LCOV - code coverage report
Current view: top level - src - qs_scf_post_gpw.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:32ddf85) Lines: 1344 1523 88.2 %
Date: 2025-05-17 08:08:58 Functions: 23 23 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Does all kind of post scf calculations for GPW/GAPW
      10             : !> \par History
      11             : !>      Started as a copy from the relevant part of qs_scf
      12             : !>      Start to adapt for k-points [07.2015, JGH]
      13             : !> \author Joost VandeVondele (10.2003)
      14             : ! **************************************************************************************************
      15             : MODULE qs_scf_post_gpw
      16             :    USE admm_types,                      ONLY: admm_type
      17             :    USE admm_utils,                      ONLY: admm_correct_for_eigenvalues,&
      18             :                                               admm_uncorrect_for_eigenvalues
      19             :    USE ai_onecenter,                    ONLY: sg_overlap
      20             :    USE atom_kind_orbitals,              ONLY: calculate_atomic_density
      21             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      22             :                                               get_atomic_kind
      23             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      24             :                                               gto_basis_set_type
      25             :    USE cell_types,                      ONLY: cell_type
      26             :    USE cp_array_utils,                  ONLY: cp_1d_r_p_type
      27             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28             :    USE cp_control_types,                ONLY: dft_control_type
      29             :    USE cp_dbcsr_api,                    ONLY: dbcsr_add,&
      30             :                                               dbcsr_p_type,&
      31             :                                               dbcsr_type
      32             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      33             :                                               dbcsr_deallocate_matrix_set
      34             :    USE cp_dbcsr_output,                 ONLY: cp_dbcsr_write_sparse_matrix
      35             :    USE cp_ddapc_util,                   ONLY: get_ddapc
      36             :    USE cp_fm_diag,                      ONLY: choose_eigv_solver
      37             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      38             :                                               cp_fm_struct_release,&
      39             :                                               cp_fm_struct_type
      40             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      41             :                                               cp_fm_get_info,&
      42             :                                               cp_fm_init_random,&
      43             :                                               cp_fm_release,&
      44             :                                               cp_fm_to_fm,&
      45             :                                               cp_fm_type
      46             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      47             :                                               cp_logger_get_default_io_unit,&
      48             :                                               cp_logger_type,&
      49             :                                               cp_to_string
      50             :    USE cp_output_handling,              ONLY: cp_p_file,&
      51             :                                               cp_print_key_finished_output,&
      52             :                                               cp_print_key_should_output,&
      53             :                                               cp_print_key_unit_nr
      54             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      55             :    USE dct,                             ONLY: pw_shrink
      56             :    USE ed_analysis,                     ONLY: edmf_analysis
      57             :    USE eeq_method,                      ONLY: eeq_print
      58             :    USE et_coupling_types,               ONLY: set_et_coupling_type
      59             :    USE hfx_ri,                          ONLY: print_ri_hfx
      60             :    USE hirshfeld_methods,               ONLY: comp_hirshfeld_charges,&
      61             :                                               comp_hirshfeld_i_charges,&
      62             :                                               create_shape_function,&
      63             :                                               save_hirshfeld_charges,&
      64             :                                               write_hirshfeld_charges
      65             :    USE hirshfeld_types,                 ONLY: create_hirshfeld_type,&
      66             :                                               hirshfeld_type,&
      67             :                                               release_hirshfeld_type,&
      68             :                                               set_hirshfeld_info
      69             :    USE iao_analysis,                    ONLY: iao_wfn_analysis
      70             :    USE iao_types,                       ONLY: iao_env_type,&
      71             :                                               iao_read_input
      72             :    USE input_constants,                 ONLY: &
      73             :         do_loc_both, do_loc_homo, do_loc_jacobi, do_loc_lumo, do_loc_mixed, do_loc_none, &
      74             :         ot_precond_full_all, radius_covalent, radius_user, ref_charge_atomic, ref_charge_mulliken
      75             :    USE input_section_types,             ONLY: section_get_ival,&
      76             :                                               section_get_ivals,&
      77             :                                               section_get_lval,&
      78             :                                               section_get_rval,&
      79             :                                               section_vals_get,&
      80             :                                               section_vals_get_subs_vals,&
      81             :                                               section_vals_type,&
      82             :                                               section_vals_val_get
      83             :    USE kinds,                           ONLY: default_path_length,&
      84             :                                               default_string_length,&
      85             :                                               dp
      86             :    USE kpoint_types,                    ONLY: kpoint_type
      87             :    USE mao_wfn_analysis,                ONLY: mao_analysis
      88             :    USE mathconstants,                   ONLY: pi
      89             :    USE memory_utilities,                ONLY: reallocate
      90             :    USE message_passing,                 ONLY: mp_para_env_type
      91             :    USE minbas_wfn_analysis,             ONLY: minbas_analysis
      92             :    USE molden_utils,                    ONLY: write_mos_molden
      93             :    USE molecule_types,                  ONLY: molecule_type
      94             :    USE mulliken,                        ONLY: mulliken_charges
      95             :    USE orbital_pointers,                ONLY: indso
      96             :    USE particle_list_types,             ONLY: particle_list_type
      97             :    USE particle_types,                  ONLY: particle_type
      98             :    USE physcon,                         ONLY: angstrom,&
      99             :                                               evolt
     100             :    USE population_analyses,             ONLY: lowdin_population_analysis,&
     101             :                                               mulliken_population_analysis
     102             :    USE preconditioner_types,            ONLY: preconditioner_type
     103             :    USE ps_implicit_types,               ONLY: MIXED_BC,&
     104             :                                               MIXED_PERIODIC_BC,&
     105             :                                               NEUMANN_BC,&
     106             :                                               PERIODIC_BC
     107             :    USE pw_env_types,                    ONLY: pw_env_get,&
     108             :                                               pw_env_type
     109             :    USE pw_grids,                        ONLY: get_pw_grid_info
     110             :    USE pw_methods,                      ONLY: pw_axpy,&
     111             :                                               pw_copy,&
     112             :                                               pw_derive,&
     113             :                                               pw_integrate_function,&
     114             :                                               pw_scale,&
     115             :                                               pw_transfer,&
     116             :                                               pw_zero
     117             :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
     118             :    USE pw_poisson_types,                ONLY: pw_poisson_implicit,&
     119             :                                               pw_poisson_type
     120             :    USE pw_pool_types,                   ONLY: pw_pool_p_type,&
     121             :                                               pw_pool_type
     122             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
     123             :                                               pw_r3d_rs_type
     124             :    USE qs_chargemol,                    ONLY: write_wfx
     125             :    USE qs_collocate_density,            ONLY: calculate_rho_resp_all,&
     126             :                                               calculate_wavefunction
     127             :    USE qs_commutators,                  ONLY: build_com_hr_matrix
     128             :    USE qs_core_energies,                ONLY: calculate_ptrace
     129             :    USE qs_dos,                          ONLY: calculate_dos,&
     130             :                                               calculate_dos_kp
     131             :    USE qs_electric_field_gradient,      ONLY: qs_efg_calc
     132             :    USE qs_elf_methods,                  ONLY: qs_elf_calc
     133             :    USE qs_energy_types,                 ONLY: qs_energy_type
     134             :    USE qs_energy_window,                ONLY: energy_windows
     135             :    USE qs_environment_types,            ONLY: get_qs_env,&
     136             :                                               qs_environment_type,&
     137             :                                               set_qs_env
     138             :    USE qs_epr_hyp,                      ONLY: qs_epr_hyp_calc
     139             :    USE qs_grid_atom,                    ONLY: grid_atom_type
     140             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
     141             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     142             :                                               qs_kind_type
     143             :    USE qs_ks_methods,                   ONLY: calc_rho_tot_gspace,&
     144             :                                               qs_ks_update_qs_env
     145             :    USE qs_ks_types,                     ONLY: qs_ks_did_change
     146             :    USE qs_loc_dipole,                   ONLY: loc_dipole
     147             :    USE qs_loc_states,                   ONLY: get_localization_info
     148             :    USE qs_loc_types,                    ONLY: qs_loc_env_create,&
     149             :                                               qs_loc_env_release,&
     150             :                                               qs_loc_env_type
     151             :    USE qs_loc_utils,                    ONLY: loc_write_restart,&
     152             :                                               qs_loc_control_init,&
     153             :                                               qs_loc_env_init,&
     154             :                                               qs_loc_init,&
     155             :                                               retain_history
     156             :    USE qs_local_properties,             ONLY: qs_local_energy,&
     157             :                                               qs_local_stress
     158             :    USE qs_mo_io,                        ONLY: write_dm_binary_restart
     159             :    USE qs_mo_methods,                   ONLY: calculate_subspace_eigenvalues,&
     160             :                                               make_mo_eig
     161             :    USE qs_mo_occupation,                ONLY: set_mo_occupation
     162             :    USE qs_mo_types,                     ONLY: get_mo_set,&
     163             :                                               mo_set_type
     164             :    USE qs_moments,                      ONLY: qs_moment_berry_phase,&
     165             :                                               qs_moment_locop
     166             :    USE qs_neighbor_list_types,          ONLY: get_iterator_info,&
     167             :                                               get_neighbor_list_set_p,&
     168             :                                               neighbor_list_iterate,&
     169             :                                               neighbor_list_iterator_create,&
     170             :                                               neighbor_list_iterator_p_type,&
     171             :                                               neighbor_list_iterator_release,&
     172             :                                               neighbor_list_set_p_type
     173             :    USE qs_ot_eigensolver,               ONLY: ot_eigensolver
     174             :    USE qs_pdos,                         ONLY: calculate_projected_dos
     175             :    USE qs_resp,                         ONLY: resp_fit
     176             :    USE qs_rho0_types,                   ONLY: get_rho0_mpole,&
     177             :                                               mpole_rho_atom,&
     178             :                                               rho0_mpole_type
     179             :    USE qs_rho_atom_types,               ONLY: rho_atom_type
     180             :    USE qs_rho_methods,                  ONLY: qs_rho_update_rho
     181             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     182             :                                               qs_rho_type
     183             :    USE qs_scf_csr_write,                ONLY: write_ks_matrix_csr,&
     184             :                                               write_s_matrix_csr
     185             :    USE qs_scf_output,                   ONLY: qs_scf_write_mos
     186             :    USE qs_scf_types,                    ONLY: ot_method_nr,&
     187             :                                               qs_scf_env_type
     188             :    USE qs_scf_wfn_mix,                  ONLY: wfn_mix
     189             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     190             :                                               qs_subsys_type
     191             :    USE qs_wannier90,                    ONLY: wannier90_interface
     192             :    USE s_square_methods,                ONLY: compute_s_square
     193             :    USE scf_control_types,               ONLY: scf_control_type
     194             :    USE stm_images,                      ONLY: th_stm_image
     195             :    USE transport,                       ONLY: qs_scf_post_transport
     196             :    USE trexio_utils,                    ONLY: write_trexio
     197             :    USE virial_types,                    ONLY: virial_type
     198             :    USE voronoi_interface,               ONLY: entry_voronoi_or_bqb
     199             :    USE xray_diffraction,                ONLY: calculate_rhotot_elec_gspace,&
     200             :                                               xray_diffraction_spectrum
     201             : #include "./base/base_uses.f90"
     202             : 
     203             :    IMPLICIT NONE
     204             :    PRIVATE
     205             : 
     206             :    ! Global parameters
     207             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_scf_post_gpw'
     208             :    PUBLIC :: scf_post_calculation_gpw, &
     209             :              qs_scf_post_moments, &
     210             :              write_mo_dependent_results, &
     211             :              write_mo_free_results
     212             : 
     213             :    PUBLIC :: make_lumo_gpw
     214             : 
     215             : ! **************************************************************************************************
     216             : 
     217             : CONTAINS
     218             : 
     219             : ! **************************************************************************************************
     220             : !> \brief collects possible post - scf calculations and prints info / computes properties.
     221             : !> \param qs_env the qs_env in which the qs_env lives
     222             : !> \param wf_type ...
     223             : !> \param do_mp2 ...
     224             : !> \par History
     225             : !>      02.2003 created [fawzi]
     226             : !>      10.2004 moved here from qs_scf [Joost VandeVondele]
     227             : !>              started splitting out different subroutines
     228             : !>      10.2015 added header for wave-function correlated methods [Vladimir Rybkin]
     229             : !> \author fawzi
     230             : !> \note
     231             : !>      this function changes mo_eigenvectors and mo_eigenvalues, depending on the print keys.
     232             : !>      In particular, MO_CUBES causes the MOs to be rotated to make them eigenstates of the KS
     233             : !>      matrix, and mo_eigenvalues is updated accordingly. This can, for unconverged wavefunctions,
     234             : !>      change afterwards slightly the forces (hence small numerical differences between MD
     235             : !>      with and without the debug print level). Ideally this should not happen...
     236             : ! **************************************************************************************************
     237        9805 :    SUBROUTINE scf_post_calculation_gpw(qs_env, wf_type, do_mp2)
     238             : 
     239             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     240             :       CHARACTER(6), OPTIONAL                             :: wf_type
     241             :       LOGICAL, OPTIONAL                                  :: do_mp2
     242             : 
     243             :       CHARACTER(len=*), PARAMETER :: routineN = 'scf_post_calculation_gpw'
     244             : 
     245             :       INTEGER                                            :: handle, homo, ispin, min_lumos, n_rep, &
     246             :                                                             nchk_nmoloc, nhomo, nlumo, nlumo_stm, &
     247             :                                                             nlumos, nmo, nspins, output_unit, &
     248             :                                                             unit_nr
     249        9805 :       INTEGER, DIMENSION(:, :, :), POINTER               :: marked_states
     250             :       LOGICAL :: check_write, compute_lumos, do_homo, do_kpoints, do_mixed, do_mo_cubes, do_stm, &
     251             :          do_wannier_cubes, has_homo, has_lumo, loc_explicit, loc_print_explicit, my_do_mp2, &
     252             :          my_localized_wfn, p_loc, p_loc_homo, p_loc_lumo, p_loc_mixed
     253             :       REAL(dp)                                           :: e_kin
     254             :       REAL(KIND=dp)                                      :: gap, homo_lumo(2, 2), total_zeff_corr
     255        9805 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
     256             :       TYPE(admm_type), POINTER                           :: admm_env
     257        9805 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     258        9805 :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: mixed_evals, occupied_evals, &
     259        9805 :                                                             unoccupied_evals, unoccupied_evals_stm
     260        9805 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: mixed_orbs, occupied_orbs
     261             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     262        9805 :          TARGET                                          :: homo_localized, lumo_localized, &
     263        9805 :                                                             mixed_localized
     264        9805 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: lumo_ptr, mo_loc_history, &
     265        9805 :                                                             unoccupied_orbs, unoccupied_orbs_stm
     266             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     267             :       TYPE(cp_logger_type), POINTER                      :: logger
     268        9805 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, matrix_p_mp2, matrix_s, &
     269        9805 :                                                             mo_derivs
     270        9805 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: kinetic_m, rho_ao
     271             :       TYPE(dft_control_type), POINTER                    :: dft_control
     272        9805 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     273        9805 :       TYPE(molecule_type), POINTER                       :: molecule_set(:)
     274             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     275             :       TYPE(particle_list_type), POINTER                  :: particles
     276        9805 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     277             :       TYPE(pw_c1d_gs_type)                               :: wf_g
     278             :       TYPE(pw_env_type), POINTER                         :: pw_env
     279        9805 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
     280             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     281             :       TYPE(pw_r3d_rs_type)                               :: wf_r
     282        9805 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     283             :       TYPE(qs_loc_env_type), POINTER                     :: qs_loc_env_homo, qs_loc_env_lumo, &
     284             :                                                             qs_loc_env_mixed
     285             :       TYPE(qs_rho_type), POINTER                         :: rho
     286             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     287             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     288             :       TYPE(scf_control_type), POINTER                    :: scf_control
     289             :       TYPE(section_vals_type), POINTER                   :: dft_section, input, loc_print_section, &
     290             :                                                             localize_section, print_key, &
     291             :                                                             stm_section
     292             : 
     293        9805 :       CALL timeset(routineN, handle)
     294             : 
     295        9805 :       logger => cp_get_default_logger()
     296        9805 :       output_unit = cp_logger_get_default_io_unit(logger)
     297             : 
     298             :       ! Print out the type of wavefunction to distinguish between SCF and post-SCF
     299        9805 :       my_do_mp2 = .FALSE.
     300        9805 :       IF (PRESENT(do_mp2)) my_do_mp2 = do_mp2
     301        9805 :       IF (PRESENT(wf_type)) THEN
     302         314 :          IF (output_unit > 0) THEN
     303         157 :             WRITE (UNIT=output_unit, FMT='(/,(T1,A))') REPEAT("-", 40)
     304         157 :             WRITE (UNIT=output_unit, FMT='(/,(T3,A,T19,A,T25,A))') "Properties from ", wf_type, " density"
     305         157 :             WRITE (UNIT=output_unit, FMT='(/,(T1,A))') REPEAT("-", 40)
     306             :          END IF
     307             :       END IF
     308             : 
     309             :       ! Writes the data that is already available in qs_env
     310        9805 :       CALL get_qs_env(qs_env, scf_env=scf_env)
     311             : 
     312        9805 :       my_localized_wfn = .FALSE.
     313        9805 :       NULLIFY (admm_env, dft_control, pw_env, auxbas_pw_pool, pw_pools, mos, rho, &
     314        9805 :                mo_coeff, ks_rmpv, matrix_s, qs_loc_env_homo, qs_loc_env_lumo, scf_control, &
     315        9805 :                unoccupied_orbs, mo_eigenvalues, unoccupied_evals, &
     316        9805 :                unoccupied_evals_stm, molecule_set, mo_derivs, &
     317        9805 :                subsys, particles, input, print_key, kinetic_m, marked_states, &
     318        9805 :                mixed_evals, qs_loc_env_mixed)
     319        9805 :       NULLIFY (lumo_ptr, rho_ao)
     320             : 
     321        9805 :       has_homo = .FALSE.
     322        9805 :       has_lumo = .FALSE.
     323        9805 :       p_loc = .FALSE.
     324        9805 :       p_loc_homo = .FALSE.
     325        9805 :       p_loc_lumo = .FALSE.
     326        9805 :       p_loc_mixed = .FALSE.
     327             : 
     328        9805 :       CPASSERT(ASSOCIATED(scf_env))
     329        9805 :       CPASSERT(ASSOCIATED(qs_env))
     330             :       ! Here we start with data that needs a postprocessing...
     331             :       CALL get_qs_env(qs_env, &
     332             :                       dft_control=dft_control, &
     333             :                       molecule_set=molecule_set, &
     334             :                       scf_control=scf_control, &
     335             :                       do_kpoints=do_kpoints, &
     336             :                       input=input, &
     337             :                       subsys=subsys, &
     338             :                       rho=rho, &
     339             :                       pw_env=pw_env, &
     340             :                       particle_set=particle_set, &
     341             :                       atomic_kind_set=atomic_kind_set, &
     342        9805 :                       qs_kind_set=qs_kind_set)
     343        9805 :       CALL qs_subsys_get(subsys, particles=particles)
     344             : 
     345        9805 :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
     346             : 
     347        9805 :       IF (my_do_mp2) THEN
     348             :          ! Get the HF+MP2 density
     349         314 :          CALL get_qs_env(qs_env, matrix_p_mp2=matrix_p_mp2)
     350         726 :          DO ispin = 1, dft_control%nspins
     351         726 :             CALL dbcsr_add(rho_ao(ispin, 1)%matrix, matrix_p_mp2(ispin)%matrix, 1.0_dp, 1.0_dp)
     352             :          END DO
     353         314 :          CALL qs_rho_update_rho(rho, qs_env=qs_env)
     354         314 :          CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
     355             :          ! In MP2 case update the Hartree potential
     356         314 :          CALL update_hartree_with_mp2(rho, qs_env)
     357             :       END IF
     358             : 
     359        9805 :       CALL write_available_results(qs_env, scf_env)
     360             : 
     361             :       !    **** the kinetic energy
     362        9805 :       IF (cp_print_key_should_output(logger%iter_info, input, &
     363             :                                      "DFT%PRINT%KINETIC_ENERGY") /= 0) THEN
     364          80 :          CALL get_qs_env(qs_env, kinetic_kp=kinetic_m)
     365          80 :          CPASSERT(ASSOCIATED(kinetic_m))
     366          80 :          CPASSERT(ASSOCIATED(kinetic_m(1, 1)%matrix))
     367          80 :          CALL calculate_ptrace(kinetic_m, rho_ao, e_kin, dft_control%nspins)
     368             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%KINETIC_ENERGY", &
     369          80 :                                         extension=".Log")
     370          80 :          IF (unit_nr > 0) THEN
     371          40 :             WRITE (unit_nr, '(T3,A,T55,F25.14)') "Electronic kinetic energy:", e_kin
     372             :          END IF
     373             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
     374          80 :                                            "DFT%PRINT%KINETIC_ENERGY")
     375             :       END IF
     376             : 
     377             :       ! Atomic Charges that require further computation
     378        9805 :       CALL qs_scf_post_charges(input, logger, qs_env)
     379             : 
     380             :       ! Moments of charge distribution
     381        9805 :       CALL qs_scf_post_moments(input, logger, qs_env, output_unit)
     382             : 
     383             :       ! Determine if we need to computer properties using the localized centers
     384        9805 :       dft_section => section_vals_get_subs_vals(input, "DFT")
     385        9805 :       localize_section => section_vals_get_subs_vals(dft_section, "LOCALIZE")
     386        9805 :       loc_print_section => section_vals_get_subs_vals(localize_section, "PRINT")
     387        9805 :       CALL section_vals_get(localize_section, explicit=loc_explicit)
     388        9805 :       CALL section_vals_get(loc_print_section, explicit=loc_print_explicit)
     389             : 
     390             :       ! Print_keys controlled by localization
     391        9805 :       IF (loc_print_explicit) THEN
     392          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_DIPOLES")
     393          96 :          p_loc = BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     394          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "TOTAL_DIPOLE")
     395          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     396          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_CENTERS")
     397          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     398          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_SPREADS")
     399          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     400          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_CUBES")
     401          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     402          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_STATES")
     403          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     404          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "MOLECULAR_MOMENTS")
     405          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     406          96 :          print_key => section_vals_get_subs_vals(loc_print_section, "WANNIER_STATES")
     407          96 :          p_loc = p_loc .OR. BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)
     408             :       ELSE
     409             :          p_loc = .FALSE.
