT. just_energy) THEN
     663       93637 :          IF (calculate_forces) THEN
     664             :             ! Getting nuclear force contribution from the core charge density
     665        5479 :             IF ((poisson_env%parameters%solver .EQ. pw_poisson_implicit) .AND. &
     666             :                 (poisson_env%parameters%dielectric_params%dielec_core_correction)) THEN
     667          28 :                BLOCK
     668             :                   TYPE(pw_r3d_rs_type) :: v_minus_veps
     669          28 :                   CALL auxbas_pw_pool%create_pw(v_minus_veps)
     670          28 :                   CALL pw_copy(v_hartree_rspace, v_minus_veps)
     671          28 :                   CALL pw_axpy(poisson_env%implicit_env%v_eps, v_minus_veps, -v_hartree_rspace%pw_grid%dvol)
     672          28 :                   CALL integrate_v_core_rspace(v_minus_veps, qs_env)
     673          28 :                   CALL auxbas_pw_pool%give_back_pw(v_minus_veps)
     674             :                END BLOCK
     675             :             ELSE
     676        5451 :                CALL integrate_v_core_rspace(v_hartree_rspace, qs_env)
     677             :             END IF
     678             :          END IF
     679             : 
     680       93637 :          IF (.NOT. do_hfx) THEN
     681             :             ! Initialize the Kohn-Sham matrix with the core Hamiltonian matrix
     682             :             ! (sets ks sparsity equal to matrix_h sparsity)
     683      156541 :             DO ispin = 1, nspins
     684      341975 :                DO img = 1, nimages
     685      185434 :                   CALL dbcsr_get_info(ks_matrix(ispin, img)%matrix, name=name) ! keep the name
     686      270410 :                   CALL dbcsr_copy(ks_matrix(ispin, img)%matrix, matrix_h(1, img)%matrix, name=name)
     687             :                END DO
     688             :             END DO
     689             :             ! imaginary part if required
     690       71565 :             IF (qs_env%run_rtp) THEN
     691        1992 :                IF (dft_control%rtp_control%velocity_gauge) THEN
     692         150 :                   CPASSERT(ASSOCIATED(matrix_h_im))
     693         150 :                   CPASSERT(ASSOCIATED(ks_matrix_im))
     694         300 :                   DO ispin = 1, nspins
     695         450 :                      DO img = 1, nimages
     696         150 :                         CALL dbcsr_get_info(ks_matrix_im(ispin, img)%matrix, name=name) ! keep the name
     697         300 :                         CALL dbcsr_copy(ks_matrix_im(ispin, img)%matrix, matrix_h_im(1, img)%matrix, name=name)
     698             :                      END DO
     699             :                   END DO
     700             :                END IF
     701             :             END IF
     702             :          END IF
     703             : 
     704       93637 :          IF (use_virial .AND. calculate_forces) THEN
     705        4914 :             pv_loc = virial%pv_virial
     706             :          END IF
     707             :          ! sum up potentials and integrate
     708             :          ! Pointing my_rho to the density matrix rho_ao
     709       93637 :          my_rho => rho_ao
     710             : 
     711             :          CALL sum_up_and_integrate(qs_env, ks_matrix, rho, my_rho, vppl_rspace, &
     712             :                                    v_rspace_new, v_rspace_new_aux_fit, v_tau_rspace, v_tau_rspace_aux_fit, &
     713             :                                    v_sic_rspace, v_spin_ddapc_rest_r, v_sccs_rspace, v_rspace_embed, &
     714       93637 :                                    cdft_control, calculate_forces)
     715             : 
     716       93637 :          IF (use_virial .AND. calculate_forces) THEN
     717        4914 :             virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
     718             :          END IF
     719       93637 :          IF (dft_control%qs_control%do_kg) THEN
     720         776 :             CPASSERT(.NOT. (gapw .OR. gapw_xc))
     721         776 :             CPASSERT(nimages == 1)
     722         776 :             ksmat => ks_matrix(:, 1)
     723             : 
     724         776 :             IF (use_virial .AND. calculate_forces) THEN
     725           0 :                pv_loc = virial%pv_virial
     726             :             END IF
     727             : 
     728         776 :             CALL kg_ekin_subset(qs_env, ksmat, ekin_mol, calculate_forces, do_kernel=.FALSE.)
     729             :             ! subtract kg corr from the total energy
     730         776 :             energy%exc = energy%exc - ekin_mol
     731             : 
     732             :             ! virial corrections
     733         776 :             IF (use_virial .AND. calculate_forces) THEN
     734             : 
     735             :                ! Integral contribution
     736           0 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
     737             : 
     738             :                ! GGA contribution
     739           0 :                virial%pv_exc = virial%pv_exc + virial%pv_xc
     740           0 :                virial%pv_virial = virial%pv_virial + virial%pv_xc
     741           0 :                virial%pv_xc = 0.0_dp
     742             :             END IF
     743             :          END IF
     744             : 
     745             :       ELSE
     746             :          IF (do_hfx) THEN
     747             :             IF (.FALSE.) THEN
     748             :                CPWARN("KS matrix not longer correct. Check possible problems with property calculations!")