     410             :       END IF
     411        9805 :       IF (loc_explicit) THEN
     412             :          p_loc_homo = (section_get_ival(localize_section, "STATES") == do_loc_homo .OR. &
     413          96 :                        section_get_ival(localize_section, "STATES") == do_loc_both) .AND. p_loc
     414             :          p_loc_lumo = (section_get_ival(localize_section, "STATES") == do_loc_lumo .OR. &
     415          96 :                        section_get_ival(localize_section, "STATES") == do_loc_both) .AND. p_loc
     416          96 :          p_loc_mixed = (section_get_ival(localize_section, "STATES") == do_loc_mixed) .AND. p_loc
     417          96 :          CALL section_vals_val_get(localize_section, "LIST_UNOCCUPIED", n_rep_val=n_rep)
     418             :       ELSE
     419        9709 :          p_loc_homo = .FALSE.
     420        9709 :          p_loc_lumo = .FALSE.
     421        9709 :          p_loc_mixed = .FALSE.
     422        9709 :          n_rep = 0
     423             :       END IF
     424             : 
     425        9805 :       IF (n_rep == 0 .AND. p_loc_lumo) THEN
     426             :          CALL cp_abort(__LOCATION__, "No LIST_UNOCCUPIED was specified, "// &
     427           0 :                        "therefore localization of unoccupied states will be skipped!")
     428           0 :          p_loc_lumo = .FALSE.
     429             :       END IF
     430             : 
     431             :       ! Control for STM
     432        9805 :       stm_section => section_vals_get_subs_vals(input, "DFT%PRINT%STM")
     433        9805 :       CALL section_vals_get(stm_section, explicit=do_stm)
     434        9805 :       nlumo_stm = 0
     435        9805 :       IF (do_stm) nlumo_stm = section_get_ival(stm_section, "NLUMO")
     436             : 
     437             :       ! check for CUBES (MOs and WANNIERS)
     438             :       do_mo_cubes = BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES") &
     439        9805 :                           , cp_p_file)
     440        9805 :       IF (loc_print_explicit) THEN
     441             :          do_wannier_cubes = BTEST(cp_print_key_should_output(logger%iter_info, loc_print_section, &
     442          96 :                                                              "WANNIER_CUBES"), cp_p_file)
     443             :       ELSE
     444             :          do_wannier_cubes = .FALSE.
     445             :       END IF
     446        9805 :       nlumo = section_get_ival(dft_section, "PRINT%MO_CUBES%NLUMO")
     447        9805 :       nhomo = section_get_ival(dft_section, "PRINT%MO_CUBES%NHOMO")
     448             : 
     449             :       ! Setup the grids needed to compute a wavefunction given a vector..
     450        9805 :       IF (((do_mo_cubes .OR. do_wannier_cubes) .AND. (nlumo /= 0 .OR. nhomo /= 0)) .OR. p_loc) THEN
     451             :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
     452         208 :                          pw_pools=pw_pools)
     453         208 :          CALL auxbas_pw_pool%create_pw(wf_r)
     454         208 :          CALL auxbas_pw_pool%create_pw(wf_g)
     455             :       END IF
     456             : 
     457        9805 :       IF (dft_control%restricted) THEN
     458             :          !For ROKS usefull only first term
     459          74 :          nspins = 1
     460             :       ELSE
     461        9731 :          nspins = dft_control%nspins
     462             :       END IF
     463             :       !Some info about ROKS
     464        9805 :       IF (dft_control%restricted .AND. (do_mo_cubes .OR. p_loc_homo)) THEN
     465           0 :          CALL cp_abort(__LOCATION__, "Unclear how we define MOs / localization in the restricted case ... ")
     466             :          ! It is possible to obtain Wannier centers for ROKS without rotations for SINGLE OCCUPIED ORBITALS
     467             :       END IF
     468             :       ! Makes the MOs eigenstates, computes eigenvalues, write cubes
     469        9805 :       IF (do_kpoints) THEN
     470         210 :          CPWARN_IF(do_mo_cubes, "Print MO cubes not implemented for k-point calculations")
     471             :       ELSE
     472             :          CALL get_qs_env(qs_env, &
     473             :                          mos=mos, &
     474        9595 :                          matrix_ks=ks_rmpv)
     475        9595 :          IF ((do_mo_cubes .AND. nhomo /= 0) .OR. do_stm) THEN
     476         132 :             CALL get_qs_env(qs_env, mo_derivs=mo_derivs)
     477         132 :             IF (dft_control%do_admm) THEN
     478           0 :                CALL get_qs_env(qs_env, admm_env=admm_env)
     479           0 :                CALL make_mo_eig(mos, nspins, ks_rmpv, scf_control, mo_derivs, admm_env=admm_env)
     480             :             ELSE
     481         132 :                IF (dft_control%hairy_probes) THEN
     482           0 :                   scf_control%smear%do_smear = .FALSE.
     483             :                   CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs, &
     484             :                                    hairy_probes=dft_control%hairy_probes, &
     485           0 :                                    probe=dft_control%probe)
     486             :                ELSE
     487         132 :                   CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
     488             :                END IF
     489             :             END IF
     490         282 :             DO ispin = 1, dft_control%nspins
     491         150 :                CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=homo)
     492         282 :                homo_lumo(ispin, 1) = mo_eigenvalues(homo)
     493             :             END DO
     494             :             has_homo = .TRUE.
     495             :          END IF
     496        9595 :          IF (do_mo_cubes .AND. nhomo /= 0) THEN
     497         268 :             DO ispin = 1, nspins
     498             :                ! Prints the cube files of OCCUPIED ORBITALS
     499             :                CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
     500         142 :                                eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
     501             :                CALL qs_scf_post_occ_cubes(input, dft_section, dft_control, logger, qs_env, &
     502         268 :                                           mo_coeff, wf_g, wf_r, particles, homo, ispin)
     503             :             END DO
     504             :          END IF
     505             :       END IF
     506             : 
     507             :       ! Initialize the localization environment, needed e.g. for wannier functions and molecular states
     508             :       ! Gets localization info for the occupied orbs
     509             :       !  - Possibly gets wannier functions
     510             :       !  - Possibly gets molecular states
     511        9805 :       IF (p_loc_homo) THEN
     512          90 :          IF (do_kpoints) THEN
     513           0 :             CPWARN("Localization not implemented for k-point calculations!")
     514             :          ELSEIF (dft_control%restricted &
     515             :                  .AND. (section_get_ival(localize_section, "METHOD") .NE. do_loc_none) &
     516          90 :                  .AND. (section_get_ival(localize_section, "METHOD") .NE. do_loc_jacobi)) THEN
     517           0 :             CPABORT("ROKS works only with LOCALIZE METHOD NONE or JACOBI")
     518             :          ELSE
     519         376 :             ALLOCATE (occupied_orbs(dft_control%nspins))
     520         376 :             ALLOCATE (occupied_evals(dft_control%nspins))
     521         376 :             ALLOCATE (homo_localized(dft_control%nspins))
     522         196 :             DO ispin = 1, dft_control%nspins
     523             :                CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
     524         106 :                                eigenvalues=mo_eigenvalues)
     525         106 :                occupied_orbs(ispin) = mo_coeff
     526         106 :                occupied_evals(ispin)%array => mo_eigenvalues
     527         106 :                CALL cp_fm_create(homo_localized(ispin), occupied_orbs(ispin)%matrix_struct)
     528         196 :                CALL cp_fm_to_fm(occupied_orbs(ispin), homo_localized(ispin))
     529             :             END DO
     530             : 
     531          90 :             CALL get_qs_env(qs_env, mo_loc_history=mo_loc_history)
     532          90 :             do_homo = .TRUE.
     533             : 
     534         720 :             ALLOCATE (qs_loc_env_homo)
     535          90 :             CALL qs_loc_env_create(qs_loc_env_homo)
     536          90 :             CALL qs_loc_control_init(qs_loc_env_homo, localize_section, do_homo=do_homo)
     537             :             CALL qs_loc_init(qs_env, qs_loc_env_homo, localize_section, homo_localized, do_homo, &
     538          90 :                              do_mo_cubes, mo_loc_history=mo_loc_history)
     539             :             CALL get_localization_info(qs_env, qs_loc_env_homo, localize_section, homo_localized, &
     540          90 :                                        wf_r, wf_g, particles, occupied_orbs, occupied_evals, marked_states)
     541             : 
     542             :             !retain the homo_localized for future use
     543          90 :             IF (qs_loc_env_homo%localized_wfn_control%use_history) THEN
     544          10 :                CALL retain_history(mo_loc_history, homo_localized)
     545          10 :                CALL set_qs_env(qs_env, mo_loc_history=mo_loc_history)
     546             :             END IF
     547             : 
     548             :             !write restart for localization of occupied orbitals
     549             :             CALL loc_write_restart(qs_loc_env_homo, loc_print_section, mos, &
     550          90 :                                    homo_localized, do_homo)
     551          90 :             CALL cp_fm_release(homo_localized)
     552          90 :             DEALLOCATE (occupied_orbs)
     553          90 :             DEALLOCATE (occupied_evals)
     554             :             ! Print Total Dipole if the localization has been performed
     555         180 :             IF (qs_loc_env_homo%do_localize) THEN
     556          74 :                CALL loc_dipole(input, dft_control, qs_loc_env_homo, logger, qs_env)
     557             :             END IF
     558             :          END IF
     559             :       END IF
     560             : 
     561             :       ! Gets the lumos, and eigenvalues for the lumos, and localize them if requested
     562        9805 :       IF (do_kpoints) THEN
     563         210 :          IF (do_mo_cubes .OR. p_loc_lumo) THEN
     564             :             ! nothing at the moment, not implemented
     565           2 :             CPWARN("Localization and MO related output not implemented for k-point calculations!")
     566             :          END IF
     567             :       ELSE
     568        9595 :          compute_lumos = do_mo_cubes .AND. nlumo .NE. 0
     569        9595 :          compute_lumos = compute_lumos .OR. p_loc_lumo
     570             : 
     571       21042 :          DO ispin = 1, dft_control%nspins
     572       11447 :             CALL get_mo_set(mo_set=mos(ispin), homo=homo, nmo=nmo)
     573       32441 :             compute_lumos = compute_lumos .AND. homo == nmo
     574             :          END DO
     575             : 
     576        9595 :          IF (do_mo_cubes .AND. .NOT. compute_lumos) THEN
     577             : 
     578          94 :             nlumo = section_get_ival(dft_section, "PRINT%MO_CUBES%NLUMO")
     579         188 :             DO ispin = 1, dft_control%nspins
     580             : 
     581          94 :                CALL get_mo_set(mo_set=mos(ispin), homo=homo, nmo=nmo, eigenvalues=mo_eigenvalues)
     582         188 :                IF (nlumo > nmo - homo) THEN
     583             :                   ! this case not yet implemented
     584             :                ELSE
     585          94 :                   IF (nlumo .EQ. -1) THEN
     586           0 :                      nlumo = nmo - homo
     587             :                   END IF
     588          94 :                   IF (output_unit > 0) WRITE (output_unit, *) " "
     589          94 :                   IF (output_unit > 0) WRITE (output_unit, *) " Lowest eigenvalues of the unoccupied subspace spin ", ispin
     590          94 :                   IF (output_unit > 0) WRITE (output_unit, *) "---------------------------------------------"
     591          94 :                   IF (output_unit > 0) WRITE (output_unit, '(4(1X,1F16.8))') mo_eigenvalues(homo + 1:homo + nlumo)
     592             : 
     593             :                   ! Prints the cube files of UNOCCUPIED ORBITALS
     594          94 :                   CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff)
     595             :                   CALL qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
     596          94 :                                                mo_coeff, wf_g, wf_r, particles, nlumo, homo, ispin, lumo=homo + 1)
     597             :                END IF
     598             :             END DO
     599             : 
     600             :          END IF
     601             : 
     602        9563 :          IF (compute_lumos) THEN
     603          32 :             check_write = .TRUE.
     604          32 :             min_lumos = nlumo
     605          32 :             IF (nlumo == 0) check_write = .FALSE.
     606          32 :             IF (p_loc_lumo) THEN
     607           6 :                do_homo = .FALSE.
     608          48 :                ALLOCATE (qs_loc_env_lumo)
     609           6 :                CALL qs_loc_env_create(qs_loc_env_lumo)
     610           6 :                CALL qs_loc_control_init(qs_loc_env_lumo, localize_section, do_homo=do_homo)
     611          98 :                min_lumos = MAX(MAXVAL(qs_loc_env_lumo%localized_wfn_control%loc_states(:, :)), nlumo)
     612             :             END IF
     613             : 
     614         144 :             ALLOCATE (unoccupied_orbs(dft_control%nspins))
     615         144 :             ALLOCATE (unoccupied_evals(dft_control%nspins))
     616          32 :             CALL make_lumo_gpw(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, min_lumos, nlumos)
     617          32 :             lumo_ptr => unoccupied_orbs
     618          80 :             DO ispin = 1, dft_control%nspins
     619          48 :                has_lumo = .TRUE.
     620          48 :                homo_lumo(ispin, 2) = unoccupied_evals(ispin)%array(1)
     621          48 :                CALL get_mo_set(mo_set=mos(ispin), homo=homo)
     622          80 :                IF (check_write) THEN
     623          48 :                   IF (p_loc_lumo .AND. nlumo .NE. -1) nlumos = MIN(nlumo, nlumos)
     624             :                   ! Prints the cube files of UNOCCUPIED ORBITALS
     625             :                   CALL qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
     626          48 :                                                unoccupied_orbs(ispin), wf_g, wf_r, particles, nlumos, homo, ispin)
     627             :                END IF
     628             :             END DO
     629             : 
     630          64 :             IF (p_loc_lumo) THEN
     631          30 :                ALLOCATE (lumo_localized(dft_control%nspins))
     632          18 :                DO ispin = 1, dft_control%nspins
     633          12 :                   CALL cp_fm_create(lumo_localized(ispin), unoccupied_orbs(ispin)%matrix_struct)
     634          18 :                   CALL cp_fm_to_fm(unoccupied_orbs(ispin), lumo_localized(ispin))
     635             :                END DO
     636             :                CALL qs_loc_init(qs_env, qs_loc_env_lumo, localize_section, lumo_localized, do_homo, do_mo_cubes, &
     637           6 :                                 evals=unoccupied_evals)
     638             :                CALL qs_loc_env_init(qs_loc_env_lumo, qs_loc_env_lumo%localized_wfn_control, qs_env, &
     639           6 :                                     loc_coeff=unoccupied_orbs)
     640             :                CALL get_localization_info(qs_env, qs_loc_env_lumo, localize_section, &
     641             :                                           lumo_localized, wf_r, wf_g, particles, &
     642           6 :                                           unoccupied_orbs, unoccupied_evals, marked_states)
     643             :                CALL loc_write_restart(qs_loc_env_lumo, loc_print_section, mos, homo_localized, do_homo, &
     644           6 :                                       evals=unoccupied_evals)
     645           6 :                lumo_ptr => lumo_localized
     646             :             END IF
     647             :          END IF
     648             : 
     649        9595 :          IF (has_homo .AND. has_lumo) THEN
     650          32 :             IF (output_unit > 0) WRITE (output_unit, *) " "
     651          80 :             DO ispin = 1, dft_control%nspins
     652          80 :                IF (.NOT. scf_control%smear%do_smear) THEN
     653          48 :                   gap = homo_lumo(ispin, 2) - homo_lumo(ispin, 1)
     654          48 :                   IF (output_unit > 0) WRITE (output_unit, '(T2,A,F12.6)') &
     655          24 :                      "HOMO - LUMO gap [eV] :", gap*evolt
     656             :                END IF
     657             :             END DO
     658             :          END IF
     659             :       END IF
     660             : 
     661        9805 :       IF (p_loc_mixed) THEN
     662           2 :          IF (do_kpoints) THEN
     663           0 :             CPWARN("Localization not implemented for k-point calculations!")
     664           2 :          ELSEIF (dft_control%restricted) THEN
     665           0 :             IF (output_unit > 0) WRITE (output_unit, *) &
     666           0 :                " Unclear how we define MOs / localization in the restricted case... skipping"
     667             :          ELSE
     668             : 
     669           8 :             ALLOCATE (mixed_orbs(dft_control%nspins))
     670           8 :             ALLOCATE (mixed_evals(dft_control%nspins))
     671           8 :             ALLOCATE (mixed_localized(dft_control%nspins))
     672           4 :             DO ispin = 1, dft_control%nspins
     673             :                CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
     674           2 :                                eigenvalues=mo_eigenvalues)
     675           2 :                mixed_orbs(ispin) = mo_coeff
     676           2 :                mixed_evals(ispin)%array => mo_eigenvalues
     677           2 :                CALL cp_fm_create(mixed_localized(ispin), mixed_orbs(ispin)%matrix_struct)
     678           4 :                CALL cp_fm_to_fm(mixed_orbs(ispin), mixed_localized(ispin))
     679             :             END DO
     680             : 
     681           2 :             CALL get_qs_env(qs_env, mo_loc_history=mo_loc_history)
     682           2 :             do_homo = .FALSE.
     683           2 :             do_mixed = .TRUE.
     684           2 :             total_zeff_corr = scf_env%sum_zeff_corr
     685          16 :             ALLOCATE (qs_loc_env_mixed)
     686           2 :             CALL qs_loc_env_create(qs_loc_env_mixed)
     687           2 :             CALL qs_loc_control_init(qs_loc_env_mixed, localize_section, do_homo=do_homo, do_mixed=do_mixed)
     688             :             CALL qs_loc_init(qs_env, qs_loc_env_mixed, localize_section, mixed_localized, do_homo, &
     689             :                              do_mo_cubes, mo_loc_history=mo_loc_history, tot_zeff_corr=total_zeff_corr, &
     690           2 :                              do_mixed=do_mixed)
     691             : 
     692           4 :             DO ispin = 1, dft_control%nspins
     693           4 :                CALL cp_fm_get_info(mixed_localized(ispin), ncol_global=nchk_nmoloc)
     694             :             END DO
     695             : 
     696             :             CALL get_localization_info(qs_env, qs_loc_env_mixed, localize_section, mixed_localized, &
     697           2 :                                        wf_r, wf_g, particles, mixed_orbs, mixed_evals, marked_states)
     698             : 
     699             :             !retain the homo_localized for future use
     700           2 :             IF (qs_loc_env_mixed%localized_wfn_control%use_history) THEN
     701           0 :                CALL retain_history(mo_loc_history, mixed_localized)
     702           0 :                CALL set_qs_env(qs_env, mo_loc_history=mo_loc_history)
     703             :             END IF
     704             : 
     705             :             !write restart for localization of occupied orbitals
     706             :             CALL loc_write_restart(qs_loc_env_mixed, loc_print_section, mos, &
     707           2 :                                    mixed_localized, do_homo, do_mixed=do_mixed)
     708           2 :             CALL cp_fm_release(mixed_localized)
     709           2 :             DEALLOCATE (mixed_orbs)
     710           4 :             DEALLOCATE (mixed_evals)
     711             :             ! Print Total Dipole if the localization has been performed
     712             : ! Revisit the formalism later
     713             :             !IF (qs_loc_env_mixed%do_localize) THEN
     714             :             !   CALL loc_dipole(input, dft_control, qs_loc_env_mixed, logger, qs_env)
     715             :             !END IF
     716             :          END IF
     717             :       END IF
     718             : 
     719             :       ! Deallocate grids needed to compute wavefunctions
     720        9805 :       IF (((do_mo_cubes .OR. do_wannier_cubes) .AND. (nlumo /= 0 .OR. nhomo /= 0)) .OR. p_loc) THEN
     721         208 :          CALL auxbas_pw_pool%give_back_pw(wf_r)
     722         208 :          CALL auxbas_pw_pool%give_back_pw(wf_g)
     723             :       END IF
     724             : 
     725             :       ! Destroy the localization environment
     726        9805 :       IF (.NOT. do_kpoints) THEN
     727        9595 :          IF (p_loc_homo) THEN
     728          90 :             CALL qs_loc_env_release(qs_loc_env_homo)
     729          90 :             DEALLOCATE (qs_loc_env_homo)
     730             :          END IF
     731        9595 :          IF (p_loc_lumo) THEN
     732           6 :             CALL qs_loc_env_release(qs_loc_env_lumo)
     733           6 :             DEALLOCATE (qs_loc_env_lumo)
     734             :          END IF
     735        9595 :          IF (p_loc_mixed) THEN
     736           2 :             CALL qs_loc_env_release(qs_loc_env_mixed)
     737           2 :             DEALLOCATE (qs_loc_env_mixed)
     738             :          END IF
     739             :       END IF
     740             : 
     741             :       ! generate a mix of wfns, and write to a restart
     742        9805 :       IF (do_kpoints) THEN
     743             :          ! nothing at the moment, not implemented
     744             :       ELSE
     745        9595 :          CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env)
     746             :          CALL wfn_mix(mos, particle_set, dft_section, qs_kind_set, para_env, &
     747             :                       output_unit, unoccupied_orbs=lumo_ptr, scf_env=scf_env, &
     748        9595 :                       matrix_s=matrix_s, marked_states=marked_states)
     749             : 
     750        9595 :          IF (p_loc_lumo) CALL cp_fm_release(lumo_localized)
     751             :       END IF
     752        9805 :       IF (ASSOCIATED(marked_states)) THEN
     753          16 :          DEALLOCATE (marked_states)
     754             :       END IF
     755             : 
     756             :       ! This is just a deallocation for printing MO_CUBES or TDDFPT
     757        9805 :       IF (.NOT. do_kpoints) THEN
     758        9595 :          IF (compute_lumos) THEN
     759          80 :             DO ispin = 1, dft_control%nspins
     760          48 :                DEALLOCATE (unoccupied_evals(ispin)%array)
     761          80 :                CALL cp_fm_release(unoccupied_orbs(ispin))
     762             :             END DO
     763          32 :             DEALLOCATE (unoccupied_evals)
     764          32 :             DEALLOCATE (unoccupied_orbs)
     765             :          END IF
     766             :       END IF
     767             : 
     768             :       !stm images
     769        9805 :       IF (do_stm) THEN
     770           6 :          IF (do_kpoints) THEN
     771           0 :             CPWARN("STM not implemented for k-point calculations!")