     749             :             END IF
     750             :          END IF
     751             :       END IF ! .NOT. just energy
     752             : 
     753      102973 :       IF (dft_control%qs_control%ddapc_explicit_potential) THEN
     754         164 :          CALL auxbas_pw_pool%give_back_pw(v_spin_ddapc_rest_r)
     755         164 :          DEALLOCATE (v_spin_ddapc_rest_r)
     756             :       END IF
     757             : 
     758      102973 :       IF (calculate_forces .AND. dft_control%qs_control%cdft) THEN
     759         118 :          IF (.NOT. cdft_control%transfer_pot) THEN
     760         212 :             DO iatom = 1, SIZE(cdft_control%group)
     761         114 :                CALL auxbas_pw_pool%give_back_pw(cdft_control%group(iatom)%weight)
     762         212 :                DEALLOCATE (cdft_control%group(iatom)%weight)
     763             :             END DO
     764          98 :             IF (cdft_control%atomic_charges) THEN
     765          78 :                DO iatom = 1, cdft_control%natoms
     766          78 :                   CALL auxbas_pw_pool%give_back_pw(cdft_control%charge(iatom))
     767             :                END DO
     768          26 :                DEALLOCATE (cdft_control%charge)
     769             :             END IF
     770          98 :             IF (cdft_control%type == outer_scf_becke_constraint .AND. &
     771             :                 cdft_control%becke_control%cavity_confine) THEN
     772          88 :                IF (.NOT. ASSOCIATED(cdft_control%becke_control%cavity_mat)) THEN
     773          64 :                   CALL auxbas_pw_pool%give_back_pw(cdft_control%becke_control%cavity)
     774             :                ELSE
     775          24 :                   DEALLOCATE (cdft_control%becke_control%cavity_mat)
     776             :                END IF
     777          10 :             ELSE IF (cdft_control%type == outer_scf_hirshfeld_constraint) THEN
     778           2 :                IF (ASSOCIATED(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)) THEN
     779           0 :                   CALL auxbas_pw_pool%give_back_pw(cdft_control%hirshfeld_control%hirshfeld_env%fnorm)
     780             :                END IF
     781             :             END IF
     782          98 :             IF (ASSOCIATED(cdft_control%charges_fragment)) DEALLOCATE (cdft_control%charges_fragment)
     783          98 :             cdft_control%save_pot = .FALSE.
     784          98 :             cdft_control%need_pot = .TRUE.
     785          98 :             cdft_control%external_control = .FALSE.
     786             :          END IF
     787             :       END IF
     788             : 
     789      102973 :       IF (dft_control%do_sccs) THEN
     790         132 :          CALL auxbas_pw_pool%give_back_pw(v_sccs_rspace)
     791         132 :          DEALLOCATE (v_sccs_rspace)
     792             :       END IF
     793             : 
     794      102973 :       IF (gapw) THEN
     795       13456 :          IF (dft_control%apply_external_potential) THEN
     796             :             ! Integrals of the Hartree potential with g0_soft
     797             :             CALL qmmm_modify_hartree_pot(v_hartree=v_hartree_rspace, &
     798          42 :                                          v_qmmm=vee, scale=-1.0_dp)
     799             :          END IF
     800       13456 :          CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace, para_env, calculate_forces)
     801             :       END IF
     802             : 
     803      102973 :       IF (gapw .OR. gapw_xc) THEN
     804             :          ! Single atom contributions in the KS matrix ***
     805       16064 :          CALL update_ks_atom(qs_env, ks_matrix, rho_ao, calculate_forces)
     806       16064 :          IF (dft_control%do_admm) THEN
     807             :             !Single atom contribution to the AUX matrices
     808             :             !Note: also update ks_aux_fit matrix in case of rtp
     809        2628 :             CALL admm_update_ks_atom(qs_env, calculate_forces)
     810             :          END IF
     811             :       END IF
     812             : 
     813             :       !Calculation of Mulliken restraint, if requested
     814             :       CALL qs_ks_mulliken_restraint(energy, dft_control, just_energy, para_env, &
     815      102973 :                                     ks_matrix, matrix_s, rho, mulliken_order_p)
     816             : 
     817             :       ! Add DFT+U contribution, if requested
     818      102973 :       IF (dft_control%dft_plus_u) THEN
     819        1616 :          CPASSERT(nimages == 1)
     820        1616 :          IF (just_energy) THEN
     821         616 :             CALL plus_u(qs_env=qs_env)
     822             :          ELSE
     823        1000 :             ksmat => ks_matrix(:, 1)
     824        1000 :             CALL plus_u(qs_env=qs_env, matrix_h=ksmat)
     825             :          END IF
     826             :       ELSE
     827      101357 :          energy%dft_plus_u = 0.0_dp
     828             :       END IF
     829             : 
     830             :       ! At this point the ks matrix should be up to date, filter it if requested
     831      227329 :       DO ispin = 1, nspins
     832      461745 :          DO img = 1, nimages
     833             :             CALL dbcsr_filter(ks_matrix(ispin, img)%matrix, &
     834      358772 :                               dft_control%qs_control%eps_filter_matrix)
     835             :          END DO
     836             :       END DO
     837             : 
     838             :       !** merge the auxiliary KS matrix and the primary one
     839      102973 :       IF (dft_control%do_admm_mo) THEN
     840       10886 :          IF (qs_env%run_rtp) THEN
     841          76 :             CALL rtp_admm_merge_ks_matrix(qs_env)
     842             :          ELSE
     843       10810 :             CALL admm_mo_merge_ks_matrix(qs_env)
     844             :          END IF
     845       92087 :       ELSEIF (dft_control%do_admm_dm) THEN
     846         214 :          CALL admm_dm_merge_ks_matrix(qs_env)
     847             :       END IF
     848             : 
     849             :       ! External field (nonperiodic case)
     850      102973 :       CALL qs_efield_local_operator(qs_env, just_energy, calculate_forces)
     851             : 
     852             :       ! Right now we can compute the orbital derivative here, as it depends currently only on the available
     853             :       ! Kohn-Sham matrix. This might change in the future, in which case more pieces might need to be assembled
     854             :       ! from this routine, notice that this part of the calculation in not linear scaling
     855             :       ! right now this operation is only non-trivial because of occupation numbers and the restricted keyword
     856      102973 :       IF (qs_env%requires_mo_derivs .AND. .NOT. just_energy .AND. .NOT. qs_env%run_rtp) THEN
     857       37487 :          CALL get_qs_env(qs_env, mo_derivs=mo_derivs)
     858       37487 :          CPASSERT(nimages == 1)
     859       37487 :          ksmat => ks_matrix(:, 1)
     860       37487 :          CALL calc_mo_derivatives(qs_env, ksmat, mo_derivs)
     861             :       END IF
     862             : 
     863             :       ! ADMM overlap forces
     864      102973 :       IF (calculate_forces .AND. dft_control%do_admm) THEN
     865         262 :          IF (dokp) THEN
     866          24 :             CALL calc_admm_ovlp_forces_kp(qs_env)
     867             :          ELSE
     868         238 :             CALL calc_admm_ovlp_forces(qs_env)
     869             :          END IF
     870             :       END IF
     871             : 
     872             :       ! deal with low spin roks
     873             :       CALL low_spin_roks(energy, qs_env, dft_control, do_hfx, just_energy, &
     874      102973 :                          calculate_forces, auxbas_pw_pool)
     875             : 
     876             :       ! deal with sic on explicit orbitals
     877             :       CALL sic_explicit_orbitals(energy, qs_env, dft_control, poisson_env, just_energy, &
     878      102973 :                                  calculate_forces, auxbas_pw_pool)
     879             : 
     880             :       ! Periodic external field
     881      102973 :       CALL qs_efield_berry_phase(qs_env, just_energy, calculate_forces)
     882             : 
     883             :       ! adds s2_restraint energy and orbital derivatives
     884             :       CALL qs_ks_s2_restraint(dft_control, qs_env, matrix_s, &
     885      102973 :                               energy, calculate_forces, just_energy)
     886             : 
     887      102973 :       IF (do_ppl) THEN
     888             :          ! update core energy for grid based local pseudopotential
     889          60 :          ecore_ppl = 0._dp
     890         126 :          DO ispin = 1, nspins
     891         126 :             ecore_ppl = ecore_ppl + pw_integral_ab(vppl_rspace, rho_r(ispin))
     892             :          END DO
     893          60 :          energy%core = energy%core + ecore_ppl
     894             :       END IF
     895             : 
     896      102973 :       IF (lrigpw) THEN
     897             :          ! update core energy for ppl_ri method
     898         432 :          CALL get_qs_env(qs_env, lri_env=lri_env, lri_density=lri_density)
     899         432 :          IF (lri_env%ppl_ri) THEN
     900           8 :             ecore_ppl = 0._dp
     901          16 :             DO ispin = 1, nspins
     902           8 :                lri_v_int => lri_density%lri_coefs(ispin)%lri_kinds
     903          16 :                CALL v_int_ppl_energy(qs_env, lri_v_int, ecore_ppl)
     904             :             END DO
     905           8 :             energy%core = energy%core + ecore_ppl
     906             :          END IF
     907             :       END IF
     908             : 
     909             :       ! Sum all energy terms to obtain the total energy
     910             :       energy%total = energy%core_overlap + energy%core_self + energy%core + energy%hartree + &
     911             :                      energy%hartree_1c + energy%exc + energy%exc1 + energy%ex + &
     912             :                      energy%dispersion + energy%gcp + energy%qmmm_el + energy%mulliken + &
     913             :                      SUM(energy%ddapc_restraint) + energy%s2_restraint + &
     914             :                      energy%dft_plus_u + energy%kTS + &
     915             :                      energy%efield + energy%efield_core + energy%ee + &
     916             :                      energy%ee_core + energy%exc_aux_fit + energy%image_charge + &
     917      206050 :                      energy%sccs_pol + energy%cdft + energy%exc1_aux_fit
     918             : 
     919      102973 :       IF (dft_control%apply_embed_pot) energy%total = energy%total + energy%embed_corr
     920             : 
     921      102973 :       IF (abnormal_value(energy%total)) &
     922           0 :          CPABORT("KS energy is an abnormal value (NaN/Inf).")