     772             :          ELSE
     773           6 :             NULLIFY (unoccupied_orbs_stm, unoccupied_evals_stm)
     774           6 :             IF (nlumo_stm > 0) THEN
     775           8 :                ALLOCATE (unoccupied_orbs_stm(dft_control%nspins))
     776           8 :                ALLOCATE (unoccupied_evals_stm(dft_control%nspins))
     777             :                CALL make_lumo_gpw(qs_env, scf_env, unoccupied_orbs_stm, unoccupied_evals_stm, &
     778           2 :                                   nlumo_stm, nlumos)
     779             :             END IF
     780             : 
     781             :             CALL th_stm_image(qs_env, stm_section, particles, unoccupied_orbs_stm, &
     782           6 :                               unoccupied_evals_stm)
     783             : 
     784           6 :             IF (nlumo_stm > 0) THEN
     785           4 :                DO ispin = 1, dft_control%nspins
     786           4 :                   DEALLOCATE (unoccupied_evals_stm(ispin)%array)
     787             :                END DO
     788           2 :                DEALLOCATE (unoccupied_evals_stm)
     789           2 :                CALL cp_fm_release(unoccupied_orbs_stm)
     790             :             END IF
     791             :          END IF
     792             :       END IF
     793             : 
     794             :       ! Print coherent X-ray diffraction spectrum
     795        9805 :       CALL qs_scf_post_xray(input, dft_section, logger, qs_env, output_unit)
     796             : 
     797             :       ! Calculation of Electric Field Gradients
     798        9805 :       CALL qs_scf_post_efg(input, logger, qs_env)
     799             : 
     800             :       ! Calculation of ET
     801        9805 :       CALL qs_scf_post_et(input, qs_env, dft_control)
     802             : 
     803             :       ! Calculation of EPR Hyperfine Coupling Tensors
     804        9805 :       CALL qs_scf_post_epr(input, logger, qs_env)
     805             : 
     806             :       ! Calculation of properties needed for BASIS_MOLOPT optimizations
     807        9805 :       CALL qs_scf_post_molopt(input, logger, qs_env)
     808             : 
     809             :       ! Calculate ELF
     810        9805 :       CALL qs_scf_post_elf(input, logger, qs_env)
     811             : 
     812             :       ! Use Wannier90 interface
     813        9805 :       CALL wannier90_interface(input, logger, qs_env)
     814             : 
     815        9805 :       IF (my_do_mp2) THEN
     816             :          ! Get everything back
     817         726 :          DO ispin = 1, dft_control%nspins
     818         726 :             CALL dbcsr_add(rho_ao(ispin, 1)%matrix, matrix_p_mp2(ispin)%matrix, 1.0_dp, -1.0_dp)
     819             :          END DO
     820         314 :          CALL qs_rho_update_rho(rho, qs_env=qs_env)
     821         314 :          CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
     822             :       END IF
     823             : 
     824        9805 :       CALL timestop(handle)
     825             : 
     826       19610 :    END SUBROUTINE scf_post_calculation_gpw
     827             : 
     828             : ! **************************************************************************************************
     829             : !> \brief Gets the lumos, and eigenvalues for the lumos
     830             : !> \param qs_env ...
     831             : !> \param scf_env ...
     832             : !> \param unoccupied_orbs ...
     833             : !> \param unoccupied_evals ...
     834             : !> \param nlumo ...
     835             : !> \param nlumos ...
     836             : ! **************************************************************************************************
     837          34 :    SUBROUTINE make_lumo_gpw(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, nlumo, nlumos)
     838             : 
     839             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     840             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     841             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(INOUT)      :: unoccupied_orbs
     842             :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: unoccupied_evals
     843             :       INTEGER, INTENT(IN)                                :: nlumo
     844             :       INTEGER, INTENT(OUT)                               :: nlumos
     845             : 
     846             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'make_lumo_gpw'
     847             : 
     848             :       INTEGER                                            :: handle, homo, ispin, n, nao, nmo, &
     849             :                                                             output_unit
     850             :       TYPE(admm_type), POINTER                           :: admm_env
     851             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     852             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_tmp
     853             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     854             :       TYPE(cp_logger_type), POINTER                      :: logger
     855          34 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, matrix_s
     856             :       TYPE(dft_control_type), POINTER                    :: dft_control
     857          34 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     858             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     859             :       TYPE(preconditioner_type), POINTER                 :: local_preconditioner
     860             :       TYPE(scf_control_type), POINTER                    :: scf_control
     861             : 
     862          34 :       CALL timeset(routineN, handle)
     863             : 
     864          34 :       NULLIFY (mos, ks_rmpv, scf_control, dft_control, admm_env, para_env, blacs_env)
     865             :       CALL get_qs_env(qs_env, &
     866             :                       mos=mos, &
     867             :                       matrix_ks=ks_rmpv, &
     868             :                       scf_control=scf_control, &
     869             :                       dft_control=dft_control, &
     870             :                       matrix_s=matrix_s, &
     871             :                       admm_env=admm_env, &
     872             :                       para_env=para_env, &
     873          34 :                       blacs_env=blacs_env)
     874             : 
     875          34 :       logger => cp_get_default_logger()
     876          34 :       output_unit = cp_logger_get_default_io_unit(logger)
     877             : 
     878          84 :       DO ispin = 1, dft_control%nspins
     879          50 :          NULLIFY (unoccupied_evals(ispin)%array)
     880             :          ! Always write eigenvalues
     881          50 :          IF (output_unit > 0) WRITE (output_unit, *) " "
     882          50 :          IF (output_unit > 0) WRITE (output_unit, *) " Lowest Eigenvalues of the unoccupied subspace spin ", ispin
     883          50 :          IF (output_unit > 0) WRITE (output_unit, FMT='(1X,A)') "-----------------------------------------------------"
     884          50 :          CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=homo, nao=nao, nmo=nmo)
     885          50 :          CALL cp_fm_get_info(mo_coeff, nrow_global=n)
     886          50 :          nlumos = MAX(1, MIN(nlumo, nao - nmo))
     887          50 :          IF (nlumo == -1) nlumos = nao - nmo
     888         150 :          ALLOCATE (unoccupied_evals(ispin)%array(nlumos))
     889             :          CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
     890          50 :                                   nrow_global=n, ncol_global=nlumos)
     891          50 :          CALL cp_fm_create(unoccupied_orbs(ispin), fm_struct_tmp, name="lumos")
     892          50 :          CALL cp_fm_struct_release(fm_struct_tmp)
     893          50 :          CALL cp_fm_init_random(unoccupied_orbs(ispin), nlumos)
     894             : 
     895             :          ! the full_all preconditioner makes not much sense for lumos search
     896          50 :          NULLIFY (local_preconditioner)
     897          50 :          IF (ASSOCIATED(scf_env%ot_preconditioner)) THEN
     898          26 :             local_preconditioner => scf_env%ot_preconditioner(1)%preconditioner
     899             :             ! this one can for sure not be right (as it has to match a given C0)
     900          26 :             IF (local_preconditioner%in_use == ot_precond_full_all) THEN
     901           4 :                NULLIFY (local_preconditioner)
     902             :             END IF
     903             :          END IF
     904             : 
     905             :          ! ** If we do ADMM, we add have to modify the kohn-sham matrix
     906          50 :          IF (dft_control%do_admm) THEN
     907           0 :             CALL admm_correct_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
     908             :          END IF
     909             : 
     910             :          CALL ot_eigensolver(matrix_h=ks_rmpv(ispin)%matrix, matrix_s=matrix_s(1)%matrix, &
     911             :                              matrix_c_fm=unoccupied_orbs(ispin), &
     912             :                              matrix_orthogonal_space_fm=mo_coeff, &
     913             :                              eps_gradient=scf_control%eps_lumos, &
     914             :                              preconditioner=local_preconditioner, &
     915             :                              iter_max=scf_control%max_iter_lumos, &
     916          50 :                              size_ortho_space=nmo)
     917             : 
     918             :          CALL calculate_subspace_eigenvalues(unoccupied_orbs(ispin), ks_rmpv(ispin)%matrix, &
     919             :                                              unoccupied_evals(ispin)%array, scr=output_unit, &
     920          50 :                                              ionode=output_unit > 0)
     921             : 
     922             :          ! ** If we do ADMM, we restore the original kohn-sham matrix
     923         134 :          IF (dft_control%do_admm) THEN
     924           0 :             CALL admm_uncorrect_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
     925             :          END IF
     926             : 
     927             :       END DO
     928             : 
     929          34 :       CALL timestop(handle)
     930             : 
     931          34 :    END SUBROUTINE make_lumo_gpw
     932             : ! **************************************************************************************************
     933             : !> \brief Computes and Prints Atomic Charges with several methods
     934             : !> \param input ...
     935             : !> \param logger ...
     936             : !> \param qs_env the qs_env in which the qs_env lives
     937             : ! **************************************************************************************************
     938        9805 :    SUBROUTINE qs_scf_post_charges(input, logger, qs_env)
     939             :       TYPE(section_vals_type), POINTER                   :: input
     940             :       TYPE(cp_logger_type), POINTER                      :: logger
     941             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     942             : 
     943             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_charges'
     944             : 
     945             :       INTEGER                                            :: handle, print_level, unit_nr
     946             :       LOGICAL                                            :: do_kpoints, print_it
     947             :       TYPE(section_vals_type), POINTER                   :: density_fit_section, print_key
     948             : 
     949        9805 :       CALL timeset(routineN, handle)
     950             : 
     951        9805 :       CALL get_qs_env(qs_env=qs_env, do_kpoints=do_kpoints)
     952             : 
     953             :       ! Mulliken charges require no further computation and are printed from write_mo_free_results
     954             : 
     955             :       ! Compute the Lowdin charges
     956        9805 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%LOWDIN")
     957        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     958             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOWDIN", extension=".lowdin", &
     959          82 :                                         log_filename=.FALSE.)
     960          82 :          print_level = 1
     961          82 :          CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
     962          82 :          IF (print_it) print_level = 2
     963          82 :          CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
     964          82 :          IF (print_it) print_level = 3
     965          82 :          IF (do_kpoints) THEN
     966           2 :             CPWARN("Lowdin charges not implemented for k-point calculations!")
     967             :          ELSE
     968          80 :             CALL lowdin_population_analysis(qs_env, unit_nr, print_level)
     969             :          END IF
     970          82 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%LOWDIN")
     971             :       END IF
     972             : 
     973             :       ! Compute the RESP charges
     974        9805 :       CALL resp_fit(qs_env)
     975             : 
     976             :       ! Compute the Density Derived Atomic Point charges with the Bloechl scheme
     977        9805 :       print_key => section_vals_get_subs_vals(input, "PROPERTIES%FIT_CHARGE")
     978        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     979             :          unit_nr = cp_print_key_unit_nr(logger, input, "PROPERTIES%FIT_CHARGE", extension=".Fitcharge", &
     980         102 :                                         log_filename=.FALSE.)
     981         102 :          density_fit_section => section_vals_get_subs_vals(input, "DFT%DENSITY_FITTING")
     982         102 :          CALL get_ddapc(qs_env, .FALSE., density_fit_section, iwc=unit_nr)
     983         102 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "PROPERTIES%FIT_CHARGE")
     984             :       END IF
     985             : 
     986        9805 :       CALL timestop(handle)
     987             : 
     988        9805 :    END SUBROUTINE qs_scf_post_charges
     989             : 
     990             : ! **************************************************************************************************
     991             : !> \brief Computes and prints the Cube Files for MO
     992             : !> \param input ...
     993             : !> \param dft_section ...
     994             : !> \param dft_control ...
     995             : !> \param logger ...
     996             : !> \param qs_env the qs_env in which the qs_env lives
     997             : !> \param mo_coeff ...
     998             : !> \param wf_g ...
     999             : !> \param wf_r ...
    1000             : !> \param particles ...
    1001             : !> \param homo ...
    1002             : !> \param ispin ...
    1003             : ! **************************************************************************************************
    1004         142 :    SUBROUTINE qs_scf_post_occ_cubes(input, dft_section, dft_control, logger, qs_env, &
    1005             :                                     mo_coeff, wf_g, wf_r, particles, homo, ispin)
    1006             :       TYPE(section_vals_type), POINTER                   :: input, dft_section
    1007             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1008             :       TYPE(cp_logger_type), POINTER                      :: logger
    1009             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1010             :       TYPE(cp_fm_type), INTENT(IN)                       :: mo_coeff
    1011             :       TYPE(pw_c1d_gs_type), INTENT(INOUT)                :: wf_g
    1012             :       TYPE(pw_r3d_rs_type), INTENT(INOUT)                :: wf_r
    1013             :       TYPE(particle_list_type), POINTER                  :: particles
    1014             :       INTEGER, INTENT(IN)                                :: homo, ispin
    1015             : 
    1016             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_occ_cubes'
    1017             : 
    1018             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube, title
    1019             :       INTEGER                                            :: handle, i, ir, ivector, n_rep, nhomo, &
    1020             :                                                             nlist, unit_nr
    1021         142 :       INTEGER, DIMENSION(:), POINTER                     :: list, list_index
    1022             :       LOGICAL                                            :: append_cube, mpi_io
    1023         142 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1024             :       TYPE(cell_type), POINTER                           :: cell
    1025         142 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1026             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1027         142 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1028             : 
    1029         142 :       CALL timeset(routineN, handle)
    1030             : 
    1031         142 :       NULLIFY (list_index)
    1032             : 
    1033             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES") &
    1034         142 :                 , cp_p_file) .AND. section_get_lval(dft_section, "PRINT%MO_CUBES%WRITE_CUBE")) THEN
    1035         104 :          nhomo = section_get_ival(dft_section, "PRINT%MO_CUBES%NHOMO")
    1036         104 :          append_cube = section_get_lval(dft_section, "PRINT%MO_CUBES%APPEND")
    1037         104 :          my_pos_cube = "REWIND"
    1038         104 :          IF (append_cube) THEN
    1039           0 :             my_pos_cube = "APPEND"
    1040             :          END IF
    1041         104 :          CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", n_rep_val=n_rep)
    1042         104 :          IF (n_rep > 0) THEN ! write the cubes of the list
    1043           0 :             nlist = 0
    1044           0 :             DO ir = 1, n_rep
    1045           0 :                NULLIFY (list)
    1046             :                CALL section_vals_val_get(dft_section, "PRINT%MO_CUBES%HOMO_LIST", i_rep_val=ir, &
    1047           0 :                                          i_vals=list)
    1048           0 :                IF (ASSOCIATED(list)) THEN
    1049           0 :                   CALL reallocate(list_index, 1, nlist + SIZE(list))
    1050           0 :                   DO i = 1, SIZE(list)
    1051           0 :                      list_index(i + nlist) = list(i)
    1052             :                   END DO
    1053           0 :                   nlist = nlist + SIZE(list)
    1054             :                END IF
    1055             :             END DO
    1056             :          ELSE
    1057             : 
    1058         104 :             IF (nhomo == -1) nhomo = homo
    1059         104 :             nlist = homo - MAX(1, homo - nhomo + 1) + 1
    1060         312 :             ALLOCATE (list_index(nlist))
    1061         212 :             DO i = 1, nlist
    1062         212 :                list_index(i) = MAX(1, homo - nhomo + 1) + i - 1
    1063             :             END DO
    1064             :          END IF
    1065         212 :          DO i = 1, nlist
    1066         108 :             ivector = list_index(i)
    1067             :             CALL get_qs_env(qs_env=qs_env, &
    1068             :                             atomic_kind_set=atomic_kind_set, &
    1069             :                             qs_kind_set=qs_kind_set, &
    1070             :                             cell=cell, &
    1071             :                             particle_set=particle_set, &
    1072         108 :                             pw_env=pw_env)
    1073             :             CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
    1074         108 :                                         cell, dft_control, particle_set, pw_env)
    1075         108 :             WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
    1076         108 :             mpi_io = .TRUE.
    1077             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MO_CUBES", extension=".cube", &
    1078             :                                            middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
    1079         108 :                                            mpi_io=mpi_io)
    1080         108 :             WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. HOMO - ", ivector - homo
    1081             :             CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1082         108 :                                stride=section_get_ivals(dft_section, "PRINT%MO_CUBES%STRIDE"), mpi_io=mpi_io)
    1083         212 :             CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MO_CUBES", mpi_io=mpi_io)
    1084             :          END DO
    1085         104 :          IF (ASSOCIATED(list_index)) DEALLOCATE (list_index)
    1086             :       END IF
    1087             : 
    1088         142 :       CALL timestop(handle)
    1089             : 
    1090         142 :    END SUBROUTINE qs_scf_post_occ_cubes
    1091             : 
    1092             : ! **************************************************************************************************
    1093             : !> \brief Computes and prints the Cube Files for MO
    1094             : !> \param input ...
    1095             : !> \param dft_section ...
    1096             : !> \param dft_control ...
    1097             : !> \param logger ...
    1098             : !> \param qs_env the qs_env in which the qs_env lives
    1099             : !> \param unoccupied_orbs ...
    1100             : !> \param wf_g ...
    1101             : !> \param wf_r ...
    1102             : !> \param particles ...
    1103             : !> \param nlumos ...
    1104             : !> \param homo ...
    1105             : !> \param ispin ...
    1106             : !> \param lumo ...
    1107             : ! **************************************************************************************************
    1108         142 :    SUBROUTINE qs_scf_post_unocc_cubes(input, dft_section, dft_control, logger, qs_env, &
    1109             :                                       unoccupied_orbs, wf_g, wf_r, particles, nlumos, homo, ispin, lumo)
    1110             : 
    1111             :       TYPE(section_vals_type), POINTER                   :: input, dft_section
    1112             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1113             :       TYPE(cp_logger_type), POINTER                      :: logger
    1114             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1115             :       TYPE(cp_fm_type), INTENT(IN)                       :: unoccupied_orbs
    1116             :       TYPE(pw_c1d_gs_type), INTENT(INOUT)                :: wf_g
    1117             :       TYPE(pw_r3d_rs_type), INTENT(INOUT)                :: wf_r
    1118             :       TYPE(particle_list_type), POINTER                  :: particles
    1119             :       INTEGER, INTENT(IN)                                :: nlumos, homo, ispin
    1120             :       INTEGER, INTENT(IN), OPTIONAL                      :: lumo
    1121             : 
    1122             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_unocc_cubes'
    1123             : 
    1124             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube, title
    1125             :       INTEGER                                            :: handle, ifirst, index_mo, ivector, &
    1126             :                                                             unit_nr
    1127             :       LOGICAL                                            :: append_cube, mpi_io
    1128         142 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1129             :       TYPE(cell_type), POINTER                           :: cell
    1130         142 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1131             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1132         142 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1133             : 
    1134         142 :       CALL timeset(routineN, handle)
    1135             : 
    1136             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%MO_CUBES"), cp_p_file) &
    1137         142 :           .AND. section_get_lval(dft_section, "PRINT%MO_CUBES%WRITE_CUBE")) THEN
    1138         104 :          NULLIFY (qs_kind_set, particle_set, pw_env, cell)
    1139         104 :          append_cube = section_get_lval(dft_section, "PRINT%MO_CUBES%APPEND")
    1140         104 :          my_pos_cube = "REWIND"
    1141         104 :          IF (append_cube) THEN
    1142           0 :             my_pos_cube = "APPEND"
    1143             :          END IF
    1144         104 :          ifirst = 1
    1145         104 :          IF (PRESENT(lumo)) ifirst = lumo
    1146         242 :          DO ivector = ifirst, ifirst + nlumos - 1
    1147             :             CALL get_qs_env(qs_env=qs_env, &
    1148             :                             atomic_kind_set=atomic_kind_set, &
    1149             :                             qs_kind_set=qs_kind_set, &
    1150             :                             cell=cell, &
    1151             :                             particle_set=particle_set, &
    1152         138 :                             pw_env=pw_env)
    1153             :             CALL calculate_wavefunction(unoccupied_orbs, ivector, wf_r, wf_g, atomic_kind_set, &
    1154         138 :                                         qs_kind_set, cell, dft_control, particle_set, pw_env)
    1155             : 
    1156         138 :             IF (ifirst == 1) THEN
    1157         130 :                index_mo = homo + ivector
    1158             :             ELSE
    1159           8 :                index_mo = ivector
    1160             :             END IF
    1161         138 :             WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", index_mo, "_", ispin
    1162         138 :             mpi_io = .TRUE.
    1163             : 
    1164             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MO_CUBES", extension=".cube", &
    1165             :                                            middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
    1166         138 :                                            mpi_io=mpi_io)
    1167         138 :             WRITE (title, *) "WAVEFUNCTION ", index_mo, " spin ", ispin, " i.e. LUMO + ", ifirst + ivector - 2
    1168             :             CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1169         138 :                                stride=section_get_ivals(dft_section, "PRINT%MO_CUBES%STRIDE"), mpi_io=mpi_io)
    1170         242 :             CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MO_CUBES", mpi_io=mpi_io)
    1171             :          END DO
    1172             :       END IF
    1173             : 
    1174         142 :       CALL timestop(handle)
    1175             : 
    1176         142 :    END SUBROUTINE qs_scf_post_unocc_cubes
    1177             : 
    1178             : ! **************************************************************************************************
    1179             : !> \brief Computes and prints electric moments
    1180             : !> \param input ...
    1181             : !> \param logger ...
    1182             : !> \param qs_env the qs_env in which the qs_env lives
    1183             : !> \param output_unit ...
    1184             : ! **************************************************************************************************
    1185       10991 :    SUBROUTINE qs_scf_post_moments(input, logger, qs_env, output_unit)
    1186             :       TYPE(section_vals_type), POINTER                   :: input
    1187             :       TYPE(cp_logger_type), POINTER                      :: logger
    1188             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1189             :       INTEGER, INTENT(IN)                                :: output_unit
    1190             : 
    1191             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_moments'
    1192             : 
    1193             :       CHARACTER(LEN=default_path_length)                 :: filename
    1194             :       INTEGER                                            :: handle, maxmom, reference, unit_nr
    1195             :       LOGICAL                                            :: com_nl, do_kpoints, magnetic, periodic, &
    1196             :                                                             second_ref_point, vel_reprs
    1197       10991 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ref_point
    1198             :       TYPE(section_vals_type), POINTER                   :: print_key
    1199             : 
    1200       10991 :       CALL timeset(routineN, handle)
    1201             : 
    1202             :       print_key => section_vals_get_subs_vals(section_vals=input, &
    1203       10991 :                                               subsection_name="DFT%PRINT%MOMENTS")
    1204             : 
    1205       10991 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    1206             : 
    1207             :          maxmom = section_get_ival(section_vals=input, &
    1208        1270 :                                    keyword_name="DFT%PRINT%MOMENTS%MAX_MOMENT")
    1209             :          periodic = section_get_lval(section_vals=input, &
    1210        1270 :                                      keyword_name="DFT%PRINT%MOMENTS%PERIODIC")
    1211             :          reference = section_get_ival(section_vals=input, &
    1212        1270 :                                       keyword_name="DFT%PRINT%MOMENTS%REFERENCE")
    1213             :          magnetic = section_get_lval(section_vals=input, &
    1214        1270 :                                      keyword_name="DFT%PRINT%MOMENTS%MAGNETIC")
    1215             :          vel_reprs = section_get_lval(section_vals=input, &
    1216        1270 :                                       keyword_name="DFT%PRINT%MOMENTS%VEL_REPRS")
    1217             :          com_nl = section_get_lval(section_vals=input, &
    1218        1270 :                                    keyword_name="DFT%PRINT%MOMENTS%COM_NL")
    1219             :          second_ref_point = section_get_lval(section_vals=input, &
    1220        1270 :                                              keyword_name="DFT%PRINT%MOMENTS%SECOND_REFERENCE_POINT")
    1221             : 
    1222        1270 :          NULLIFY (ref_point)
    1223        1270 :          CALL section_vals_val_get(input, "DFT%PRINT%MOMENTS%REF_POINT", r_vals=ref_point)
    1224             :          unit_nr = cp_print_key_unit_nr(logger=logger, basis_section=input, &
    1225             :                                         print_key_path="DFT%PRINT%MOMENTS", extension=".dat", &
    1226        1270 :                                         middle_name="moments", log_filename=.FALSE.)
    1227             : 
    1228        1270 :          IF (output_unit > 0) THEN
    1229         645 :             IF (unit_nr /= output_unit) THEN
    1230          33 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1231             :                WRITE (UNIT=output_unit, FMT="(/,T2,A,2(/,T3,A),/)") &
    1232          33 :                   "MOMENTS", "The electric/magnetic moments are written to file:", &
    1233          66 :                   TRIM(filename)
    1234             :             ELSE
    1235         612 :                WRITE (UNIT=output_unit, FMT="(/,T2,A)") "ELECTRIC/MAGNETIC MOMENTS"
    1236             :             END IF
    1237             :          END IF
    1238             : 
    1239        1270 :          CALL get_qs_env(qs_env, do_kpoints=do_kpoints)
    1240             : 
    1241        1270 :          IF (do_kpoints) THEN
    1242           2 :             CPWARN("Moments not implemented for k-point calculations!")
    1243             :          ELSE
    1244        1268 :             IF (periodic) THEN
    1245         472 :                CALL qs_moment_berry_phase(qs_env, magnetic, maxmom, reference, ref_point, unit_nr)
    1246             :             ELSE
    1247         796 :                CALL qs_moment_locop(qs_env, magnetic, maxmom, reference, ref_point, unit_nr, vel_reprs, com_nl)
    1248             :             END IF
    1249             :          END IF
    1250             : 
    1251             :          CALL cp_print_key_finished_output(unit_nr=unit_nr, logger=logger, &
    1252        1270 :                                            basis_section=input, print_key_path="DFT%PRINT%MOMENTS")
    1253             : 
    1254        1270 :          IF (second_ref_point) THEN
    1255             :             reference = section_get_ival(section_vals=input, &
    1256           0 :                                          keyword_name="DFT%PRINT%MOMENTS%REFERENCE_2")
    1257             : 
    1258           0 :             NULLIFY (ref_point)
    1259           0 :             CALL section_vals_val_get(input, "DFT%PRINT%MOMENTS%REF_POINT_2", r_vals=ref_point)
    1260             :             unit_nr = cp_print_key_unit_nr(logger=logger, basis_section=input, &
    1261             :                                            print_key_path="DFT%PRINT%MOMENTS", extension=".dat", &
    1262           0 :                                            middle_name="moments_refpoint_2", log_filename=.FALSE.)
    1263             : 
    1264           0 :             IF (output_unit > 0) THEN
    1265           0 :                IF (unit_nr /= output_unit) THEN
    1266           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    1267             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,2(/,T3,A),/)") &
    1268           0 :                      "MOMENTS", "The electric/magnetic moments for the second reference point are written to file:", &
    1269           0 :                      TRIM(filename)
    1270             :                ELSE
    1271           0 :                   WRITE (UNIT=output_unit, FMT="(/,T2,A)") "ELECTRIC/MAGNETIC MOMENTS"
    1272             :                END IF
    1273             :             END IF
    1274           0 :             IF (do_kpoints) THEN
    1275           0 :                CPWARN("Moments not implemented for k-point calculations!")
    1276             :             ELSE
    1277           0 :                IF (periodic) THEN
    1278           0 :                   CALL qs_moment_berry_phase(qs_env, magnetic, maxmom, reference, ref_point, unit_nr)
    1279             :                ELSE
    1280           0 :                   CALL qs_moment_locop(qs_env, magnetic, maxmom, reference, ref_point, unit_nr, vel_reprs, com_nl)
    1281             :                END IF
    1282             :             END IF
    1283             :             CALL cp_print_key_finished_output(unit_nr=unit_nr, logger=logger, &
    1284           0 :                                               basis_section=input, print_key_path="DFT%PRINT%MOMENTS")
    1285             :          END IF
    1286             : 
    1287             :       END IF
    1288             : 
    1289       10991 :       CALL timestop(handle)
    1290             : 
    1291       10991 :    END SUBROUTINE qs_scf_post_moments
    1292             : 
    1293             : ! **************************************************************************************************
    1294             : !> \brief Computes and prints the X-ray diffraction spectrum.
    1295             : !> \param input ...
    1296             : !> \param dft_section ...
    1297             : !> \param logger ...
    1298             : !> \param qs_env the qs_env in which the qs_env lives
    1299             : !> \param output_unit ...
    1300             : ! **************************************************************************************************
    1301        9805 :    SUBROUTINE qs_scf_post_xray(input, dft_section, logger, qs_env, output_unit)
    1302             : 
    1303             :       TYPE(section_vals_type), POINTER                   :: input, dft_section
    1304             :       TYPE(cp_logger_type), POINTER                      :: logger
    1305             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1306             :       INTEGER, INTENT(IN)                                :: output_unit
    1307             : 
    1308             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'qs_scf_post_xray'
    1309             : 
    1310             :       CHARACTER(LEN=default_path_length)                 :: filename
    1311             :       INTEGER                                            :: handle, unit_nr
    1312             :       REAL(KIND=dp)                                      :: q_max
    1313             :       TYPE(section_vals_type), POINTER                   :: print_key
    1314             : 
    1315        9805 :       CALL timeset(routineN, handle)
    1316             : 
    1317             :       print_key => section_vals_get_subs_vals(section_vals=input, &
    1318        9805 :                                               subsection_name="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM")
    1319             : 
    1320        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    1321             :          q_max = section_get_rval(section_vals=dft_section, &
    1322          30 :                                   keyword_name="PRINT%XRAY_DIFFRACTION_SPECTRUM%Q_MAX")
    1323             :          unit_nr = cp_print_key_unit_nr(logger=logger, &
    1324             :                                         basis_section=input, &
    1325             :                                         print_key_path="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM", &
    1326             :                                         extension=".dat", &
    1327             :                                         middle_name="xrd", &
    1328          30 :                                         log_filename=.FALSE.)
    1329          30 :          IF (output_unit > 0) THEN
    1330          15 :             INQUIRE (UNIT=unit_nr, NAME=filename)
    1331             :             WRITE (UNIT=output_unit, FMT="(/,/,T2,A)") &
    1332          15 :                "X-RAY DIFFRACTION SPECTRUM"
    1333          15 :             IF (unit_nr /= output_unit) THEN
    1334             :                WRITE (UNIT=output_unit, FMT="(/,T3,A,/,/,T3,A,/)") &
    1335          14 :                   "The coherent X-ray diffraction spectrum is written to the file:", &
    1336          28 :                   TRIM(filename)
    1337             :             END IF
    1338             :          END IF
    1339             :          CALL xray_diffraction_spectrum(qs_env=qs_env, &
    1340             :                                         unit_number=unit_nr, &
    1341          30 :                                         q_max=q_max)
    1342             :          CALL cp_print_key_finished_output(unit_nr=unit_nr, &
    1343             :                                            logger=logger, &
    1344             :                                            basis_section=input, &
    1345          30 :                                            print_key_path="DFT%PRINT%XRAY_DIFFRACTION_SPECTRUM")
    1346             :       END IF
    1347             : 
    1348        9805 :       CALL timestop(handle)
    1349             : 
    1350        9805 :    END SUBROUTINE qs_scf_post_xray
    1351             : 
    1352             : ! **************************************************************************************************
    1353             : !> \brief Computes and prints Electric Field Gradient
    1354             : !> \param input ...
    1355             : !> \param logger ...
    1356             : !> \param qs_env the qs_env in which the qs_env lives
    1357             : ! **************************************************************************************************
    1358        9805 :    SUBROUTINE qs_scf_post_efg(input, logger, qs_env)
    1359             :       TYPE(section_vals_type), POINTER                   :: input
    1360             :       TYPE(cp_logger_type), POINTER                      :: logger
    1361             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1362             : 
    1363             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_scf_post_efg'
    1364             : 
    1365             :       INTEGER                                            :: handle
    1366             :       TYPE(section_vals_type), POINTER                   :: print_key
    1367             : 
    1368        9805 :       CALL timeset(routineN, handle)
    1369             : 
    1370             :       print_key => section_vals_get_subs_vals(section_vals=input, &
    1371        9805 :                                               subsection_name="DFT%PRINT%ELECTRIC_FIELD_GRADIENT")
    1372        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
    1373             :                 cp_p_file)) THEN
    1374          30 :          CALL qs_efg_calc(qs_env=qs_env)
    1375             :       END IF
    1376             : 
    1377        9805 :       CALL timestop(handle)
    1378             : 
    1379        9805 :    END SUBROUTINE qs_scf_post_efg
    1380             : 
    1381             : ! **************************************************************************************************
    1382             : !> \brief Computes the Electron Transfer Coupling matrix element
    1383             : !> \param input ...
    1384             : !> \param qs_env the qs_env in which the qs_env lives
    1385             : !> \param dft_control ...
    1386             : ! **************************************************************************************************
    1387       19610 :    SUBROUTINE qs_scf_post_et(input, qs_env, dft_control)
    1388             :       TYPE(section_vals_type), POINTER                   :: input
    1389             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1390             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1391             : 
    1392             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_scf_post_et'
    1393             : 
    1394             :       INTEGER                                            :: handle, ispin
    1395             :       LOGICAL                                            :: do_et
    1396        9805 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: my_mos
    1397             :       TYPE(section_vals_type), POINTER                   :: et_section
    1398             : 
    1399        9805 :       CALL timeset(routineN, handle)
    1400             : 
    1401             :       do_et = .FALSE.
    1402        9805 :       et_section => section_vals_get_subs_vals(input, "PROPERTIES%ET_COUPLING")
    1403        9805 :       CALL section_vals_get(et_section, explicit=do_et)
    1404        9805 :       IF (do_et) THEN
    1405          10 :          IF (qs_env%et_coupling%first_run) THEN
    1406          10 :             NULLIFY (my_mos)
    1407          50 :             ALLOCATE (my_mos(dft_control%nspins))
    1408          50 :             ALLOCATE (qs_env%et_coupling%et_mo_coeff(dft_control%nspins))
    1409          30 :             DO ispin = 1, dft_control%nspins
    1410             :                CALL cp_fm_create(matrix=my_mos(ispin), &
    1411             :                                  matrix_struct=qs_env%mos(ispin)%mo_coeff%matrix_struct, &
    1412          20 :                                  name="FIRST_RUN_COEFF"//TRIM(ADJUSTL(cp_to_string(ispin)))//"MATRIX")
    1413             :                CALL cp_fm_to_fm(qs_env%mos(ispin)%mo_coeff, &
    1414          30 :                                 my_mos(ispin))
    1415             :             END DO
    1416          10 :             CALL set_et_coupling_type(qs_env%et_coupling, et_mo_coeff=my_mos)
    1417          10 :             DEALLOCATE (my_mos)
    1418             :          END IF
    1419             :       END IF
    1420             : 
    1421        9805 :       CALL timestop(handle)
    1422             : 
    1423        9805 :    END SUBROUTINE qs_scf_post_et
    1424             : 
    1425             : ! **************************************************************************************************
    1426             : !> \brief compute the electron localization function
    1427             : !>
    1428             : !> \param input ...
    1429             : !> \param logger ...
    1430             : !> \param qs_env ...
    1431             : !> \par History
    1432             : !>      2012-07 Created [MI]
    1433             : ! **************************************************************************************************
    1434        9805 :    SUBROUTINE qs_scf_post_elf(input, logger, qs_env)
    1435             :       TYPE(section_vals_type), POINTER                   :: input
    1436             :       TYPE(cp_logger_type), POINTER                      :: logger
    1437             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1438             : 
    1439             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_scf_post_elf'
    1440             : 
    1441             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube, &
    1442             :                                                             title
    1443             :       INTEGER                                            :: handle, ispin, output_unit, unit_nr
    1444             :       LOGICAL                                            :: append_cube, gapw, mpi_io
    1445             :       REAL(dp)                                           :: rho_cutoff
    1446             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1447             :       TYPE(particle_list_type), POINTER                  :: particles
    1448             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1449        9805 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1450             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1451        9805 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: elf_r
    1452             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1453             :       TYPE(section_vals_type), POINTER                   :: elf_section
    1454             : 
    1455        9805 :       CALL timeset(routineN, handle)
    1456        9805 :       output_unit = cp_logger_get_default_io_unit(logger)
    1457             : 
    1458        9805 :       elf_section => section_vals_get_subs_vals(input, "DFT%PRINT%ELF_CUBE")
    1459        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    1460             :                                            "DFT%PRINT%ELF_CUBE"), cp_p_file)) THEN
    1461             : 
    1462          80 :          NULLIFY (dft_control, pw_env, auxbas_pw_pool, pw_pools, particles, subsys)
    1463          80 :          CALL get_qs_env(qs_env, dft_control=dft_control, pw_env=pw_env, subsys=subsys)
    1464          80 :          CALL qs_subsys_get(subsys, particles=particles)
    1465             : 
    1466          80 :          gapw = dft_control%qs_control%gapw
    1467          80 :          IF (.NOT. gapw) THEN
    1468             :             ! allocate
    1469         322 :             ALLOCATE (elf_r(dft_control%nspins))
    1470             :             CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
    1471          80 :                             pw_pools=pw_pools)
    1472         162 :             DO ispin = 1, dft_control%nspins
    1473          82 :                CALL auxbas_pw_pool%create_pw(elf_r(ispin))
    1474         162 :                CALL pw_zero(elf_r(ispin))
    1475             :             END DO
    1476             : 
    1477          80 :             IF (output_unit > 0) THEN
    1478             :                WRITE (UNIT=output_unit, FMT="(/,T15,A,/)") &
    1479          40 :                   " ----- ELF is computed on the real space grid -----"
    1480             :             END IF
    1481          80 :             rho_cutoff = section_get_rval(elf_section, "density_cutoff")
    1482          80 :             CALL qs_elf_calc(qs_env, elf_r, rho_cutoff)
    1483             : 
    1484             :             ! write ELF into cube file
    1485          80 :             append_cube = section_get_lval(elf_section, "APPEND")
    1486          80 :             my_pos_cube = "REWIND"
    1487          80 :             IF (append_cube) THEN
    1488           0 :                my_pos_cube = "APPEND"
    1489             :             END IF
    1490             : 
    1491         162 :             DO ispin = 1, dft_control%nspins
    1492          82 :                WRITE (filename, '(a5,I1.1)') "ELF_S", ispin
    1493          82 :                WRITE (title, *) "ELF spin ", ispin
    1494          82 :                mpi_io = .TRUE.
    1495             :                unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%ELF_CUBE", extension=".cube", &
    1496             :                                               middle_name=TRIM(filename), file_position=my_pos_cube, log_filename=.FALSE., &
    1497          82 :                                               mpi_io=mpi_io, fout=mpi_filename)
    1498          82 :                IF (output_unit > 0) THEN
    1499          41 :                   IF (.NOT. mpi_io) THEN
    1500           0 :                      INQUIRE (UNIT=unit_nr, NAME=filename)
    1501             :                   ELSE
    1502          41 :                      filename = mpi_filename
    1503             :                   END IF
    1504             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    1505          41 :                      "ELF is written in cube file format to the file:", &
    1506          82 :                      TRIM(filename)
    1507             :                END IF
    1508             : 
    1509             :                CALL cp_pw_to_cube(elf_r(ispin), unit_nr, title, particles=particles, &
    1510          82 :                                   stride=section_get_ivals(elf_section, "STRIDE"), mpi_io=mpi_io)
    1511          82 :                CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%ELF_CUBE", mpi_io=mpi_io)
    1512             : 
    1513         162 :                CALL auxbas_pw_pool%give_back_pw(elf_r(ispin))
    1514             :             END DO
    1515             : 
    1516             :             ! deallocate
    1517          80 :             DEALLOCATE (elf_r)
    1518             : 
    1519             :          ELSE
    1520             :             ! not implemented
    1521           0 :             CPWARN("ELF not implemented for GAPW calculations!")
    1522             :          END IF
    1523             : 
    1524             :       END IF ! print key
    1525             : 
    1526        9805 :       CALL timestop(handle)
    1527             : 
    1528       19610 :    END SUBROUTINE qs_scf_post_elf
    1529             : 
    1530             : ! **************************************************************************************************
    1531             : !> \brief computes the condition number of the overlap matrix and
    1532             : !>      prints the value of the total energy. This is needed
    1533             : !>      for BASIS_MOLOPT optimizations
    1534             : !> \param input ...
    1535             : !> \param logger ...
    1536             : !> \param qs_env the qs_env in which the qs_env lives
    1537             : !> \par History
    1538             : !>      2007-07 Created [Joost VandeVondele]
    1539             : ! **************************************************************************************************
    1540        9805 :    SUBROUTINE qs_scf_post_molopt(input, logger, qs_env)
    1541             :       TYPE(section_vals_type), POINTER                   :: input
    1542             :       TYPE(cp_logger_type), POINTER                      :: logger
    1543             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1544             : 
    1545             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_molopt'
    1546             : 
    1547             :       INTEGER                                            :: handle, nao, unit_nr
    1548             :       REAL(KIND=dp)                                      :: S_cond_number
    1549        9805 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eigenvalues
    1550             :       TYPE(cp_fm_struct_type), POINTER                   :: ao_ao_fmstruct
    1551             :       TYPE(cp_fm_type)                                   :: fm_s, fm_work
    1552             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1553        9805 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1554        9805 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    1555             :       TYPE(qs_energy_type), POINTER                      :: energy
    1556             :       TYPE(section_vals_type), POINTER                   :: print_key
    1557             : 
    1558        9805 :       CALL timeset(routineN, handle)
    1559             : 
    1560             :       print_key => section_vals_get_subs_vals(section_vals=input, &
    1561        9805 :                                               subsection_name="DFT%PRINT%BASIS_MOLOPT_QUANTITIES")
    1562        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
    1563             :                 cp_p_file)) THEN
    1564             : 
    1565          28 :          CALL get_qs_env(qs_env, energy=energy, matrix_s=matrix_s, mos=mos)
    1566             : 
    1567             :          ! set up the two needed full matrices, using mo_coeff as a template
    1568          28 :          CALL get_mo_set(mo_set=mos(1), mo_coeff=mo_coeff, nao=nao)
    1569             :          CALL cp_fm_struct_create(fmstruct=ao_ao_fmstruct, &
    1570             :                                   nrow_global=nao, ncol_global=nao, &
    1571          28 :                                   template_fmstruct=mo_coeff%matrix_struct)
    1572             :          CALL cp_fm_create(fm_s, matrix_struct=ao_ao_fmstruct, &
    1573          28 :                            name="fm_s")
    1574             :          CALL cp_fm_create(fm_work, matrix_struct=ao_ao_fmstruct, &
    1575          28 :                            name="fm_work")
    1576          28 :          CALL cp_fm_struct_release(ao_ao_fmstruct)
    1577          84 :          ALLOCATE (eigenvalues(nao))
    1578             : 
    1579          28 :          CALL copy_dbcsr_to_fm(matrix_s(1)%matrix, fm_s)
    1580          28 :          CALL choose_eigv_solver(fm_s, fm_work, eigenvalues)
    1581             : 
    1582          28 :          CALL cp_fm_release(fm_s)
    1583          28 :          CALL cp_fm_release(fm_work)
    1584             : 
    1585        1048 :          S_cond_number = MAXVAL(ABS(eigenvalues))/MAX(MINVAL(ABS(eigenvalues)), EPSILON(0.0_dp))
    1586             : 
    1587             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%BASIS_MOLOPT_QUANTITIES", &
    1588          28 :                                         extension=".molopt")
    1589             : 
    1590          28 :          IF (unit_nr > 0) THEN
    1591             :             ! please keep this format fixed, needs to be grepable for molopt
    1592             :             ! optimizations
    1593          14 :             WRITE (unit_nr, '(T2,A28,2A25)') "", "Tot. Ener.", "S Cond. Numb."
    1594          14 :             WRITE (unit_nr, '(T2,A28,2E25.17)') "BASIS_MOLOPT_QUANTITIES", energy%total, S_cond_number
    1595             :          END IF
    1596             : 
    1597             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    1598          84 :                                            "DFT%PRINT%BASIS_MOLOPT_QUANTITIES")
    1599             : 
    1600             :       END IF
    1601             : 
    1602        9805 :       CALL timestop(handle)
    1603             : 
    1604       19610 :    END SUBROUTINE qs_scf_post_molopt
    1605             : 
    1606             : ! **************************************************************************************************
    1607             : !> \brief Dumps EPR
    1608             : !> \param input ...
    1609             : !> \param logger ...
    1610             : !> \param qs_env the qs_env in which the qs_env lives
    1611             : ! **************************************************************************************************
    1612        9805 :    SUBROUTINE qs_scf_post_epr(input, logger, qs_env)
    1613             :       TYPE(section_vals_type), POINTER                   :: input
    1614             :       TYPE(cp_logger_type), POINTER                      :: logger
    1615             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1616             : 
    1617             :       CHARACTER(len=*), PARAMETER                        :: routineN = 'qs_scf_post_epr'
    1618             : 
    1619             :       INTEGER                                            :: handle
    1620             :       TYPE(section_vals_type), POINTER                   :: print_key
    1621             : 
    1622        9805 :       CALL timeset(routineN, handle)
    1623             : 
    1624             :       print_key => section_vals_get_subs_vals(section_vals=input, &
    1625        9805 :                                               subsection_name="DFT%PRINT%HYPERFINE_COUPLING_TENSOR")
    1626        9805 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), &
    1627             :                 cp_p_file)) THEN
    1628          30 :          CALL qs_epr_hyp_calc(qs_env=qs_env)
    1629             :       END IF
    1630             : 
    1631        9805 :       CALL timestop(handle)
    1632             : 
    1633        9805 :    END SUBROUTINE qs_scf_post_epr
    1634             : 
    1635             : ! **************************************************************************************************
    1636             : !> \brief Interface routine to trigger writing of results available from normal
    1637             : !>        SCF. Can write MO-dependent and MO free results (needed for call from
    1638             : !>        the linear scaling code)
    1639             : !> \param qs_env the qs_env in which the qs_env lives
    1640             : !> \param scf_env ...