     923             : 
     924             :       ! Print detailed energy
     925      102973 :       IF (my_print) THEN
     926      102951 :          CALL print_detailed_energy(qs_env, dft_control, input, energy, mulliken_order_p)
     927             :       END IF
     928             : 
     929      102973 :       CALL timestop(handle)
     930             : 
     931      102973 :    END SUBROUTINE qs_ks_build_kohn_sham_matrix
     932             : 
     933             : ! **************************************************************************************************
     934             : !> \brief ...
     935             : !> \param rho_tot_gspace ...
     936             : !> \param qs_env ...
     937             : !> \param rho ...
     938             : !> \param skip_nuclear_density ...
     939             : ! **************************************************************************************************
     940      106307 :    SUBROUTINE calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho, skip_nuclear_density)
     941             :       TYPE(pw_c1d_gs_type), INTENT(INOUT)                :: rho_tot_gspace
     942             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     943             :       TYPE(qs_rho_type), POINTER                         :: rho
     944             :       LOGICAL, INTENT(IN), OPTIONAL                      :: skip_nuclear_density
     945             : 
     946             :       INTEGER                                            :: ispin
     947             :       LOGICAL                                            :: my_skip
     948             :       TYPE(dft_control_type), POINTER                    :: dft_control
     949      106307 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
     950             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho0_s_gs, rho_core
     951             :       TYPE(qs_charges_type), POINTER                     :: qs_charges
     952             : 
     953      106307 :       my_skip = .FALSE.
     954         930 :       IF (PRESENT(skip_nuclear_density)) my_skip = skip_nuclear_density
     955             : 
     956      106307 :       CALL qs_rho_get(rho, rho_g=rho_g)
     957      106307 :       CALL get_qs_env(qs_env=qs_env, dft_control=dft_control)
     958             : 
     959      106307 :       IF (.NOT. my_skip) THEN
     960      105387 :          NULLIFY (rho_core)
     961      105387 :          CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
     962      105387 :          IF (dft_control%qs_control%gapw) THEN
     963       13530 :             NULLIFY (rho0_s_gs)
     964       13530 :             CALL get_qs_env(qs_env=qs_env, rho0_s_gs=rho0_s_gs)
     965       13530 :             CPASSERT(ASSOCIATED(rho0_s_gs))
     966       13530 :             CALL pw_copy(rho0_s_gs, rho_tot_gspace)
     967       13530 :             IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
     968        1280 :                CALL pw_axpy(rho_core, rho_tot_gspace)
     969             :             END IF
     970             :          ELSE
     971       91857 :             CALL pw_copy(rho_core, rho_tot_gspace)
     972             :          END IF
     973      232445 :          DO ispin = 1, dft_control%nspins
     974      232445 :             CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
     975             :          END DO
     976      105387 :          CALL get_qs_env(qs_env=qs_env, qs_charges=qs_charges)
     977      105387 :          qs_charges%total_rho_gspace = pw_integrate_function(rho_tot_gspace, isign=-1)
     978             :       ELSE
     979        1844 :          DO ispin = 1, dft_control%nspins
     980        1844 :             CALL pw_axpy(rho_g(ispin), rho_tot_gspace)
     981             :          END DO
     982             :       END IF
     983             : 
     984      106307 :    END SUBROUTINE calc_rho_tot_gspace
     985             : 
     986             : ! **************************************************************************************************
     987             : !> \brief compute MO derivatives
     988             : !> \param qs_env the qs_env to update
     989             : !> \param ks_matrix ...
     990             : !> \param mo_derivs ...
     991             : !> \par History
     992             : !>      01.2014 created, transferred from qs_ks_build_kohn_sham_matrix in
     993             : !>      separate subroutine
     994             : !> \author Dorothea Golze
     995             : ! **************************************************************************************************
     996       37487 :    SUBROUTINE calc_mo_derivatives(qs_env, ks_matrix, mo_derivs)
     997             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     998             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_matrix, mo_derivs
     999             : 
    1000             :       INTEGER                                            :: ispin
    1001             :       LOGICAL                                            :: uniform_occupation
    1002       37487 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: occupation_numbers
    1003             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1004             :       TYPE(dbcsr_type)                                   :: mo_derivs2_tmp1, mo_derivs2_tmp2
    1005             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_b
    1006             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1007       37487 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mo_array
    1008             : 
    1009       37487 :       NULLIFY (dft_control, mo_array, mo_coeff, mo_coeff_b, occupation_numbers)
    1010             : 
    1011             :       CALL get_qs_env(qs_env, &
    1012             :                       dft_control=dft_control, &
    1013       37487 :                       mos=mo_array)
    1014             : 
    1015       82177 :       DO ispin = 1, SIZE(mo_derivs)
    1016             : 
    1017             :          CALL get_mo_set(mo_set=mo_array(ispin), mo_coeff=mo_coeff, &
    1018       44690 :                          mo_coeff_b=mo_coeff_b, occupation_numbers=occupation_numbers)
    1019             :          CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(ispin)%matrix, mo_coeff_b, &
    1020       44690 :                              0.0_dp, mo_derivs(ispin)%matrix)
    1021             : 
    1022       82177 :          IF (dft_control%restricted) THEN
    1023             :             ! only the first mo_set are actual variables, but we still need both
    1024         636 :             CPASSERT(ispin == 1)
    1025         636 :             CPASSERT(SIZE(mo_array) == 2)
    1026             :             ! use a temporary array with the same size as the first spin for the second spin
    1027             : 
    1028             :             ! uniform_occupation is needed for this case, otherwise we can no
    1029             :             ! reconstruct things in ot, since we irreversibly sum
    1030         636 :             CALL get_mo_set(mo_set=mo_array(1), uniform_occupation=uniform_occupation)
    1031         636 :             CPASSERT(uniform_occupation)
    1032         636 :             CALL get_mo_set(mo_set=mo_array(2), uniform_occupation=uniform_occupation)
    1033         636 :             CPASSERT(uniform_occupation)
    1034             : 
    1035             :             ! The beta-spin might have fewer orbitals than alpa-spin...
    1036             :             ! create tempoary matrices with beta_nmo columns
    1037         636 :             CALL get_mo_set(mo_set=mo_array(2), mo_coeff_b=mo_coeff_b)
    1038         636 :             CALL dbcsr_create(mo_derivs2_tmp1, template=mo_coeff_b)
    1039             : 
    1040             :             ! calculate beta derivatives
    1041         636 :             CALL dbcsr_multiply('n', 'n', 1.0_dp, ks_matrix(2)%matrix, mo_coeff_b, 0.0_dp, mo_derivs2_tmp1)
    1042             : 
    1043             :             ! create larger matrix with alpha_nmo columns
    1044         636 :             CALL dbcsr_create(mo_derivs2_tmp2, template=mo_derivs(1)%matrix)
    1045         636 :             CALL dbcsr_set(mo_derivs2_tmp2, 0.0_dp)
    1046             : 
    1047             :             ! copy into larger matrix, fills the first beta_nmo columns
    1048             :             CALL dbcsr_copy_columns_hack(mo_derivs2_tmp2, mo_derivs2_tmp1, &
    1049             :                                          mo_array(2)%nmo, 1, 1, &
    1050             :                                          para_env=mo_array(1)%mo_coeff%matrix_struct%para_env, &
    1051         636 :                                          blacs_env=mo_array(1)%mo_coeff%matrix_struct%context)
    1052             : 
    1053             :             ! add beta contribution to alpa mo_derivs
    1054         636 :             CALL dbcsr_add(mo_derivs(1)%matrix, mo_derivs2_tmp2, 1.0_dp, 1.0_dp)
    1055         636 :             CALL dbcsr_release(mo_derivs2_tmp1)
    1056         636 :             CALL dbcsr_release(mo_derivs2_tmp2)
    1057             :          END IF
    1058             :       END DO
    1059             : 
    1060       37487 :       IF (dft_control%do_admm_mo) THEN
    1061        5440 :          CALL calc_admm_mo_derivatives(qs_env, mo_derivs)
    1062             :       END IF
    1063             : 
    1064       37487 :    END SUBROUTINE calc_mo_derivatives
    1065             : 
    1066             : ! **************************************************************************************************
    1067             : !> \brief updates the Kohn Sham matrix of the given qs_env (facility method)
    1068             : !> \param qs_env the qs_env to update
    1069             : !> \param calculate_forces if true calculate the quantities needed
    1070             : !>        to calculate the forces. Defaults to false.
    1071             : !> \param just_energy if true updates the energies but not the
    1072             : !>        ks matrix. Defaults to false
    1073             : !> \param print_active ...
    1074             : !> \par History
    1075             : !>      4.2002 created [fawzi]
    1076             : !>      8.2014 kpoints [JGH]
    1077             : !>     10.2014 refractored [Ole Schuett]
    1078             : !> \author Fawzi Mohamed
    1079             : ! **************************************************************************************************
    1080      191634 :    SUBROUTINE qs_ks_update_qs_env(qs_env, calculate_forces, just_energy, &
    1081             :                                   print_active)
    1082             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1083             :       LOGICAL, INTENT(IN), OPTIONAL                      :: calculate_forces, just_energy, &
    1084             :                                                             print_active
    1085             : 
    1086             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'qs_ks_update_qs_env'
    1087             : 
    1088             :       INTEGER                                            :: handle, unit_nr
    1089             :       LOGICAL                                            :: c_forces, do_rebuild, energy_only, &
    1090             :                                                             forces_up_to_date, potential_changed, &
    1091             :                                                             rho_changed, s_mstruct_changed
    1092             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1093             : 
    1094      191634 :       NULLIFY (ks_env)
    1095      191634 :       unit_nr = cp_logger_get_default_io_unit()
    1096             : 
    1097      191634 :       c_forces = .FALSE.
    1098      191634 :       energy_only = .FALSE.
    1099      191634 :       IF (PRESENT(just_energy)) energy_only = just_energy
    1100      191634 :       IF (PRESENT(calculate_forces)) c_forces = calculate_forces
    1101             : 
    1102      191634 :       IF (c_forces) THEN
    1103        9685 :          CALL timeset(routineN//'_forces', handle)
    1104             :       ELSE
    1105      181949 :          CALL timeset(routineN, handle)
    1106             :       END IF
    1107             : 
    1108      191634 :       CPASSERT(ASSOCIATED(qs_env))
    1109             : 
    1110             :       CALL get_qs_env(qs_env, &
    1111             :                       ks_env=ks_env, &
    1112             :                       rho_changed=rho_changed, &
    1113             :                       s_mstruct_changed=s_mstruct_changed, &
    1114             :                       potential_changed=potential_changed, &
    1115      191634 :                       forces_up_to_date=forces_up_to_date)
    1116             : 
    1117      191634 :       do_rebuild = .FALSE.