    1641             : ! **************************************************************************************************
    1642        9805 :    SUBROUTINE write_available_results(qs_env, scf_env)
    1643             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1644             :       TYPE(qs_scf_env_type), OPTIONAL, POINTER           :: scf_env
    1645             : 
    1646             :       CHARACTER(len=*), PARAMETER :: routineN = 'write_available_results'
    1647             : 
    1648             :       INTEGER                                            :: handle
    1649             : 
    1650        9805 :       CALL timeset(routineN, handle)
    1651             : 
    1652             :       ! those properties that require MOs (not suitable density matrix based methods)
    1653        9805 :       CALL write_mo_dependent_results(qs_env, scf_env)
    1654             : 
    1655             :       ! those that depend only on the density matrix, they should be linear scaling in their implementation
    1656        9805 :       CALL write_mo_free_results(qs_env)
    1657             : 
    1658        9805 :       CALL timestop(handle)
    1659             : 
    1660        9805 :    END SUBROUTINE write_available_results
    1661             : 
    1662             : ! **************************************************************************************************
    1663             : !> \brief Write QS results available if MO's are present (if switched on through the print_keys)
    1664             : !>        Writes only MO dependent results. Split is necessary as ls_scf does not
    1665             : !>        provide MO's
    1666             : !> \param qs_env the qs_env in which the qs_env lives
    1667             : !> \param scf_env ...
    1668             : ! **************************************************************************************************
    1669       10117 :    SUBROUTINE write_mo_dependent_results(qs_env, scf_env)
    1670             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1671             :       TYPE(qs_scf_env_type), OPTIONAL, POINTER           :: scf_env
    1672             : 
    1673             :       CHARACTER(len=*), PARAMETER :: routineN = 'write_mo_dependent_results'
    1674             : 
    1675             :       INTEGER                                            :: handle, homo, ispin, nmo, output_unit
    1676             :       LOGICAL                                            :: all_equal, do_kpoints, explicit
    1677             :       REAL(KIND=dp)                                      :: maxocc, s_square, s_square_ideal, &
    1678             :                                                             total_abs_spin_dens, total_spin_dens
    1679       10117 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues, occupation_numbers
    1680             :       TYPE(admm_type), POINTER                           :: admm_env
    1681       10117 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1682             :       TYPE(cell_type), POINTER                           :: cell
    1683             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1684             :       TYPE(cp_logger_type), POINTER                      :: logger
    1685       10117 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, matrix_s
    1686             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_deriv
    1687             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1688       10117 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    1689       10117 :       TYPE(molecule_type), POINTER                       :: molecule_set(:)
    1690             :       TYPE(particle_list_type), POINTER                  :: particles
    1691       10117 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1692             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1693       10117 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1694             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1695             :       TYPE(pw_r3d_rs_type)                               :: wf_r
    1696       10117 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1697             :       TYPE(qs_energy_type), POINTER                      :: energy
    1698       10117 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1699             :       TYPE(qs_rho_type), POINTER                         :: rho
    1700             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1701             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1702             :       TYPE(section_vals_type), POINTER                   :: dft_section, input, sprint_section, &
    1703             :                                                             trexio_section
    1704             : 
    1705             : ! TYPE(kpoint_type), POINTER                         :: kpoints
    1706             : 
    1707       10117 :       CALL timeset(routineN, handle)
    1708             : 
    1709       10117 :       NULLIFY (cell, dft_control, pw_env, auxbas_pw_pool, pw_pools, mo_coeff, &
    1710       10117 :                mo_coeff_deriv, mo_eigenvalues, mos, atomic_kind_set, qs_kind_set, &
    1711       10117 :                particle_set, rho, ks_rmpv, matrix_s, scf_control, dft_section, &
    1712       10117 :                molecule_set, input, particles, subsys, rho_r)
    1713             : 
    1714       10117 :       logger => cp_get_default_logger()
    1715       10117 :       output_unit = cp_logger_get_default_io_unit(logger)
    1716             : 
    1717       10117 :       CPASSERT(ASSOCIATED(qs_env))
    1718             :       CALL get_qs_env(qs_env, &
    1719             :                       dft_control=dft_control, &
    1720             :                       molecule_set=molecule_set, &
    1721             :                       atomic_kind_set=atomic_kind_set, &
    1722             :                       particle_set=particle_set, &
    1723             :                       qs_kind_set=qs_kind_set, &
    1724             :                       admm_env=admm_env, &
    1725             :                       scf_control=scf_control, &
    1726             :                       input=input, &
    1727             :                       cell=cell, &
    1728       10117 :                       subsys=subsys)
    1729       10117 :       CALL qs_subsys_get(subsys, particles=particles)
    1730       10117 :       CALL get_qs_env(qs_env, rho=rho)
    1731       10117 :       CALL qs_rho_get(rho, rho_r=rho_r)
    1732             : 
    1733             :       ! k points
    1734       10117 :       CALL get_qs_env(qs_env, do_kpoints=do_kpoints)
    1735             : 
    1736             :       ! Write last MO information to output file if requested
    1737       10117 :       dft_section => section_vals_get_subs_vals(input, "DFT")
    1738       10117 :       IF (.NOT. qs_env%run_rtp) THEN
    1739        9805 :          CALL qs_scf_write_mos(qs_env, scf_env, final_mos=.TRUE.)
    1740        9805 :          trexio_section => section_vals_get_subs_vals(dft_section, "PRINT%TREXIO")
    1741        9805 :          CALL section_vals_get(trexio_section, explicit=explicit)
    1742        9805 :          IF (explicit) THEN
    1743           8 :             CALL write_trexio(qs_env, trexio_section)
    1744             :          END IF
    1745        9805 :          IF (.NOT. do_kpoints) THEN
    1746        9595 :             CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv)
    1747        9595 :             CALL write_dm_binary_restart(mos, dft_section, ks_rmpv)
    1748        9595 :             sprint_section => section_vals_get_subs_vals(dft_section, "PRINT%MO_MOLDEN")
    1749        9595 :             CALL write_mos_molden(mos, qs_kind_set, particle_set, sprint_section)
    1750             :             ! Write Chargemol .wfx
    1751        9595 :             IF (BTEST(cp_print_key_should_output(logger%iter_info, &
    1752             :                                                  dft_section, "PRINT%CHARGEMOL"), &
    1753             :                       cp_p_file)) THEN
    1754           2 :                CALL write_wfx(qs_env, dft_section)
    1755             :             END IF
    1756             :          END IF
    1757             : 
    1758             :          ! DOS printout after the SCF cycle is completed
    1759        9805 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%DOS") &
    1760             :                    , cp_p_file)) THEN
    1761          42 :             IF (do_kpoints) THEN
    1762           2 :                CALL calculate_dos_kp(qs_env, dft_section)
    1763             :             ELSE
    1764          40 :                CALL get_qs_env(qs_env, mos=mos)
    1765          40 :                CALL calculate_dos(mos, dft_section)
    1766             :             END IF
    1767             :          END IF
    1768             : 
    1769             :          ! Print the projected density of states (pDOS) for each atomic kind
    1770        9805 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, dft_section, "PRINT%PDOS"), &
    1771             :                    cp_p_file)) THEN
    1772          46 :             IF (do_kpoints) THEN
    1773           0 :                CPWARN("Projected density of states (pDOS) is not implemented for k points")
    1774             :             ELSE
    1775             :                CALL get_qs_env(qs_env, &
    1776             :                                mos=mos, &
    1777          46 :                                matrix_ks=ks_rmpv)
    1778          92 :                DO ispin = 1, dft_control%nspins
    1779             :                   ! With ADMM, we have to modify the Kohn-Sham matrix
    1780          46 :                   IF (dft_control%do_admm) THEN
    1781           0 :                      CALL admm_correct_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
    1782             :                   END IF
    1783          46 :                   IF (PRESENT(scf_env)) THEN
    1784          46 :                      IF (scf_env%method == ot_method_nr) THEN
    1785             :                         CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
    1786           8 :                                         eigenvalues=mo_eigenvalues)
    1787           8 :                         IF (ASSOCIATED(qs_env%mo_derivs)) THEN
    1788           8 :                            mo_coeff_deriv => qs_env%mo_derivs(ispin)%matrix
    1789             :                         ELSE
    1790           0 :                            mo_coeff_deriv => NULL()
    1791             :                         END IF
    1792             :                         CALL calculate_subspace_eigenvalues(mo_coeff, ks_rmpv(ispin)%matrix, mo_eigenvalues, &
    1793             :                                                             do_rotation=.TRUE., &
    1794           8 :                                                             co_rotate_dbcsr=mo_coeff_deriv)
    1795           8 :                         CALL set_mo_occupation(mo_set=mos(ispin))
    1796             :                      END IF
    1797             :                   END IF
    1798          46 :                   IF (dft_control%nspins == 2) THEN
    1799             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
    1800           0 :                                                   qs_kind_set, particle_set, qs_env, dft_section, ispin=ispin)
    1801             :                   ELSE
    1802             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
    1803          46 :                                                   qs_kind_set, particle_set, qs_env, dft_section)
    1804             :                   END IF
    1805             :                   ! With ADMM, we have to undo the modification of the Kohn-Sham matrix
    1806          92 :                   IF (dft_control%do_admm) THEN
    1807           0 :                      CALL admm_uncorrect_for_eigenvalues(ispin, admm_env, ks_rmpv(ispin)%matrix)
    1808             :                   END IF
    1809             :                END DO
    1810             :             END IF
    1811             :          END IF
    1812             :       END IF
    1813             : 
    1814             :       ! Integrated absolute spin density and spin contamination ***
    1815       10117 :       IF (dft_control%nspins == 2) THEN
    1816        1942 :          CALL get_qs_env(qs_env, mos=mos)
    1817        1942 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1818             :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
    1819        1942 :                          pw_pools=pw_pools)
    1820        1942 :          CALL auxbas_pw_pool%create_pw(wf_r)
    1821        1942 :          CALL pw_copy(rho_r(1), wf_r)
    1822        1942 :          CALL pw_axpy(rho_r(2), wf_r, alpha=-1._dp)
    1823        1942 :          total_spin_dens = pw_integrate_function(wf_r)
    1824        1942 :          IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='(/,(T3,A,T61,F20.10))') &
    1825         994 :             "Integrated spin density: ", total_spin_dens
    1826        1942 :          total_abs_spin_dens = pw_integrate_function(wf_r, oprt="ABS")
    1827        1942 :          IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='((T3,A,T61,F20.10))') &
    1828         994 :             "Integrated absolute spin density: ", total_abs_spin_dens
    1829        1942 :          CALL auxbas_pw_pool%give_back_pw(wf_r)
    1830             :          !
    1831             :          ! XXX Fix Me XXX
    1832             :          ! should be extended to the case where added MOs are present
    1833             :          ! should be extended to the k-point case
    1834             :          !
    1835        1942 :          IF (do_kpoints) THEN
    1836          28 :             CPWARN("Spin contamination estimate not implemented for k-points.")
    1837             :          ELSE
    1838        1914 :             all_equal = .TRUE.
    1839        5742 :             DO ispin = 1, dft_control%nspins
    1840             :                CALL get_mo_set(mo_set=mos(ispin), &
    1841             :                                occupation_numbers=occupation_numbers, &
    1842             :                                homo=homo, &
    1843             :                                nmo=nmo, &
    1844        3828 :                                maxocc=maxocc)
    1845        5742 :                IF (nmo > 0) THEN
    1846             :                   all_equal = all_equal .AND. &
    1847             :                               (ALL(occupation_numbers(1:homo) == maxocc) .AND. &
    1848       21830 :                                ALL(occupation_numbers(homo + 1:nmo) == 0.0_dp))
    1849             :                END IF
    1850             :             END DO
    1851        1914 :             IF (.NOT. all_equal) THEN
    1852         106 :                IF (output_unit > 0) WRITE (UNIT=output_unit, FMT="(T3,A)") &
    1853          53 :                   "WARNING: S**2 computation does not yet treat fractional occupied orbitals"
    1854             :             ELSE
    1855             :                CALL get_qs_env(qs_env=qs_env, &
    1856             :                                matrix_s=matrix_s, &
    1857        1808 :                                energy=energy)
    1858             :                CALL compute_s_square(mos=mos, matrix_s=matrix_s, s_square=s_square, &
    1859        1808 :                                      s_square_ideal=s_square_ideal)
    1860        1808 :                IF (output_unit > 0) WRITE (UNIT=output_unit, FMT='(T3,A,T51,2F15.6)') &
    1861         927 :                   "Ideal and single determinant S**2 : ", s_square_ideal, s_square
    1862        1808 :                energy%s_square = s_square
    1863             :             END IF
    1864             :          END IF
    1865             :       END IF
    1866             : 
    1867       10117 :       CALL timestop(handle)
    1868             : 
    1869       10117 :    END SUBROUTINE write_mo_dependent_results
    1870             : 
    1871             : ! **************************************************************************************************
    1872             : !> \brief Write QS results always available (if switched on through the print_keys)
    1873             : !>        Can be called from ls_scf
    1874             : !> \param qs_env the qs_env in which the qs_env lives
    1875             : ! **************************************************************************************************
    1876       11051 :    SUBROUTINE write_mo_free_results(qs_env)
    1877             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1878             : 
    1879             :       CHARACTER(len=*), PARAMETER :: routineN = 'write_mo_free_results'
    1880             :       CHARACTER(len=1), DIMENSION(3), PARAMETER          :: cdir = (/"x", "y", "z"/)
    1881             : 
    1882             :       CHARACTER(LEN=2)                                   :: element_symbol
    1883             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube, &
    1884             :                                                             my_pos_voro
    1885             :       CHARACTER(LEN=default_string_length)               :: name, print_density
    1886             :       INTEGER :: after, handle, i, iat, id, ikind, img, iso, ispin, iw, l, n_rep_hf, natom, nd(3), &
    1887             :          ngto, niso, nkind, np, nr, output_unit, print_level, should_print_bqb, should_print_voro, &
    1888             :          unit_nr, unit_nr_voro
    1889             :       LOGICAL :: append_cube, append_voro, do_hfx, do_kpoints, mpi_io, omit_headers, print_it, &
    1890             :          rho_r_valid, voro_print_txt, write_ks, write_xc, xrd_interface
    1891             :       REAL(KIND=dp)                                      :: norm_factor, q_max, rho_hard, rho_soft, &
    1892             :                                                             rho_total, rho_total_rspace, udvol, &
    1893             :                                                             volume
    1894       11051 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: bfun
    1895       11051 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: aedens, ccdens, ppdens
    1896             :       REAL(KIND=dp), DIMENSION(3)                        :: dr
    1897       11051 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: my_Q0
    1898       11051 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1899             :       TYPE(atomic_kind_type), POINTER                    :: atomic_kind
    1900             :       TYPE(cell_type), POINTER                           :: cell
    1901             :       TYPE(cp_logger_type), POINTER                      :: logger
    1902       11051 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hr
    1903       11051 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: ks_rmpv, matrix_vxc, rho_ao
    1904             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1905             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1906             :       TYPE(iao_env_type)                                 :: iao_env
    1907             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1908             :       TYPE(particle_list_type), POINTER                  :: particles
    1909       11051 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1910             :       TYPE(pw_c1d_gs_type)                               :: aux_g, rho_elec_gspace
    1911             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho0_s_gs, rho_core
    1912             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1913       11051 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1914             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1915             :       TYPE(pw_r3d_rs_type)                               :: aux_r, rho_elec_rspace, wf_r
    1916       11051 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1917             :       TYPE(pw_r3d_rs_type), POINTER                      :: mb_rho, v_hartree_rspace, vee
    1918       11051 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1919             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
    1920             :       TYPE(qs_rho_type), POINTER                         :: rho
    1921             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1922             :       TYPE(rho0_mpole_type), POINTER                     :: rho0_mpole
    1923       11051 :       TYPE(rho_atom_type), DIMENSION(:), POINTER         :: rho_atom_set
    1924             :       TYPE(rho_atom_type), POINTER                       :: rho_atom
    1925             :       TYPE(section_vals_type), POINTER                   :: dft_section, hfx_section, input, &
    1926             :                                                             print_key, print_key_bqb, &
    1927             :                                                             print_key_voro, xc_section
    1928             : 
    1929       11051 :       CALL timeset(routineN, handle)
    1930       11051 :       NULLIFY (cell, dft_control, pw_env, auxbas_pw_pool, pw_pools, hfx_section, &
    1931       11051 :                atomic_kind_set, qs_kind_set, particle_set, rho, ks_rmpv, rho_ao, rho_r, &
    1932       11051 :                dft_section, xc_section, input, particles, subsys, matrix_vxc, v_hartree_rspace, &
    1933       11051 :                vee)
    1934             : 
    1935       11051 :       logger => cp_get_default_logger()
    1936       11051 :       output_unit = cp_logger_get_default_io_unit(logger)
    1937             : 
    1938       11051 :       CPASSERT(ASSOCIATED(qs_env))
    1939             :       CALL get_qs_env(qs_env, &
    1940             :                       atomic_kind_set=atomic_kind_set, &
    1941             :                       qs_kind_set=qs_kind_set, &
    1942             :                       particle_set=particle_set, &
    1943             :                       cell=cell, &
    1944             :                       para_env=para_env, &
    1945             :                       dft_control=dft_control, &
    1946             :                       input=input, &
    1947             :                       do_kpoints=do_kpoints, &
    1948       11051 :                       subsys=subsys)
    1949       11051 :       dft_section => section_vals_get_subs_vals(input, "DFT")
    1950       11051 :       CALL qs_subsys_get(subsys, particles=particles)
    1951             : 
    1952       11051 :       CALL get_qs_env(qs_env, rho=rho)
    1953       11051 :       CALL qs_rho_get(rho, rho_r=rho_r)
    1954             : 
    1955             :       ! Print the total density (electronic + core charge)
    1956       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    1957             :                                            "DFT%PRINT%TOT_DENSITY_CUBE"), cp_p_file)) THEN
    1958          82 :          NULLIFY (rho_core, rho0_s_gs)
    1959          82 :          append_cube = section_get_lval(input, "DFT%PRINT%TOT_DENSITY_CUBE%APPEND")
    1960          82 :          my_pos_cube = "REWIND"
    1961          82 :          IF (append_cube) THEN
    1962           0 :             my_pos_cube = "APPEND"
    1963             :          END IF
    1964             : 
    1965             :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho_core=rho_core, &
    1966          82 :                          rho0_s_gs=rho0_s_gs)
    1967             :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
    1968          82 :                          pw_pools=pw_pools)
    1969          82 :          CALL auxbas_pw_pool%create_pw(wf_r)
    1970          82 :          IF (dft_control%qs_control%gapw) THEN
    1971           0 :             IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
    1972           0 :                CALL pw_axpy(rho_core, rho0_s_gs)
    1973           0 :                CALL pw_transfer(rho0_s_gs, wf_r)
    1974           0 :                CALL pw_axpy(rho_core, rho0_s_gs, -1.0_dp)
    1975             :             ELSE
    1976           0 :                CALL pw_transfer(rho0_s_gs, wf_r)
    1977             :             END IF
    1978             :          ELSE
    1979          82 :             CALL pw_transfer(rho_core, wf_r)
    1980             :          END IF
    1981         164 :          DO ispin = 1, dft_control%nspins
    1982         164 :             CALL pw_axpy(rho_r(ispin), wf_r)
    1983             :          END DO
    1984          82 :          filename = "TOTAL_DENSITY"
    1985          82 :          mpi_io = .TRUE.
    1986             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%TOT_DENSITY_CUBE", &
    1987             :                                         extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1988          82 :                                         log_filename=.FALSE., mpi_io=mpi_io)
    1989             :          CALL cp_pw_to_cube(wf_r, unit_nr, "TOTAL DENSITY", &
    1990             :                             particles=particles, &
    1991          82 :                             stride=section_get_ivals(dft_section, "PRINT%TOT_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    1992             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    1993          82 :                                            "DFT%PRINT%TOT_DENSITY_CUBE", mpi_io=mpi_io)
    1994          82 :          CALL auxbas_pw_pool%give_back_pw(wf_r)
    1995             :       END IF
    1996             : 
    1997             :       ! Write cube file with electron density
    1998       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    1999             :                                            "DFT%PRINT%E_DENSITY_CUBE"), cp_p_file)) THEN
    2000             :          CALL section_vals_val_get(dft_section, &
    2001             :                                    keyword_name="PRINT%E_DENSITY_CUBE%DENSITY_INCLUDE", &
    2002         150 :                                    c_val=print_density)
    2003             :          print_density = TRIM(print_density)
    2004         150 :          append_cube = section_get_lval(input, "DFT%PRINT%E_DENSITY_CUBE%APPEND")
    2005         150 :          my_pos_cube = "REWIND"
    2006         150 :          IF (append_cube) THEN
    2007           0 :             my_pos_cube = "APPEND"
    2008             :          END IF
    2009             :          ! Write the info on core densities for the interface between cp2k and the XRD code
    2010             :          ! together with the valence density they are used to compute the form factor (Fourier transform)
    2011         150 :          xrd_interface = section_get_lval(input, "DFT%PRINT%E_DENSITY_CUBE%XRD_INTERFACE")
    2012         150 :          IF (xrd_interface) THEN
    2013             :             !cube file only contains soft density (GAPW)
    2014           2 :             IF (dft_control%qs_control%gapw) print_density = "SOFT_DENSITY"
    2015             : 
    2016           2 :             filename = "ELECTRON_DENSITY"
    2017             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2018             :                                            extension=".xrd", middle_name=TRIM(filename), &
    2019           2 :                                            file_position=my_pos_cube, log_filename=.FALSE.)
    2020           2 :             ngto = section_get_ival(input, "DFT%PRINT%E_DENSITY_CUBE%NGAUSS")
    2021           2 :             IF (output_unit > 0) THEN
    2022           1 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    2023             :                WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2024           1 :                   "The electron density (atomic part) is written to the file:", &
    2025           2 :                   TRIM(filename)
    2026             :             END IF
    2027             : 
    2028           2 :             xc_section => section_vals_get_subs_vals(input, "DFT%XC")
    2029           2 :             nkind = SIZE(atomic_kind_set)
    2030           2 :             IF (unit_nr > 0) THEN
    2031           1 :                WRITE (unit_nr, *) "Atomic (core) densities"
    2032           1 :                WRITE (unit_nr, *) "Unit cell"
    2033           1 :                WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(1, 1), cell%hmat(1, 2), cell%hmat(1, 3)
    2034           1 :                WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(2, 1), cell%hmat(2, 2), cell%hmat(2, 3)
    2035           1 :                WRITE (unit_nr, FMT="(3F20.12)") cell%hmat(3, 1), cell%hmat(3, 2), cell%hmat(3, 3)
    2036           1 :                WRITE (unit_nr, *) "Atomic types"
    2037           1 :                WRITE (unit_nr, *) nkind
    2038             :             END IF
    2039             :             ! calculate atomic density and core density
    2040          16 :             ALLOCATE (ppdens(ngto, 2, nkind), aedens(ngto, 2, nkind), ccdens(ngto, 2, nkind))
    2041           6 :             DO ikind = 1, nkind
    2042           4 :                atomic_kind => atomic_kind_set(ikind)
    2043           4 :                qs_kind => qs_kind_set(ikind)
    2044           4 :                CALL get_atomic_kind(atomic_kind, name=name, element_symbol=element_symbol)
    2045             :                CALL calculate_atomic_density(ppdens(:, :, ikind), atomic_kind, qs_kind, ngto, &
    2046           4 :                                              iunit=output_unit, confine=.TRUE.)