    1118      191634 :       do_rebuild = do_rebuild .OR. rho_changed
    1119        7719 :       do_rebuild = do_rebuild .OR. s_mstruct_changed
    1120        7711 :       do_rebuild = do_rebuild .OR. potential_changed
    1121        7711 :       do_rebuild = do_rebuild .OR. (c_forces .AND. .NOT. forces_up_to_date)
    1122             : 
    1123             :       IF (do_rebuild) THEN
    1124      184279 :          CALL evaluate_core_matrix_traces(qs_env)
    1125             : 
    1126             :          ! the ks matrix will be rebuilt so this is fine now
    1127      184279 :          CALL set_ks_env(ks_env, potential_changed=.FALSE.)
    1128             : 
    1129             :          CALL rebuild_ks_matrix(qs_env, &
    1130             :                                 calculate_forces=c_forces, &
    1131             :                                 just_energy=energy_only, &
    1132      184279 :                                 print_active=print_active)
    1133             : 
    1134      184279 :          IF (.NOT. energy_only) THEN
    1135             :             CALL set_ks_env(ks_env, &
    1136             :                             rho_changed=.FALSE., &
    1137             :                             s_mstruct_changed=.FALSE., &
    1138      330649 :                             forces_up_to_date=forces_up_to_date .OR. c_forces)
    1139             :          END IF
    1140             :       END IF
    1141             : 
    1142      191634 :       CALL timestop(handle)
    1143             : 
    1144      191634 :    END SUBROUTINE qs_ks_update_qs_env
    1145             : 
    1146             : ! **************************************************************************************************
    1147             : !> \brief Calculates the traces of the core matrices and the density matrix.
    1148             : !> \param qs_env ...
    1149             : !> \author Ole Schuett
    1150             : ! **************************************************************************************************
    1151      184279 :    SUBROUTINE evaluate_core_matrix_traces(qs_env)
    1152             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1153             : 
    1154             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'evaluate_core_matrix_traces'
    1155             : 
    1156             :       INTEGER                                            :: handle
    1157             :       REAL(KIND=dp)                                      :: energy_core_im
    1158      184279 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrixkp_h, matrixkp_t, rho_ao_kp
    1159             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1160             :       TYPE(qs_energy_type), POINTER                      :: energy
    1161             :       TYPE(qs_rho_type), POINTER                         :: rho
    1162             : 
    1163      184279 :       CALL timeset(routineN, handle)
    1164      184279 :       NULLIFY (energy, rho, dft_control, rho_ao_kp, matrixkp_t, matrixkp_h)
    1165             : 
    1166             :       CALL get_qs_env(qs_env, &
    1167             :                       rho=rho, &
    1168             :                       energy=energy, &
    1169             :                       dft_control=dft_control, &
    1170             :                       kinetic_kp=matrixkp_t, &
    1171      184279 :                       matrix_h_kp=matrixkp_h)
    1172             : 
    1173      184279 :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp)
    1174             : 
    1175      184279 :       CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy%core, dft_control%nspins)
    1176             : 
    1177             :       ! Add the imaginary part in the RTP case
    1178      184279 :       IF (qs_env%run_rtp) THEN
    1179        3168 :          IF (dft_control%rtp_control%velocity_gauge) THEN
    1180         150 :             CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
    1181         150 :             CALL qs_rho_get(rho, rho_ao_im_kp=rho_ao_kp)
    1182         150 :             CALL calculate_ptrace(matrixkp_h, rho_ao_kp, energy_core_im, dft_control%nspins)
    1183         150 :             energy%core = energy%core - energy_core_im
    1184             :          END IF
    1185             :       END IF
    1186             : 
    1187             :       ! kinetic energy
    1188      184279 :       IF (ASSOCIATED(matrixkp_t)) &
    1189      102793 :          CALL calculate_ptrace(matrixkp_t, rho_ao_kp, energy%kinetic, dft_control%nspins)
    1190             : 
    1191      184279 :       CALL timestop(handle)
    1192      184279 :    END SUBROUTINE evaluate_core_matrix_traces
    1193             : 
    1194             : ! **************************************************************************************************
    1195             : !> \brief Calculates the traces of the core matrices and the density matrix.
    1196             : !> \param qs_env ...
    1197             : !> \author Johann Pototschnig
    1198             : ! **************************************************************************************************
    1199           0 :    SUBROUTINE evaluate_core_matrix_p_mix_new(qs_env)
    1200             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1201             : 
    1202             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'evaluate_core_matrix_p_mix_new'
    1203             : 
    1204             :       INTEGER                                            :: handle
    1205             :       REAL(KIND=dp)                                      :: energy_core_im
    1206           0 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrixkp_h, matrixkp_t
    1207             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1208             :       TYPE(qs_energy_type), POINTER                      :: energy
    1209             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
    1210             : 
    1211           0 :       CALL timeset(routineN, handle)
    1212           0 :       NULLIFY (energy, dft_control, matrixkp_t, matrixkp_h)
    1213             : 
    1214             :       CALL get_qs_env(qs_env, &
    1215             :                       energy=energy, &
    1216             :                       dft_control=dft_control, &
    1217             :                       kinetic_kp=matrixkp_t, &
    1218             :                       matrix_h_kp=matrixkp_h, &
    1219           0 :                       scf_env=scf_env)
    1220             : 
    1221           0 :       CALL calculate_ptrace(matrixkp_h, scf_env%p_mix_new, energy%core, dft_control%nspins)
    1222             : 
    1223             :       ! Add the imaginary part in the RTP case
    1224           0 :       IF (qs_env%run_rtp) THEN
    1225           0 :          IF (dft_control%rtp_control%velocity_gauge) THEN
    1226           0 :             CALL get_qs_env(qs_env, matrix_h_im_kp=matrixkp_h)
    1227           0 :             CALL calculate_ptrace(matrixkp_h, scf_env%p_mix_new, energy_core_im, dft_control%nspins)
    1228           0 :             energy%core = energy%core - energy_core_im
    1229             :          END IF
    1230             :       END IF
    1231             : 
    1232             :       ! kinetic energy
    1233           0 :       IF (ASSOCIATED(matrixkp_t)) &
    1234           0 :          CALL calculate_ptrace(matrixkp_t, scf_env%p_mix_new, energy%kinetic, dft_control%nspins)
    1235             : 
    1236           0 :       CALL timestop(handle)
    1237           0 :    END SUBROUTINE evaluate_core_matrix_p_mix_new
    1238             : 
    1239             : ! **************************************************************************************************
    1240             : !> \brief Constructs a new Khon-Sham matrix
    1241             : !> \param qs_env ...
    1242             : !> \param calculate_forces ...
    1243             : !> \param just_energy ...
    1244             : !> \param print_active ...
    1245             : !> \author Ole Schuett
    1246             : ! **************************************************************************************************
    1247      184279 :    SUBROUTINE rebuild_ks_matrix(qs_env, calculate_forces, just_energy, print_active)
    1248             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1249             :       LOGICAL, INTENT(IN)                                :: calculate_forces, just_energy
    1250             :       LOGICAL, INTENT(IN), OPTIONAL                      :: print_active
    1251             : 
    1252             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'rebuild_ks_matrix'
    1253             : 
    1254             :       INTEGER                                            :: handle
    1255             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1256             : 
    1257      184279 :       CALL timeset(routineN, handle)
    1258      184279 :       NULLIFY (dft_control)
    1259             : 
    1260      184279 :       CALL get_qs_env(qs_env, dft_control=dft_control)
    1261             : 
    1262      184279 :       IF (dft_control%qs_control%semi_empirical) THEN
    1263             :          CALL build_se_fock_matrix(qs_env, &
    1264             :                                    calculate_forces=calculate_forces, &
    1265       41148 :                                    just_energy=just_energy)
    1266             : 
    1267      143131 :       ELSEIF (dft_control%qs_control%dftb) THEN
    1268             :          CALL build_dftb_ks_matrix(qs_env, &
    1269             :                                    calculate_forces=calculate_forces, &
    1270       13186 :                                    just_energy=just_energy)
    1271             : 
    1272      129945 :       ELSEIF (dft_control%qs_control%xtb) THEN
    1273       27152 :          IF (dft_control%qs_control%xtb_control%do_tblite) THEN
    1274             :             CALL build_tblite_ks_matrix(qs_env, &
    1275             :                                         calculate_forces=calculate_forces, &
    1276           0 :                                         just_energy=just_energy)
    1277             :          ELSE
    1278             :             CALL build_xtb_ks_matrix(qs_env, &
    1279             :                                      calculate_forces=calculate_forces, &
    1280       27152 :                                      just_energy=just_energy)
    1281             :          END IF
    1282             :       ELSE
    1283             :          CALL qs_ks_build_kohn_sham_matrix(qs_env, &
    1284             :                                            calculate_forces=calculate_forces, &
    1285             :                                            just_energy=just_energy, &
    1286      102793 :                                            print_active=print_active)
    1287             :       END IF
    1288             : 
    1289      184279 :       CALL timestop(handle)
    1290             : 
    1291      184279 :    END SUBROUTINE rebuild_ks_matrix
    1292             : 
    1293             : ! **************************************************************************************************
    1294             : !> \brief Allocate ks_matrix if necessary, take current overlap matrix as template
    1295             : !> \param qs_env ...
    1296             : !> \param is_complex ...