    2047             :                CALL calculate_atomic_density(aedens(:, :, ikind), atomic_kind, qs_kind, ngto, &
    2048           4 :                                              iunit=output_unit, allelectron=.TRUE., confine=.TRUE.)
    2049          52 :                ccdens(:, 1, ikind) = aedens(:, 1, ikind)
    2050          52 :                ccdens(:, 2, ikind) = 0._dp
    2051             :                CALL project_function_a(ccdens(1:ngto, 2, ikind), ccdens(1:ngto, 1, ikind), &
    2052           4 :                                        ppdens(1:ngto, 2, ikind), ppdens(1:ngto, 1, ikind), 0)
    2053          52 :                ccdens(:, 2, ikind) = aedens(:, 2, ikind) - ccdens(:, 2, ikind)
    2054           4 :                IF (unit_nr > 0) THEN
    2055           2 :                   WRITE (unit_nr, FMT="(I6,A10,A20)") ikind, TRIM(element_symbol), TRIM(name)
    2056           2 :                   WRITE (unit_nr, FMT="(I6)") ngto
    2057           2 :                   WRITE (unit_nr, *) "   Total density"
    2058          26 :                   WRITE (unit_nr, FMT="(2G24.12)") (aedens(i, 1, ikind), aedens(i, 2, ikind), i=1, ngto)
    2059           2 :                   WRITE (unit_nr, *) "    Core density"
    2060          26 :                   WRITE (unit_nr, FMT="(2G24.12)") (ccdens(i, 1, ikind), ccdens(i, 2, ikind), i=1, ngto)
    2061             :                END IF
    2062           6 :                NULLIFY (atomic_kind)
    2063             :             END DO
    2064             : 
    2065           2 :             IF (dft_control%qs_control%gapw) THEN
    2066           2 :                CALL get_qs_env(qs_env=qs_env, rho_atom_set=rho_atom_set)
    2067             : 
    2068           2 :                IF (unit_nr > 0) THEN
    2069           1 :                   WRITE (unit_nr, *) "Coordinates and GAPW density"
    2070             :                END IF
    2071           2 :                np = particles%n_els
    2072           6 :                DO iat = 1, np
    2073           4 :                   CALL get_atomic_kind(particles%els(iat)%atomic_kind, kind_number=ikind)
    2074           4 :                   CALL get_qs_kind(qs_kind_set(ikind), grid_atom=grid_atom)
    2075           4 :                   rho_atom => rho_atom_set(iat)
    2076           4 :                   IF (ASSOCIATED(rho_atom%rho_rad_h(1)%r_coef)) THEN
    2077           2 :                      nr = SIZE(rho_atom%rho_rad_h(1)%r_coef, 1)
    2078           2 :                      niso = SIZE(rho_atom%rho_rad_h(1)%r_coef, 2)
    2079             :                   ELSE
    2080           2 :                      nr = 0
    2081           2 :                      niso = 0
    2082             :                   END IF
    2083           4 :                   CALL para_env%sum(nr)
    2084           4 :                   CALL para_env%sum(niso)
    2085             : 
    2086          16 :                   ALLOCATE (bfun(nr, niso))
    2087        1840 :                   bfun = 0._dp
    2088           8 :                   DO ispin = 1, dft_control%nspins
    2089           8 :                      IF (ASSOCIATED(rho_atom%rho_rad_h(1)%r_coef)) THEN
    2090         920 :                         bfun(:, :) = bfun + rho_atom%rho_rad_h(ispin)%r_coef - rho_atom%rho_rad_s(ispin)%r_coef
    2091             :                      END IF
    2092             :                   END DO
    2093           4 :                   CALL para_env%sum(bfun)
    2094          52 :                   ccdens(:, 1, ikind) = ppdens(:, 1, ikind)
    2095          52 :                   ccdens(:, 2, ikind) = 0._dp
    2096           4 :                   IF (unit_nr > 0) THEN
    2097           8 :                      WRITE (unit_nr, '(I10,I5,3f12.6)') iat, ikind, particles%els(iat)%r
    2098             :                   END IF
    2099          40 :                   DO iso = 1, niso
    2100          36 :                      l = indso(1, iso)
    2101          36 :                      CALL project_function_b(ccdens(:, 2, ikind), ccdens(:, 1, ikind), bfun(:, iso), grid_atom, l)
    2102          40 :                      IF (unit_nr > 0) THEN
    2103          18 :                         WRITE (unit_nr, FMT="(3I6)") iso, l, ngto
    2104         234 :                         WRITE (unit_nr, FMT="(2G24.12)") (ccdens(i, 1, ikind), ccdens(i, 2, ikind), i=1, ngto)
    2105             :                      END IF
    2106             :                   END DO
    2107          10 :                   DEALLOCATE (bfun)
    2108             :                END DO
    2109             :             ELSE
    2110           0 :                IF (unit_nr > 0) THEN
    2111           0 :                   WRITE (unit_nr, *) "Coordinates"
    2112           0 :                   np = particles%n_els
    2113           0 :                   DO iat = 1, np
    2114           0 :                      CALL get_atomic_kind(particles%els(iat)%atomic_kind, kind_number=ikind)
    2115           0 :                      WRITE (unit_nr, '(I10,I5,3f12.6)') iat, ikind, particles%els(iat)%r
    2116             :                   END DO
    2117             :                END IF
    2118             :             END IF
    2119             : 
    2120           2 :             DEALLOCATE (ppdens, aedens, ccdens)
    2121             : 
    2122             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2123           2 :                                               "DFT%PRINT%E_DENSITY_CUBE")
    2124             : 
    2125             :          END IF
    2126         150 :          IF (dft_control%qs_control%gapw .AND. print_density == "TOTAL_DENSITY") THEN
    2127             :             ! total density in g-space not implemented for k-points
    2128           4 :             CPASSERT(.NOT. do_kpoints)
    2129             :             ! Print total electronic density
    2130             :             CALL get_qs_env(qs_env=qs_env, &
    2131           4 :                             pw_env=pw_env)
    2132             :             CALL pw_env_get(pw_env=pw_env, &
    2133             :                             auxbas_pw_pool=auxbas_pw_pool, &
    2134           4 :                             pw_pools=pw_pools)
    2135           4 :             CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
    2136           4 :             CALL pw_zero(rho_elec_rspace)
    2137           4 :             CALL auxbas_pw_pool%create_pw(pw=rho_elec_gspace)
    2138           4 :             CALL pw_zero(rho_elec_gspace)
    2139             :             CALL get_pw_grid_info(pw_grid=rho_elec_gspace%pw_grid, &
    2140             :                                   dr=dr, &
    2141           4 :                                   vol=volume)
    2142          16 :             q_max = SQRT(SUM((pi/dr(:))**2))
    2143             :             CALL calculate_rhotot_elec_gspace(qs_env=qs_env, &
    2144             :                                               auxbas_pw_pool=auxbas_pw_pool, &
    2145             :                                               rhotot_elec_gspace=rho_elec_gspace, &
    2146             :                                               q_max=q_max, &
    2147             :                                               rho_hard=rho_hard, &
    2148           4 :                                               rho_soft=rho_soft)
    2149           4 :             rho_total = rho_hard + rho_soft
    2150             :             CALL get_pw_grid_info(pw_grid=rho_elec_gspace%pw_grid, &
    2151           4 :                                   vol=volume)
    2152             :             ! rhotot pw coefficients are by default scaled by grid volume
    2153             :             ! need to undo this to get proper charge from printed cube
    2154           4 :             CALL pw_scale(rho_elec_gspace, 1.0_dp/volume)
    2155             : 
    2156           4 :             CALL pw_transfer(rho_elec_gspace, rho_elec_rspace)
    2157           4 :             rho_total_rspace = pw_integrate_function(rho_elec_rspace, isign=-1)
    2158           4 :             filename = "TOTAL_ELECTRON_DENSITY"
    2159           4 :             mpi_io = .TRUE.
    2160             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2161             :                                            extension=".cube", middle_name=TRIM(filename), &
    2162             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2163           4 :                                            fout=mpi_filename)
    2164           4 :             IF (output_unit > 0) THEN
    2165           2 :                IF (.NOT. mpi_io) THEN
    2166           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    2167             :                ELSE
    2168           2 :                   filename = mpi_filename
    2169             :                END IF
    2170             :                WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2171           2 :                   "The total electron density is written in cube file format to the file:", &
    2172           4 :                   TRIM(filename)
    2173             :                WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
    2174           2 :                   "q(max) [1/Angstrom]              :", q_max/angstrom, &
    2175           2 :                   "Soft electronic charge (G-space) :", rho_soft, &
    2176           2 :                   "Hard electronic charge (G-space) :", rho_hard, &
    2177           2 :                   "Total electronic charge (G-space):", rho_total, &
    2178           4 :                   "Total electronic charge (R-space):", rho_total_rspace
    2179             :             END IF
    2180             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "TOTAL ELECTRON DENSITY", &
    2181             :                                particles=particles, &
    2182           4 :                                stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    2183             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2184           4 :                                               "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2185             :             ! Print total spin density for spin-polarized systems
    2186           4 :             IF (dft_control%nspins > 1) THEN
    2187           2 :                CALL pw_zero(rho_elec_gspace)
    2188           2 :                CALL pw_zero(rho_elec_rspace)
    2189             :                CALL calculate_rhotot_elec_gspace(qs_env=qs_env, &
    2190             :                                                  auxbas_pw_pool=auxbas_pw_pool, &
    2191             :                                                  rhotot_elec_gspace=rho_elec_gspace, &
    2192             :                                                  q_max=q_max, &
    2193             :                                                  rho_hard=rho_hard, &
    2194             :                                                  rho_soft=rho_soft, &
    2195           2 :                                                  fsign=-1.0_dp)
    2196           2 :                rho_total = rho_hard + rho_soft
    2197             : 
    2198             :                ! rhotot pw coefficients are by default scaled by grid volume
    2199             :                ! need to undo this to get proper charge from printed cube
    2200           2 :                CALL pw_scale(rho_elec_gspace, 1.0_dp/volume)
    2201             : 
    2202           2 :                CALL pw_transfer(rho_elec_gspace, rho_elec_rspace)
    2203           2 :                rho_total_rspace = pw_integrate_function(rho_elec_rspace, isign=-1)
    2204           2 :                filename = "TOTAL_SPIN_DENSITY"
    2205           2 :                mpi_io = .TRUE.
    2206             :                unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2207             :                                               extension=".cube", middle_name=TRIM(filename), &
    2208             :                                               file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2209           2 :                                               fout=mpi_filename)
    2210           2 :                IF (output_unit > 0) THEN
    2211           1 :                   IF (.NOT. mpi_io) THEN
    2212           0 :                      INQUIRE (UNIT=unit_nr, NAME=filename)
    2213             :                   ELSE
    2214           1 :                      filename = mpi_filename
    2215             :                   END IF
    2216             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2217           1 :                      "The total spin density is written in cube file format to the file:", &
    2218           2 :                      TRIM(filename)
    2219             :                   WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
    2220           1 :                      "q(max) [1/Angstrom]                    :", q_max/angstrom, &
    2221           1 :                      "Soft part of the spin density (G-space):", rho_soft, &
    2222           1 :                      "Hard part of the spin density (G-space):", rho_hard, &
    2223           1 :                      "Total spin density (G-space)           :", rho_total, &
    2224           2 :                      "Total spin density (R-space)           :", rho_total_rspace
    2225             :                END IF
    2226             :                CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "TOTAL SPIN DENSITY", &
    2227             :                                   particles=particles, &
    2228           2 :                                   stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    2229             :                CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2230           2 :                                                  "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2231             :             END IF
    2232           4 :             CALL auxbas_pw_pool%give_back_pw(rho_elec_gspace)
    2233           4 :             CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
    2234             : 
    2235         146 :          ELSE IF (print_density == "SOFT_DENSITY" .OR. .NOT. dft_control%qs_control%gapw) THEN
    2236         142 :             IF (dft_control%nspins > 1) THEN
    2237             :                CALL get_qs_env(qs_env=qs_env, &
    2238          48 :                                pw_env=pw_env)
    2239             :                CALL pw_env_get(pw_env=pw_env, &
    2240             :                                auxbas_pw_pool=auxbas_pw_pool, &
    2241          48 :                                pw_pools=pw_pools)
    2242          48 :                CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
    2243          48 :                CALL pw_copy(rho_r(1), rho_elec_rspace)
    2244          48 :                CALL pw_axpy(rho_r(2), rho_elec_rspace)
    2245          48 :                filename = "ELECTRON_DENSITY"
    2246          48 :                mpi_io = .TRUE.
    2247             :                unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2248             :                                               extension=".cube", middle_name=TRIM(filename), &
    2249             :                                               file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2250          48 :                                               fout=mpi_filename)
    2251          48 :                IF (output_unit > 0) THEN
    2252          24 :                   IF (.NOT. mpi_io) THEN
    2253           0 :                      INQUIRE (UNIT=unit_nr, NAME=filename)
    2254             :                   ELSE
    2255          24 :                      filename = mpi_filename
    2256             :                   END IF
    2257             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2258          24 :                      "The sum of alpha and beta density is written in cube file format to the file:", &
    2259          48 :                      TRIM(filename)
    2260             :                END IF
    2261             :                CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SUM OF ALPHA AND BETA DENSITY", &
    2262             :                                   particles=particles, stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), &
    2263          48 :                                   mpi_io=mpi_io)
    2264             :                CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2265          48 :                                                  "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2266          48 :                CALL pw_copy(rho_r(1), rho_elec_rspace)
    2267          48 :                CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
    2268          48 :                filename = "SPIN_DENSITY"
    2269          48 :                mpi_io = .TRUE.
    2270             :                unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2271             :                                               extension=".cube", middle_name=TRIM(filename), &
    2272             :                                               file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2273          48 :                                               fout=mpi_filename)
    2274          48 :                IF (output_unit > 0) THEN
    2275          24 :                   IF (.NOT. mpi_io) THEN
    2276           0 :                      INQUIRE (UNIT=unit_nr, NAME=filename)
    2277             :                   ELSE
    2278          24 :                      filename = mpi_filename
    2279             :                   END IF
    2280             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2281          24 :                      "The spin density is written in cube file format to the file:", &
    2282          48 :                      TRIM(filename)
    2283             :                END IF
    2284             :                CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
    2285             :                                   particles=particles, &
    2286          48 :                                   stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    2287             :                CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2288          48 :                                                  "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2289          48 :                CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
    2290             :             ELSE
    2291          94 :                filename = "ELECTRON_DENSITY"
    2292          94 :                mpi_io = .TRUE.
    2293             :                unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2294             :                                               extension=".cube", middle_name=TRIM(filename), &
    2295             :                                               file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2296          94 :                                               fout=mpi_filename)
    2297          94 :                IF (output_unit > 0) THEN
    2298          47 :                   IF (.NOT. mpi_io) THEN
    2299           0 :                      INQUIRE (UNIT=unit_nr, NAME=filename)
    2300             :                   ELSE
    2301          47 :                      filename = mpi_filename
    2302             :                   END IF
    2303             :                   WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2304          47 :                      "The electron density is written in cube file format to the file:", &
    2305          94 :                      TRIM(filename)
    2306             :                END IF
    2307             :                CALL cp_pw_to_cube(rho_r(1), unit_nr, "ELECTRON DENSITY", &
    2308             :                                   particles=particles, &
    2309          94 :                                   stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    2310             :                CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2311          94 :                                                  "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2312             :             END IF ! nspins
    2313             : 
    2314           4 :          ELSE IF (dft_control%qs_control%gapw .AND. print_density == "TOTAL_HARD_APPROX") THEN
    2315           4 :             CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, rho0_mpole=rho0_mpole, natom=natom)
    2316           4 :             CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    2317           4 :             CALL auxbas_pw_pool%create_pw(rho_elec_rspace)
    2318             : 
    2319           4 :             NULLIFY (my_Q0)
    2320          12 :             ALLOCATE (my_Q0(natom))
    2321          16 :             my_Q0 = 0.0_dp
    2322             : 
    2323             :             ! (eta/pi)**3: normalization for 3d gaussian of form exp(-eta*r**2)
    2324           4 :             norm_factor = SQRT((rho0_mpole%zet0_h/pi)**3)
    2325             : 
    2326             :             ! store hard part of electronic density in array
    2327          16 :             DO iat = 1, natom
    2328          34 :                my_Q0(iat) = SUM(rho0_mpole%mp_rho(iat)%Q0(1:dft_control%nspins))*norm_factor
    2329             :             END DO
    2330             :             ! multiply coeff with gaussian and put on realspace grid
    2331             :             ! coeff is the gaussian prefactor, eta the gaussian exponent
    2332           4 :             CALL calculate_rho_resp_all(rho_elec_rspace, coeff=my_Q0, natom=natom, eta=rho0_mpole%zet0_h, qs_env=qs_env)
    2333           4 :             rho_hard = pw_integrate_function(rho_elec_rspace, isign=-1)
    2334             : 
    2335           4 :             rho_soft = 0.0_dp
    2336          10 :             DO ispin = 1, dft_control%nspins
    2337           6 :                CALL pw_axpy(rho_r(ispin), rho_elec_rspace)
    2338          10 :                rho_soft = rho_soft + pw_integrate_function(rho_r(ispin), isign=-1)
    2339             :             END DO
    2340             : 
    2341           4 :             rho_total_rspace = rho_soft + rho_hard
    2342             : 
    2343           4 :             filename = "ELECTRON_DENSITY"
    2344           4 :             mpi_io = .TRUE.
    2345             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2346             :                                            extension=".cube", middle_name=TRIM(filename), &
    2347             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2348           4 :                                            fout=mpi_filename)
    2349           4 :             IF (output_unit > 0) THEN
    2350           2 :                IF (.NOT. mpi_io) THEN
    2351           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    2352             :                ELSE
    2353           2 :                   filename = mpi_filename
    2354             :                END IF
    2355             :                WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2356           2 :                   "The electron density is written in cube file format to the file:", &
    2357           4 :                   TRIM(filename)
    2358             :                WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
    2359           2 :                   "Soft electronic charge (R-space) :", rho_soft, &
    2360           2 :                   "Hard electronic charge (R-space) :", rho_hard, &
    2361           4 :                   "Total electronic charge (R-space):", rho_total_rspace
    2362             :             END IF
    2363             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "ELECTRON DENSITY", &
    2364             :                                particles=particles, stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), &
    2365           4 :                                mpi_io=mpi_io)
    2366             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2367           4 :                                               "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2368             : 
    2369             :             !------------
    2370           4 :             IF (dft_control%nspins > 1) THEN
    2371           8 :             DO iat = 1, natom
    2372           8 :                my_Q0(iat) = (rho0_mpole%mp_rho(iat)%Q0(1) - rho0_mpole%mp_rho(iat)%Q0(2))*norm_factor
    2373             :             END DO
    2374           2 :             CALL pw_zero(rho_elec_rspace)
    2375           2 :             CALL calculate_rho_resp_all(rho_elec_rspace, coeff=my_Q0, natom=natom, eta=rho0_mpole%zet0_h, qs_env=qs_env)
    2376           2 :             rho_hard = pw_integrate_function(rho_elec_rspace, isign=-1)
    2377             : 
    2378           2 :             CALL pw_axpy(rho_r(1), rho_elec_rspace)
    2379           2 :             CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
    2380             :             rho_soft = pw_integrate_function(rho_r(1), isign=-1) &
    2381           2 :                        - pw_integrate_function(rho_r(2), isign=-1)
    2382             : 
    2383           2 :             rho_total_rspace = rho_soft + rho_hard
    2384             : 
    2385           2 :             filename = "SPIN_DENSITY"
    2386           2 :             mpi_io = .TRUE.
    2387             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%E_DENSITY_CUBE", &
    2388             :                                            extension=".cube", middle_name=TRIM(filename), &
    2389             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    2390           2 :                                            fout=mpi_filename)
    2391           2 :             IF (output_unit > 0) THEN
    2392           1 :                IF (.NOT. mpi_io) THEN
    2393           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    2394             :                ELSE
    2395           1 :                   filename = mpi_filename
    2396             :                END IF
    2397             :                WRITE (UNIT=output_unit, FMT="(/,T2,A,/,/,T2,A)") &
    2398           1 :                   "The spin density is written in cube file format to the file:", &
    2399           2 :                   TRIM(filename)
    2400             :                WRITE (UNIT=output_unit, FMT="(/,(T2,A,F20.10))") &
    2401           1 :                   "Soft part of the spin density          :", rho_soft, &
    2402           1 :                   "Hard part of the spin density          :", rho_hard, &
    2403           2 :                   "Total spin density (R-space)           :", rho_total_rspace
    2404             :             END IF
    2405             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
    2406             :                                particles=particles, &
    2407           2 :                                stride=section_get_ivals(dft_section, "PRINT%E_DENSITY_CUBE%STRIDE"), mpi_io=mpi_io)
    2408             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2409           2 :                                               "DFT%PRINT%E_DENSITY_CUBE", mpi_io=mpi_io)
    2410             :             END IF ! nspins
    2411           4 :             CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
    2412           4 :             DEALLOCATE (my_Q0)
    2413             :          END IF ! print_density
    2414             :       END IF ! print key
    2415             : 
    2416             :       IF (BTEST(cp_print_key_should_output(logger%iter_info, &
    2417       11051 :                                            dft_section, "PRINT%ENERGY_WINDOWS"), cp_p_file) .AND. .NOT. do_kpoints) THEN
    2418          90 :          CALL energy_windows(qs_env)
    2419             :       END IF
    2420             : 
    2421             :       ! Print the hartree potential
    2422       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2423             :                                            "DFT%PRINT%V_HARTREE_CUBE"), cp_p_file)) THEN
    2424             : 
    2425             :          CALL get_qs_env(qs_env=qs_env, &
    2426             :                          pw_env=pw_env, &
    2427         114 :                          v_hartree_rspace=v_hartree_rspace)
    2428         114 :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2429         114 :          CALL auxbas_pw_pool%create_pw(aux_r)
    2430             : 
    2431         114 :          append_cube = section_get_lval(input, "DFT%PRINT%V_HARTREE_CUBE%APPEND")
    2432         114 :          my_pos_cube = "REWIND"
    2433         114 :          IF (append_cube) THEN
    2434           0 :             my_pos_cube = "APPEND"
    2435             :          END IF
    2436         114 :          mpi_io = .TRUE.