    1297             : !> \par History
    1298             : !>    refactoring 04.03.2011 [MI]
    1299             : !> \author
    1300             : ! **************************************************************************************************
    1301             : 
    1302       21578 :    SUBROUTINE qs_ks_allocate_basics(qs_env, is_complex)
    1303             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1304             :       LOGICAL, INTENT(in)                                :: is_complex
    1305             : 
    1306             :       CHARACTER(LEN=default_string_length)               :: headline
    1307             :       INTEGER                                            :: ic, ispin, nimages, nspins
    1308             :       LOGICAL                                            :: do_kpoints
    1309       21578 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_s_kp, matrixkp_im_ks, matrixkp_ks
    1310             :       TYPE(dbcsr_type), POINTER                          :: refmatrix
    1311             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1312             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1313             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1314       21578 :          POINTER                                         :: sab_orb
    1315             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1316             : 
    1317       21578 :       NULLIFY (dft_control, ks_env, matrix_s_kp, sab_orb, matrixkp_ks, refmatrix, matrixkp_im_ks, kpoints)
    1318             : 
    1319             :       CALL get_qs_env(qs_env, &
    1320             :                       dft_control=dft_control, &
    1321             :                       matrix_s_kp=matrix_s_kp, &
    1322             :                       ks_env=ks_env, &
    1323             :                       kpoints=kpoints, &
    1324             :                       do_kpoints=do_kpoints, &
    1325             :                       matrix_ks_kp=matrixkp_ks, &
    1326       21578 :                       matrix_ks_im_kp=matrixkp_im_ks)
    1327             : 
    1328       21578 :       IF (do_kpoints) THEN
    1329         916 :          CALL get_kpoint_info(kpoints, sab_nl=sab_orb)
    1330             :       ELSE
    1331       20662 :          CALL get_qs_env(qs_env, sab_orb=sab_orb)
    1332             :       END IF
    1333             : 
    1334       21578 :       nspins = dft_control%nspins
    1335       21578 :       nimages = dft_control%nimages
    1336             : 
    1337       21578 :       IF (.NOT. ASSOCIATED(matrixkp_ks)) THEN
    1338       21538 :          CALL dbcsr_allocate_matrix_set(matrixkp_ks, nspins, nimages)
    1339       21538 :          refmatrix => matrix_s_kp(1, 1)%matrix
    1340       45786 :          DO ispin = 1, nspins
    1341      166926 :             DO ic = 1, nimages
    1342      121140 :                IF (nspins > 1) THEN
    1343       25412 :                   IF (ispin == 1) THEN
    1344       12706 :                      headline = "KOHN-SHAM MATRIX FOR ALPHA SPIN"
    1345             :                   ELSE
    1346       12706 :                      headline = "KOHN-SHAM MATRIX FOR BETA SPIN"
    1347             :                   END IF
    1348             :                ELSE
    1349       95728 :                   headline = "KOHN-SHAM MATRIX"
    1350             :                END IF
    1351      121140 :                ALLOCATE (matrixkp_ks(ispin, ic)%matrix)
    1352             :                CALL dbcsr_create(matrix=matrixkp_ks(ispin, ic)%matrix, template=refmatrix, &
    1353      121140 :                                  name=TRIM(headline), matrix_type=dbcsr_type_symmetric)
    1354      121140 :                CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_ks(ispin, ic)%matrix, sab_orb)
    1355      145388 :                CALL dbcsr_set(matrixkp_ks(ispin, ic)%matrix, 0.0_dp)
    1356             :             END DO
    1357             :          END DO
    1358       21538 :          CALL set_ks_env(ks_env, matrix_ks_kp=matrixkp_ks)
    1359             :       END IF
    1360             : 
    1361       21578 :       IF (is_complex) THEN
    1362         138 :          IF (.NOT. ASSOCIATED(matrixkp_im_ks)) THEN
    1363         138 :             CPASSERT(nspins .EQ. SIZE(matrixkp_ks, 1))
    1364         138 :             CPASSERT(nimages .EQ. SIZE(matrixkp_ks, 2))
    1365         138 :             CALL dbcsr_allocate_matrix_set(matrixkp_im_ks, nspins, nimages)
    1366         288 :             DO ispin = 1, nspins
    1367         438 :                DO ic = 1, nimages
    1368         150 :                   IF (nspins > 1) THEN
    1369          24 :                      IF (ispin == 1) THEN
    1370          12 :                         headline = "IMAGINARY KOHN-SHAM MATRIX FOR ALPHA SPIN"
    1371             :                      ELSE
    1372          12 :                         headline = "IMAGINARY KOHN-SHAM MATRIX FOR BETA SPIN"
    1373             :                      END IF
    1374             :                   ELSE
    1375         126 :                      headline = "IMAGINARY KOHN-SHAM MATRIX"
    1376             :                   END IF
    1377         150 :                   ALLOCATE (matrixkp_im_ks(ispin, ic)%matrix)
    1378         150 :                   refmatrix => matrixkp_ks(ispin, ic)%matrix  ! base on real part, but anti-symmetric
    1379             :                   CALL dbcsr_create(matrix=matrixkp_im_ks(ispin, ic)%matrix, template=refmatrix, &
    1380         150 :                                     name=TRIM(headline), matrix_type=dbcsr_type_antisymmetric)
    1381         150 :                   CALL cp_dbcsr_alloc_block_from_nbl(matrixkp_im_ks(ispin, ic)%matrix, sab_orb)
    1382         300 :                   CALL dbcsr_set(matrixkp_im_ks(ispin, ic)%matrix, 0.0_dp)
    1383             :                END DO
    1384             :             END DO
    1385         138 :             CALL set_ks_env(ks_env, matrix_ks_im_kp=matrixkp_im_ks)
    1386             :          END IF
    1387             :       END IF
    1388             : 
    1389       21578 :    END SUBROUTINE qs_ks_allocate_basics
    1390             : 
    1391             : END MODULE qs_ks_methods

Generated by: LCOV version 1.15