    2437         114 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    2438         114 :          CALL pw_env_get(pw_env)
    2439             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%V_HARTREE_CUBE", &
    2440         114 :                                         extension=".cube", middle_name="v_hartree", file_position=my_pos_cube, mpi_io=mpi_io)
    2441         114 :          udvol = 1.0_dp/v_hartree_rspace%pw_grid%dvol
    2442             : 
    2443         114 :          CALL pw_copy(v_hartree_rspace, aux_r)
    2444         114 :          CALL pw_scale(aux_r, udvol)
    2445             : 
    2446             :          CALL cp_pw_to_cube(aux_r, unit_nr, "HARTREE POTENTIAL", particles=particles, &
    2447             :                             stride=section_get_ivals(dft_section, &
    2448         114 :                                                      "PRINT%V_HARTREE_CUBE%STRIDE"), mpi_io=mpi_io)
    2449             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2450         114 :                                            "DFT%PRINT%V_HARTREE_CUBE", mpi_io=mpi_io)
    2451             : 
    2452         114 :          CALL auxbas_pw_pool%give_back_pw(aux_r)
    2453             :       END IF
    2454             : 
    2455             :       ! Print the external potential
    2456       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2457             :                                            "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE"), cp_p_file)) THEN
    2458          86 :          IF (dft_control%apply_external_potential) THEN
    2459           4 :             CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, vee=vee)
    2460           4 :             CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2461           4 :             CALL auxbas_pw_pool%create_pw(aux_r)
    2462             : 
    2463           4 :             append_cube = section_get_lval(input, "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE%APPEND")
    2464           4 :             my_pos_cube = "REWIND"
    2465           4 :             IF (append_cube) THEN
    2466           0 :                my_pos_cube = "APPEND"
    2467             :             END IF
    2468           4 :             mpi_io = .TRUE.
    2469           4 :             CALL pw_env_get(pw_env)
    2470             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE", &
    2471           4 :                                            extension=".cube", middle_name="ext_pot", file_position=my_pos_cube, mpi_io=mpi_io)
    2472             : 
    2473           4 :             CALL pw_copy(vee, aux_r)
    2474             : 
    2475             :             CALL cp_pw_to_cube(aux_r, unit_nr, "EXTERNAL POTENTIAL", particles=particles, &
    2476             :                                stride=section_get_ivals(dft_section, &
    2477           4 :                                                         "PRINT%EXTERNAL_POTENTIAL_CUBE%STRIDE"), mpi_io=mpi_io)
    2478             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2479           4 :                                               "DFT%PRINT%EXTERNAL_POTENTIAL_CUBE", mpi_io=mpi_io)
    2480             : 
    2481           4 :             CALL auxbas_pw_pool%give_back_pw(aux_r)
    2482             :          END IF
    2483             :       END IF
    2484             : 
    2485             :       ! Print the Electrical Field Components
    2486       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2487             :                                            "DFT%PRINT%EFIELD_CUBE"), cp_p_file)) THEN
    2488             : 
    2489          82 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    2490          82 :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2491          82 :          CALL auxbas_pw_pool%create_pw(aux_r)
    2492          82 :          CALL auxbas_pw_pool%create_pw(aux_g)
    2493             : 
    2494          82 :          append_cube = section_get_lval(input, "DFT%PRINT%EFIELD_CUBE%APPEND")
    2495          82 :          my_pos_cube = "REWIND"
    2496          82 :          IF (append_cube) THEN
    2497           0 :             my_pos_cube = "APPEND"
    2498             :          END IF
    2499             :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, &
    2500          82 :                          v_hartree_rspace=v_hartree_rspace)
    2501          82 :          CALL pw_env_get(pw_env)
    2502          82 :          udvol = 1.0_dp/v_hartree_rspace%pw_grid%dvol
    2503         328 :          DO id = 1, 3
    2504         246 :             mpi_io = .TRUE.
    2505             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EFIELD_CUBE", &
    2506             :                                            extension=".cube", middle_name="efield_"//cdir(id), file_position=my_pos_cube, &
    2507         246 :                                            mpi_io=mpi_io)
    2508             : 
    2509         246 :             CALL pw_transfer(v_hartree_rspace, aux_g)
    2510         246 :             nd = 0
    2511         246 :             nd(id) = 1
    2512         246 :             CALL pw_derive(aux_g, nd)
    2513         246 :             CALL pw_transfer(aux_g, aux_r)
    2514         246 :             CALL pw_scale(aux_r, udvol)
    2515             : 
    2516             :             CALL cp_pw_to_cube(aux_r, &
    2517             :                                unit_nr, "ELECTRIC FIELD", particles=particles, &
    2518             :                                stride=section_get_ivals(dft_section, &
    2519         246 :                                                         "PRINT%EFIELD_CUBE%STRIDE"), mpi_io=mpi_io)
    2520             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    2521         328 :                                               "DFT%PRINT%EFIELD_CUBE", mpi_io=mpi_io)
    2522             :          END DO
    2523             : 
    2524          82 :          CALL auxbas_pw_pool%give_back_pw(aux_r)
    2525          82 :          CALL auxbas_pw_pool%give_back_pw(aux_g)
    2526             :       END IF
    2527             : 
    2528             :       ! Write cube files from the local energy
    2529       11051 :       CALL qs_scf_post_local_energy(input, logger, qs_env)
    2530             : 
    2531             :       ! Write cube files from the local stress tensor
    2532       11051 :       CALL qs_scf_post_local_stress(input, logger, qs_env)
    2533             : 
    2534             :       ! Write cube files from the implicit Poisson solver
    2535       11051 :       CALL qs_scf_post_ps_implicit(input, logger, qs_env)
    2536             : 
    2537             :       ! post SCF Transport
    2538       11051 :       CALL qs_scf_post_transport(qs_env)
    2539             : 
    2540       11051 :       CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%OMIT_HEADERS", l_val=omit_headers)
    2541             :       ! Write the density matrices
    2542       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2543             :                                            "DFT%PRINT%AO_MATRICES/DENSITY"), cp_p_file)) THEN
    2544             :          iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/DENSITY", &
    2545           4 :                                    extension=".Log")
    2546           4 :          CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
    2547           4 :          CALL qs_rho_get(rho, rho_ao_kp=rho_ao)
    2548           4 :          after = MIN(MAX(after, 1), 16)
    2549           8 :          DO ispin = 1, dft_control%nspins
    2550          12 :             DO img = 1, dft_control%nimages
    2551             :                CALL cp_dbcsr_write_sparse_matrix(rho_ao(ispin, img)%matrix, 4, after, qs_env, &
    2552           8 :                                                  para_env, output_unit=iw, omit_headers=omit_headers)
    2553             :             END DO
    2554             :          END DO
    2555             :          CALL cp_print_key_finished_output(iw, logger, input, &
    2556           4 :                                            "DFT%PRINT%AO_MATRICES/DENSITY")
    2557             :       END IF
    2558             : 
    2559             :       ! Write the Kohn-Sham matrices
    2560             :       write_ks = BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2561       11051 :                                                   "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX"), cp_p_file)
    2562             :       write_xc = BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2563       11051 :                                                   "DFT%PRINT%AO_MATRICES/MATRIX_VXC"), cp_p_file)
    2564             :       ! we need to update stuff before writing, potentially computing the matrix_vxc
    2565       11051 :       IF (write_ks .OR. write_xc) THEN
    2566           4 :          IF (write_xc) qs_env%requires_matrix_vxc = .TRUE.
    2567           4 :          CALL qs_ks_did_change(qs_env%ks_env, rho_changed=.TRUE.)
    2568             :          CALL qs_ks_update_qs_env(qs_env, calculate_forces=.FALSE., &
    2569           4 :                                   just_energy=.FALSE.)
    2570           4 :          IF (write_xc) qs_env%requires_matrix_vxc = .FALSE.
    2571             :       END IF
    2572             : 
    2573             :       ! Write the Kohn-Sham matrices
    2574       11051 :       IF (write_ks) THEN
    2575             :          iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX", &
    2576           4 :                                    extension=".Log")
    2577           4 :          CALL get_qs_env(qs_env=qs_env, matrix_ks_kp=ks_rmpv)
    2578           4 :          CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
    2579           4 :          after = MIN(MAX(after, 1), 16)
    2580           8 :          DO ispin = 1, dft_control%nspins
    2581          12 :             DO img = 1, dft_control%nimages
    2582             :                CALL cp_dbcsr_write_sparse_matrix(ks_rmpv(ispin, img)%matrix, 4, after, qs_env, &
    2583           8 :                                                  para_env, output_unit=iw, omit_headers=omit_headers)
    2584             :             END DO
    2585             :          END DO
    2586             :          CALL cp_print_key_finished_output(iw, logger, input, &
    2587           4 :                                            "DFT%PRINT%AO_MATRICES/KOHN_SHAM_MATRIX")
    2588             :       END IF
    2589             : 
    2590             :       ! write csr matrices
    2591             :       ! matrices in terms of the PAO basis will be taken care of in pao_post_scf.
    2592       11051 :       IF (.NOT. dft_control%qs_control%pao) THEN
    2593       10539 :          CALL write_ks_matrix_csr(qs_env, input)
    2594       10539 :          CALL write_s_matrix_csr(qs_env, input)
    2595             :       END IF
    2596             : 
    2597             :       ! write adjacency matrix
    2598       11051 :       CALL write_adjacency_matrix(qs_env, input)
    2599             : 
    2600             :       ! Write the xc matrix
    2601       11051 :       IF (write_xc) THEN
    2602           0 :          CALL get_qs_env(qs_env=qs_env, matrix_vxc_kp=matrix_vxc)
    2603           0 :          CPASSERT(ASSOCIATED(matrix_vxc))
    2604             :          iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/MATRIX_VXC", &
    2605           0 :                                    extension=".Log")
    2606           0 :          CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
    2607           0 :          after = MIN(MAX(after, 1), 16)
    2608           0 :          DO ispin = 1, dft_control%nspins
    2609           0 :             DO img = 1, dft_control%nimages
    2610             :                CALL cp_dbcsr_write_sparse_matrix(matrix_vxc(ispin, img)%matrix, 4, after, qs_env, &
    2611           0 :                                                  para_env, output_unit=iw, omit_headers=omit_headers)
    2612             :             END DO
    2613             :          END DO
    2614             :          CALL cp_print_key_finished_output(iw, logger, input, &
    2615           0 :                                            "DFT%PRINT%AO_MATRICES/MATRIX_VXC")
    2616             :       END IF
    2617             : 
    2618             :       ! Write the [H,r] commutator matrices
    2619       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    2620             :                                            "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR"), cp_p_file)) THEN
    2621             :          iw = cp_print_key_unit_nr(logger, input, "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR", &
    2622           0 :                                    extension=".Log")
    2623           0 :          CALL section_vals_val_get(input, "DFT%PRINT%AO_MATRICES%NDIGITS", i_val=after)
    2624           0 :          NULLIFY (matrix_hr)
    2625           0 :          CALL build_com_hr_matrix(qs_env, matrix_hr)
    2626           0 :          after = MIN(MAX(after, 1), 16)
    2627           0 :          DO img = 1, 3
    2628             :             CALL cp_dbcsr_write_sparse_matrix(matrix_hr(img)%matrix, 4, after, qs_env, &
    2629           0 :                                               para_env, output_unit=iw, omit_headers=omit_headers)
    2630             :          END DO
    2631           0 :          CALL dbcsr_deallocate_matrix_set(matrix_hr)
    2632             :          CALL cp_print_key_finished_output(iw, logger, input, &
    2633           0 :                                            "DFT%PRINT%AO_MATRICES/COMMUTATOR_HR")
    2634             :       END IF
    2635             : 
    2636             :       ! Compute the Mulliken charges
    2637       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MULLIKEN")
    2638       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2639        4712 :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MULLIKEN", extension=".mulliken", log_filename=.FALSE.)
    2640        4712 :          print_level = 1
    2641        4712 :          CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
    2642        4712 :          IF (print_it) print_level = 2
    2643        4712 :          CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
    2644        4712 :          IF (print_it) print_level = 3
    2645        4712 :          CALL mulliken_population_analysis(qs_env, unit_nr, print_level)
    2646        4712 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MULLIKEN")
    2647             :       END IF
    2648             : 
    2649             :       ! Compute the Hirshfeld charges
    2650       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%HIRSHFELD")
    2651       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2652             :          ! we check if real space density is available
    2653        4784 :          NULLIFY (rho)
    2654        4784 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    2655        4784 :          CALL qs_rho_get(rho, rho_r_valid=rho_r_valid)
    2656        4784 :          IF (rho_r_valid) THEN
    2657        4710 :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%HIRSHFELD", extension=".hirshfeld", log_filename=.FALSE.)
    2658        4710 :             CALL hirshfeld_charges(qs_env, print_key, unit_nr)
    2659        4710 :             CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%HIRSHFELD")
    2660             :          END IF
    2661             :       END IF
    2662             : 
    2663             :       ! Compute EEQ charges
    2664       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%EEQ_CHARGES")
    2665       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2666          30 :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%EEQ_CHARGES", extension=".eeq", log_filename=.FALSE.)
    2667          30 :          print_level = 1
    2668          30 :          CALL eeq_print(qs_env, unit_nr, print_level, ext=.FALSE.)
    2669          30 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MULLIKEN")
    2670             :       END IF
    2671             : 
    2672             :       ! Do a Voronoi Integration or write a compressed BQB File
    2673       11051 :       print_key_voro => section_vals_get_subs_vals(input, "DFT%PRINT%VORONOI")
    2674       11051 :       print_key_bqb => section_vals_get_subs_vals(input, "DFT%PRINT%E_DENSITY_BQB")
    2675       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key_voro), cp_p_file)) THEN
    2676          24 :          should_print_voro = 1
    2677             :       ELSE
    2678       11027 :          should_print_voro = 0
    2679             :       END IF
    2680       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key_bqb), cp_p_file)) THEN
    2681           2 :          should_print_bqb = 1
    2682             :       ELSE
    2683       11049 :          should_print_bqb = 0
    2684             :       END IF
    2685       11051 :       IF ((should_print_voro /= 0) .OR. (should_print_bqb /= 0)) THEN
    2686             : 
    2687             :          ! we check if real space density is available
    2688          26 :          NULLIFY (rho)
    2689          26 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    2690          26 :          CALL qs_rho_get(rho, rho_r_valid=rho_r_valid)
    2691          26 :          IF (rho_r_valid) THEN
    2692             : 
    2693          26 :             IF (dft_control%nspins > 1) THEN
    2694             :                CALL get_qs_env(qs_env=qs_env, &
    2695           0 :                                pw_env=pw_env)
    2696             :                CALL pw_env_get(pw_env=pw_env, &
    2697             :                                auxbas_pw_pool=auxbas_pw_pool, &
    2698           0 :                                pw_pools=pw_pools)
    2699           0 :                NULLIFY (mb_rho)
    2700           0 :                ALLOCATE (mb_rho)
    2701           0 :                CALL auxbas_pw_pool%create_pw(pw=mb_rho)
    2702           0 :                CALL pw_copy(rho_r(1), mb_rho)
    2703           0 :                CALL pw_axpy(rho_r(2), mb_rho)
    2704             :                !CALL voronoi_analysis(qs_env, rho_elec_rspace, print_key, unit_nr)
    2705             :             ELSE
    2706          26 :                mb_rho => rho_r(1)
    2707             :                !CALL voronoi_analysis( qs_env, rho_r(1), print_key, unit_nr )
    2708             :             END IF ! nspins
    2709             : 
    2710          26 :             IF (should_print_voro /= 0) THEN
    2711          24 :                CALL section_vals_val_get(print_key_voro, "OUTPUT_TEXT", l_val=voro_print_txt)
    2712          24 :                IF (voro_print_txt) THEN
    2713          24 :                   append_voro = section_get_lval(input, "DFT%PRINT%VORONOI%APPEND")
    2714          24 :                   my_pos_voro = "REWIND"
    2715          24 :                   IF (append_voro) THEN
    2716           0 :                      my_pos_voro = "APPEND"
    2717             :                   END IF
    2718             :                   unit_nr_voro = cp_print_key_unit_nr(logger, input, "DFT%PRINT%VORONOI", extension=".voronoi", &
    2719          24 :                                                       file_position=my_pos_voro, log_filename=.FALSE.)
    2720             :                ELSE
    2721           0 :                   unit_nr_voro = 0
    2722             :                END IF
    2723             :             ELSE
    2724           2 :                unit_nr_voro = 0
    2725             :             END IF
    2726             : 
    2727             :             CALL entry_voronoi_or_bqb(should_print_voro, should_print_bqb, print_key_voro, print_key_bqb, &
    2728          26 :                                       unit_nr_voro, qs_env, mb_rho)
    2729             : 
    2730          26 :             IF (dft_control%nspins > 1) THEN
    2731           0 :                CALL auxbas_pw_pool%give_back_pw(mb_rho)
    2732           0 :                DEALLOCATE (mb_rho)
    2733             :             END IF
    2734             : 
    2735          26 :             IF (unit_nr_voro > 0) THEN
    2736          12 :                CALL cp_print_key_finished_output(unit_nr_voro, logger, input, "DFT%PRINT%VORONOI")
    2737             :             END IF
    2738             : 
    2739             :          END IF
    2740             :       END IF
    2741             : 
    2742             :       ! MAO analysis
    2743       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MAO_ANALYSIS")
    2744       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2745          38 :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MAO_ANALYSIS", extension=".mao", log_filename=.FALSE.)
    2746          38 :          CALL mao_analysis(qs_env, print_key, unit_nr)
    2747          38 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MAO_ANALYSIS")
    2748             :       END IF
    2749             : 
    2750             :       ! MINBAS analysis
    2751       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%MINBAS_ANALYSIS")
    2752       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2753          28 :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%MINBAS_ANALYSIS", extension=".mao", log_filename=.FALSE.)
    2754          28 :          CALL minbas_analysis(qs_env, print_key, unit_nr)
    2755          28 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%MINBAS_ANALYSIS")
    2756             :       END IF
    2757             : 
    2758             :       ! IAO analysis
    2759       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%IAO_ANALYSIS")
    2760       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2761          32 :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IAO_ANALYSIS", extension=".iao", log_filename=.FALSE.)
    2762          32 :          CALL iao_read_input(iao_env, print_key, cell)
    2763          32 :          IF (iao_env%do_iao) THEN
    2764           4 :             CALL iao_wfn_analysis(qs_env, iao_env, unit_nr)
    2765             :          END IF
    2766          32 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%IAO_ANALYSIS")
    2767             :       END IF
    2768             : 
    2769             :       ! Energy Decomposition Analysis
    2770       11051 :       print_key => section_vals_get_subs_vals(input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS")
    2771       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
    2772             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS", &
    2773          58 :                                         extension=".mao", log_filename=.FALSE.)
    2774          58 :          CALL edmf_analysis(qs_env, print_key, unit_nr)
    2775          58 :          CALL cp_print_key_finished_output(unit_nr, logger, input, "DFT%PRINT%ENERGY_DECOMPOSITION_ANALYSIS")
    2776             :       END IF
    2777             : 
    2778             :       ! Print the density in the RI-HFX basis
    2779       11051 :       hfx_section => section_vals_get_subs_vals(input, "DFT%XC%HF")
    2780       11051 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
    2781       11051 :       CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
    2782       11051 :       IF (do_hfx) THEN
    2783        4310 :          DO i = 1, n_rep_hf
    2784        4310 :             IF (qs_env%x_data(i, 1)%do_hfx_ri) CALL print_ri_hfx(qs_env%x_data(i, 1)%ri_data, qs_env)
    2785             :          END DO
    2786             :       END IF
    2787             : 
    2788       11051 :       CALL timestop(handle)
    2789             : 
    2790       22102 :    END SUBROUTINE write_mo_free_results
    2791             : 
    2792             : ! **************************************************************************************************
    2793             : !> \brief Calculates Hirshfeld charges
    2794             : !> \param qs_env the qs_env where to calculate the charges
    2795             : !> \param input_section the input section for Hirshfeld charges
    2796             : !> \param unit_nr the output unit number
    2797             : ! **************************************************************************************************
    2798        4710 :    SUBROUTINE hirshfeld_charges(qs_env, input_section, unit_nr)
    2799             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2800             :       TYPE(section_vals_type), POINTER                   :: input_section
    2801             :       INTEGER, INTENT(IN)                                :: unit_nr
    2802             : 
    2803             :       INTEGER                                            :: i, iat, ikind, natom, nkind, nspin, &
    2804             :                                                             radius_type, refc, shapef
    2805        4710 :       INTEGER, DIMENSION(:), POINTER                     :: atom_list
    2806             :       LOGICAL                                            :: do_radius, do_sc, paw_atom
    2807             :       REAL(KIND=dp)                                      :: zeff
    2808        4710 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: radii
    2809        4710 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: charges
    2810        4710 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2811             :       TYPE(atomic_kind_type), POINTER                    :: atomic_kind
    2812        4710 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_p, matrix_s
    2813             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2814             :       TYPE(hirshfeld_type), POINTER                      :: hirshfeld_env
    2815             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2816        4710 :       TYPE(mpole_rho_atom), DIMENSION(:), POINTER        :: mp_rho
    2817        4710 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2818        4710 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2819             :       TYPE(qs_rho_type), POINTER                         :: rho
    2820             :       TYPE(rho0_mpole_type), POINTER                     :: rho0_mpole
    2821             : 
    2822        4710 :       NULLIFY (hirshfeld_env)
    2823        4710 :       NULLIFY (radii)
    2824        4710 :       CALL create_hirshfeld_type(hirshfeld_env)
    2825             :       !
    2826        4710 :       CALL get_qs_env(qs_env, nkind=nkind, natom=natom)
    2827       14130 :       ALLOCATE (hirshfeld_env%charges(natom))
    2828             :       ! input options
    2829        4710 :       CALL section_vals_val_get(input_section, "SELF_CONSISTENT", l_val=do_sc)
    2830        4710 :       CALL section_vals_val_get(input_section, "USER_RADIUS", l_val=do_radius)
    2831        4710 :       CALL section_vals_val_get(input_section, "SHAPE_FUNCTION", i_val=shapef)
    2832        4710 :       CALL section_vals_val_get(input_section, "REFERENCE_CHARGE", i_val=refc)
    2833        4710 :       IF (do_radius) THEN
    2834           0 :          radius_type = radius_user
    2835           0 :          CALL section_vals_val_get(input_section, "ATOMIC_RADII", r_vals=radii)
    2836           0 :          IF (.NOT. SIZE(radii) == nkind) &
    2837             :             CALL cp_abort(__LOCATION__, &
    2838             :                           "Length of keyword HIRSHFELD\ATOMIC_RADII does not "// &
    2839           0 :                           "match number of atomic kinds in the input coordinate file.")
    2840             :       ELSE
    2841        4710 :          radius_type = radius_covalent
    2842             :       END IF
    2843             :       CALL set_hirshfeld_info(hirshfeld_env, shape_function_type=shapef, &
    2844             :                               iterative=do_sc, ref_charge=refc, &
    2845        4710 :                               radius_type=radius_type)
    2846             :       ! shape function
    2847        4710 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set)
    2848             :       CALL create_shape_function(hirshfeld_env, qs_kind_set, atomic_kind_set, &
    2849        4710 :                                  radii_list=radii)
    2850             :       ! reference charges
    2851        4710 :       CALL get_qs_env(qs_env, rho=rho)
    2852        4710 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2853        4710 :       nspin = SIZE(matrix_p, 1)
    2854       18840 :       ALLOCATE (charges(natom, nspin))
    2855        4698 :       SELECT CASE (refc)
    2856             :       CASE (ref_charge_atomic)
    2857       12886 :          DO ikind = 1, nkind
    2858        8188 :             CALL get_qs_kind(qs_kind_set(ikind), zeff=zeff)
    2859        8188 :             atomic_kind => atomic_kind_set(ikind)
    2860        8188 :             CALL get_atomic_kind(atomic_kind, atom_list=atom_list)
    2861       40760 :             DO iat = 1, SIZE(atom_list)
    2862       19686 :                i = atom_list(iat)
    2863       27874 :                hirshfeld_env%charges(i) = zeff
    2864             :             END DO
    2865             :          END DO
    2866             :       CASE (ref_charge_mulliken)
    2867          12 :          CALL get_qs_env(qs_env, matrix_s_kp=matrix_s, para_env=para_env)
    2868          12 :          CALL mulliken_charges(matrix_p, matrix_s, para_env, charges)
    2869          48 :          DO iat = 1, natom
    2870         108 :             hirshfeld_env%charges(iat) = SUM(charges(iat, :))
    2871             :          END DO
    2872             :       CASE DEFAULT
    2873        4710 :          CPABORT("Unknown type of reference charge for Hirshfeld partitioning.")
    2874             :       END SELECT
    2875             :       !
    2876       32820 :       charges = 0.0_dp
    2877        4710 :       IF (hirshfeld_env%iterative) THEN
    2878             :          ! Hirshfeld-I charges
    2879          22 :          CALL comp_hirshfeld_i_charges(qs_env, hirshfeld_env, charges, unit_nr)
    2880             :       ELSE
    2881             :          ! Hirshfeld charges
    2882        4688 :          CALL comp_hirshfeld_charges(qs_env, hirshfeld_env, charges)
    2883             :       END IF
    2884        4710 :       CALL get_qs_env(qs_env, particle_set=particle_set, dft_control=dft_control)
    2885        4710 :       IF (dft_control%qs_control%gapw) THEN
    2886             :          ! GAPW: add core charges (rho_hard - rho_soft)
    2887         668 :          CALL get_qs_env(qs_env, rho0_mpole=rho0_mpole)
    2888         668 :          CALL get_rho0_mpole(rho0_mpole, mp_rho=mp_rho)
    2889        2984 :          DO iat = 1, natom
    2890        2316 :             atomic_kind => particle_set(iat)%atomic_kind
    2891        2316 :             CALL get_atomic_kind(atomic_kind, kind_number=ikind)
    2892        2316 :             CALL get_qs_kind(qs_kind_set(ikind), paw_atom=paw_atom)
    2893        2984 :             IF (paw_atom) THEN
    2894        4416 :                charges(iat, 1:nspin) = charges(iat, 1:nspin) + mp_rho(iat)%q0(1:nspin)
    2895             :             END IF
    2896             :          END DO
    2897             :       END IF
    2898             :       !
    2899        4710 :       IF (unit_nr > 0) THEN
    2900             :          CALL write_hirshfeld_charges(charges, hirshfeld_env, particle_set, &
    2901        2369 :                                       qs_kind_set, unit_nr)
    2902             :       END IF
    2903             :       ! Save the charges to the results under the tag [HIRSHFELD-CHARGES]
    2904        4710 :       CALL save_hirshfeld_charges(charges, particle_set, qs_kind_set, qs_env)
    2905             :       !
    2906        4710 :       CALL release_hirshfeld_type(hirshfeld_env)
    2907        4710 :       DEALLOCATE (charges)
    2908             : 
    2909        9420 :    END SUBROUTINE hirshfeld_charges
    2910             : 
    2911             : ! **************************************************************************************************
    2912             : !> \brief ...
    2913             : !> \param ca ...
    2914             : !> \param a ...
    2915             : !> \param cb ...
    2916             : !> \param b ...
    2917             : !> \param l ...
    2918             : ! **************************************************************************************************
    2919           4 :    SUBROUTINE project_function_a(ca, a, cb, b, l)
    2920             :       ! project function cb on ca
    2921             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: ca
    2922             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: a, cb, b
    2923             :       INTEGER, INTENT(IN)                                :: l
    2924             : 
    2925             :       INTEGER                                            :: info, n
    2926           4 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ipiv
    2927           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: smat, tmat, v
    2928             : 
    2929           4 :       n = SIZE(ca)
    2930          40 :       ALLOCATE (smat(n, n), tmat(n, n), v(n, 1), ipiv(n))
    2931             : 
    2932           4 :       CALL sg_overlap(smat, l, a, a)
    2933           4 :       CALL sg_overlap(tmat, l, a, b)
    2934        1252 :       v(:, 1) = MATMUL(tmat, cb)
    2935           4 :       CALL dgesv(n, 1, smat, n, ipiv, v, n, info)
    2936           4 :       CPASSERT(info == 0)
    2937          52 :       ca(:) = v(:, 1)
    2938             : 
    2939           4 :       DEALLOCATE (smat, tmat, v, ipiv)
    2940             : 
    2941           4 :    END SUBROUTINE project_function_a
    2942             : 
    2943             : ! **************************************************************************************************
    2944             : !> \brief ...
    2945             : !> \param ca ...
    2946             : !> \param a ...
    2947             : !> \param bfun ...
    2948             : !> \param grid_atom ...
    2949             : !> \param l ...
    2950             : ! **************************************************************************************************
    2951          36 :    SUBROUTINE project_function_b(ca, a, bfun, grid_atom, l)
    2952             :       ! project function f on ca
    2953             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: ca
    2954             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: a, bfun
    2955             :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2956             :       INTEGER, INTENT(IN)                                :: l
    2957             : 
    2958             :       INTEGER                                            :: i, info, n, nr
    2959          36 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ipiv
    2960          36 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: afun
    2961          36 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: smat, v
    2962             : 
    2963          36 :       n = SIZE(ca)
    2964          36 :       nr = grid_atom%nr
    2965         360 :       ALLOCATE (smat(n, n), v(n, 1), ipiv(n), afun(nr))
    2966             : 
    2967          36 :       CALL sg_overlap(smat, l, a, a)
    2968         468 :       DO i = 1, n
    2969       22032 :          afun(:) = grid_atom%rad(:)**l*EXP(-a(i)*grid_atom%rad2(:))
    2970       22068 :          v(i, 1) = SUM(afun(:)*bfun(:)*grid_atom%wr(:))
    2971             :       END DO
    2972          36 :       CALL dgesv(n, 1, smat, n, ipiv, v, n, info)
    2973          36 :       CPASSERT(info == 0)
    2974         468 :       ca(:) = v(:, 1)
    2975             : 
    2976          36 :       DEALLOCATE (smat, v, ipiv, afun)
    2977             : 
    2978          36 :    END SUBROUTINE project_function_b
    2979             : 
    2980             : ! **************************************************************************************************
    2981             : !> \brief Performs printing of cube files from local energy
    2982             : !> \param input input
    2983             : !> \param logger the logger
    2984             : !> \param qs_env the qs_env in which the qs_env lives
    2985             : !> \par History
    2986             : !>      07.2019 created
    2987             : !> \author JGH
    2988             : ! **************************************************************************************************
    2989       11051 :    SUBROUTINE qs_scf_post_local_energy(input, logger, qs_env)
    2990             :       TYPE(section_vals_type), POINTER                   :: input
    2991             :       TYPE(cp_logger_type), POINTER                      :: logger
    2992             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2993             : 
    2994             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_local_energy'
    2995             : 
    2996             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube
    2997             :       INTEGER                                            :: handle, io_unit, natom, unit_nr
    2998             :       LOGICAL                                            :: append_cube, gapw, gapw_xc, mpi_io
    2999             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3000             :       TYPE(particle_list_type), POINTER                  :: particles
    3001             :       TYPE(pw_env_type), POINTER                         :: pw_env
    3002             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    3003             :       TYPE(pw_r3d_rs_type)                               :: eden
    3004             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    3005             :       TYPE(section_vals_type), POINTER                   :: dft_section
    3006             : 
    3007       11051 :       CALL timeset(routineN, handle)
    3008       11051 :       io_unit = cp_logger_get_default_io_unit(logger)
    3009       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    3010             :                                            "DFT%PRINT%LOCAL_ENERGY_CUBE"), cp_p_file)) THEN
    3011          32 :          dft_section => section_vals_get_subs_vals(input, "DFT")
    3012          32 :          CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, natom=natom)
    3013          32 :          gapw = dft_control%qs_control%gapw
    3014          32 :          gapw_xc = dft_control%qs_control%gapw_xc
    3015          32 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
    3016          32 :          CALL qs_subsys_get(subsys, particles=particles)
    3017          32 :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    3018          32 :          CALL auxbas_pw_pool%create_pw(eden)
    3019             :          !
    3020          32 :          CALL qs_local_energy(qs_env, eden)
    3021             :          !
    3022          32 :          append_cube = section_get_lval(input, "DFT%PRINT%LOCAL_ENERGY_CUBE%APPEND")
    3023          32 :          IF (append_cube) THEN
    3024           0 :             my_pos_cube = "APPEND"
    3025             :          ELSE
    3026          32 :             my_pos_cube = "REWIND"
    3027             :          END IF
    3028          32 :          mpi_io = .TRUE.
    3029             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOCAL_ENERGY_CUBE", &
    3030             :                                         extension=".cube", middle_name="local_energy", &
    3031          32 :                                         file_position=my_pos_cube, mpi_io=mpi_io)
    3032             :          CALL cp_pw_to_cube(eden, &
    3033             :                             unit_nr, "LOCAL ENERGY", particles=particles, &
    3034             :                             stride=section_get_ivals(dft_section, &
    3035          32 :                                                      "PRINT%LOCAL_ENERGY_CUBE%STRIDE"), mpi_io=mpi_io)
    3036          32 :          IF (io_unit > 0) THEN
    3037          16 :             INQUIRE (UNIT=unit_nr, NAME=filename)
    3038          16 :             IF (gapw .OR. gapw_xc) THEN
    3039             :                WRITE (UNIT=io_unit, FMT="(/,T3,A,A)") &
    3040           0 :                   "The soft part of the local energy is written to the file: ", TRIM(ADJUSTL(filename))
    3041             :             ELSE
    3042             :                WRITE (UNIT=io_unit, FMT="(/,T3,A,A)") &
    3043          16 :                   "The local energy is written to the file: ", TRIM(ADJUSTL(filename))
    3044             :             END IF
    3045             :          END IF
    3046             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3047          32 :                                            "DFT%PRINT%LOCAL_ENERGY_CUBE", mpi_io=mpi_io)
    3048             :          !
    3049          32 :          CALL auxbas_pw_pool%give_back_pw(eden)
    3050             :       END IF
    3051       11051 :       CALL timestop(handle)
    3052             : 
    3053       11051 :    END SUBROUTINE qs_scf_post_local_energy
    3054             : 
    3055             : ! **************************************************************************************************
    3056             : !> \brief Performs printing of cube files from local energy
    3057             : !> \param input input
    3058             : !> \param logger the logger
    3059             : !> \param qs_env the qs_env in which the qs_env lives
    3060             : !> \par History
    3061             : !>      07.2019 created
    3062             : !> \author JGH
    3063             : ! **************************************************************************************************
    3064       11051 :    SUBROUTINE qs_scf_post_local_stress(input, logger, qs_env)
    3065             :       TYPE(section_vals_type), POINTER                   :: input
    3066             :       TYPE(cp_logger_type), POINTER                      :: logger
    3067             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3068             : 
    3069             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_local_stress'
    3070             : 
    3071             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube
    3072             :       INTEGER                                            :: handle, io_unit, natom, unit_nr
    3073             :       LOGICAL                                            :: append_cube, gapw, gapw_xc, mpi_io
    3074             :       REAL(KIND=dp)                                      :: beta
    3075             :       TYPE(dft_control_type), POINTER                    :: dft_control
    3076             :       TYPE(particle_list_type), POINTER                  :: particles
    3077             :       TYPE(pw_env_type), POINTER                         :: pw_env
    3078             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    3079             :       TYPE(pw_r3d_rs_type)                               :: stress
    3080             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    3081             :       TYPE(section_vals_type), POINTER                   :: dft_section
    3082             : 
    3083       11051 :       CALL timeset(routineN, handle)
    3084       11051 :       io_unit = cp_logger_get_default_io_unit(logger)
    3085       11051 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, input, &
    3086             :                                            "DFT%PRINT%LOCAL_STRESS_CUBE"), cp_p_file)) THEN
    3087          30 :          dft_section => section_vals_get_subs_vals(input, "DFT")
    3088          30 :          CALL get_qs_env(qs_env=qs_env, dft_control=dft_control, natom=natom)
    3089          30 :          gapw = dft_control%qs_control%gapw
    3090          30 :          gapw_xc = dft_control%qs_control%gapw_xc
    3091          30 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
    3092          30 :          CALL qs_subsys_get(subsys, particles=particles)
    3093          30 :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    3094          30 :          CALL auxbas_pw_pool%create_pw(stress)
    3095             :          !
    3096             :          ! use beta=0: kinetic energy density in symmetric form
    3097          30 :          beta = 0.0_dp
    3098          30 :          CALL qs_local_stress(qs_env, beta=beta)
    3099             :          !
    3100          30 :          append_cube = section_get_lval(input, "DFT%PRINT%LOCAL_STRESS_CUBE%APPEND")
    3101          30 :          IF (append_cube) THEN
    3102           0 :             my_pos_cube = "APPEND"
    3103             :          ELSE
    3104          30 :             my_pos_cube = "REWIND"
    3105             :          END IF
    3106          30 :          mpi_io = .TRUE.
    3107             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%LOCAL_STRESS_CUBE", &
    3108             :                                         extension=".cube", middle_name="local_stress", &
    3109          30 :                                         file_position=my_pos_cube, mpi_io=mpi_io)
    3110             :          CALL cp_pw_to_cube(stress, &
    3111             :                             unit_nr, "LOCAL STRESS", particles=particles, &
    3112             :                             stride=section_get_ivals(dft_section, &
    3113          30 :                                                      "PRINT%LOCAL_STRESS_CUBE%STRIDE"), mpi_io=mpi_io)
    3114          30 :          IF (io_unit > 0) THEN
    3115          15 :             INQUIRE (UNIT=unit_nr, NAME=filename)
    3116          15 :             WRITE (UNIT=io_unit, FMT="(/,T3,A)") "Write 1/3*Tr(sigma) to cube file"
    3117          15 :             IF (gapw .OR. gapw_xc) THEN
    3118             :                WRITE (UNIT=io_unit, FMT="(T3,A,A)") &
    3119           0 :                   "The soft part of the local stress is written to the file: ", TRIM(ADJUSTL(filename))
    3120             :             ELSE
    3121             :                WRITE (UNIT=io_unit, FMT="(T3,A,A)") &
    3122          15 :                   "The local stress is written to the file: ", TRIM(ADJUSTL(filename))
    3123             :             END IF
    3124             :          END IF
    3125             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3126          30 :                                            "DFT%PRINT%LOCAL_STRESS_CUBE", mpi_io=mpi_io)
    3127             :          !
    3128          30 :          CALL auxbas_pw_pool%give_back_pw(stress)
    3129             :       END IF
    3130             : 
    3131       11051 :       CALL timestop(handle)
    3132             : 
    3133       11051 :    END SUBROUTINE qs_scf_post_local_stress
    3134             : 
    3135             : ! **************************************************************************************************
    3136             : !> \brief Performs printing of cube files related to the implicit Poisson solver
    3137             : !> \param input input
    3138             : !> \param logger the logger
    3139             : !> \param qs_env the qs_env in which the qs_env lives
    3140             : !> \par History
    3141             : !>      03.2016 refactored from write_mo_free_results [Hossein Bani-Hashemian]
    3142             : !> \author Mohammad Hossein Bani-Hashemian
    3143             : ! **************************************************************************************************
    3144       11051 :    SUBROUTINE qs_scf_post_ps_implicit(input, logger, qs_env)
    3145             :       TYPE(section_vals_type), POINTER                   :: input
    3146             :       TYPE(cp_logger_type), POINTER                      :: logger
    3147             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3148             : 
    3149             :       CHARACTER(len=*), PARAMETER :: routineN = 'qs_scf_post_ps_implicit'
    3150             : 
    3151             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube
    3152             :       INTEGER                                            :: boundary_condition, handle, i, j, &
    3153             :                                                             n_cstr, n_tiles, unit_nr
    3154             :       LOGICAL :: append_cube, do_cstr_charge_cube, do_dielectric_cube, do_dirichlet_bc_cube, &
    3155             :          has_dirichlet_bc, has_implicit_ps, mpi_io, tile_cubes
    3156             :       TYPE(particle_list_type), POINTER                  :: particles
    3157             :       TYPE(pw_env_type), POINTER                         :: pw_env
    3158             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
    3159             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    3160             :       TYPE(pw_r3d_rs_type)                               :: aux_r
    3161             :       TYPE(pw_r3d_rs_type), POINTER                      :: dirichlet_tile
    3162             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    3163             :       TYPE(section_vals_type), POINTER                   :: dft_section
    3164             : 
    3165       11051 :       CALL timeset(routineN, handle)
    3166             : 
    3167       11051 :       NULLIFY (pw_env, auxbas_pw_pool, dft_section, particles)
    3168             : 
    3169       11051 :       dft_section => section_vals_get_subs_vals(input, "DFT")
    3170       11051 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env, subsys=subsys)
    3171       11051 :       CALL qs_subsys_get(subsys, particles=particles)
    3172       11051 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    3173             : 
    3174       11051 :       has_implicit_ps = .FALSE.
    3175       11051 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    3176       11051 :       IF (pw_env%poisson_env%parameters%solver .EQ. pw_poisson_implicit) has_implicit_ps = .TRUE.
    3177             : 
    3178             :       ! Write the dielectric constant into a cube file
    3179             :       do_dielectric_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
    3180       11051 :                                                             "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE"), cp_p_file)
    3181       11051 :       IF (has_implicit_ps .AND. do_dielectric_cube) THEN
    3182           0 :          append_cube = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE%APPEND")
    3183           0 :          my_pos_cube = "REWIND"
    3184           0 :          IF (append_cube) THEN
    3185           0 :             my_pos_cube = "APPEND"
    3186             :          END IF
    3187           0 :          mpi_io = .TRUE.
    3188             :          unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE", &
    3189             :                                         extension=".cube", middle_name="DIELECTRIC_CONSTANT", file_position=my_pos_cube, &
    3190           0 :                                         mpi_io=mpi_io)
    3191           0 :          CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
    3192           0 :          CALL auxbas_pw_pool%create_pw(aux_r)
    3193             : 
    3194           0 :          boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
    3195           0 :          SELECT CASE (boundary_condition)
    3196             :          CASE (PERIODIC_BC, MIXED_PERIODIC_BC)
    3197           0 :             CALL pw_copy(poisson_env%implicit_env%dielectric%eps, aux_r)
    3198             :          CASE (MIXED_BC, NEUMANN_BC)
    3199             :             CALL pw_shrink(pw_env%poisson_env%parameters%ps_implicit_params%neumann_directions, &
    3200             :                            pw_env%poisson_env%implicit_env%dct_env%dests_shrink, &
    3201             :                            pw_env%poisson_env%implicit_env%dct_env%srcs_shrink, &
    3202             :                            pw_env%poisson_env%implicit_env%dct_env%bounds_local_shftd, &
    3203           0 :                            poisson_env%implicit_env%dielectric%eps, aux_r)
    3204             :          END SELECT
    3205             : 
    3206             :          CALL cp_pw_to_cube(aux_r, unit_nr, "DIELECTRIC CONSTANT", particles=particles, &
    3207             :                             stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE%STRIDE"), &
    3208           0 :                             mpi_io=mpi_io)
    3209             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3210           0 :                                            "DFT%PRINT%IMPLICIT_PSOLVER%DIELECTRIC_CUBE", mpi_io=mpi_io)
    3211             : 
    3212           0 :          CALL auxbas_pw_pool%give_back_pw(aux_r)
    3213             :       END IF
    3214             : 
    3215             :       ! Write Dirichlet constraint charges into a cube file
    3216             :       do_cstr_charge_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
    3217       11051 :                                                              "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE"), cp_p_file)
    3218             : 
    3219       11051 :       has_dirichlet_bc = .FALSE.
    3220       11051 :       IF (has_implicit_ps) THEN
    3221          86 :          boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
    3222          86 :          IF (boundary_condition .EQ. MIXED_PERIODIC_BC .OR. boundary_condition .EQ. MIXED_BC) THEN
    3223          60 :             has_dirichlet_bc = .TRUE.
    3224             :          END IF
    3225             :       END IF
    3226             : 
    3227       11051 :       IF (has_implicit_ps .AND. do_cstr_charge_cube .AND. has_dirichlet_bc) THEN
    3228             :          append_cube = section_get_lval(input, &
    3229           0 :                                         "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE%APPEND")
    3230           0 :          my_pos_cube = "REWIND"
    3231           0 :          IF (append_cube) THEN
    3232           0 :             my_pos_cube = "APPEND"
    3233             :          END IF
    3234           0 :          mpi_io = .TRUE.
    3235             :          unit_nr = cp_print_key_unit_nr(logger, input, &
    3236             :                                         "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE", &
    3237             :                                         extension=".cube", middle_name="dirichlet_cstr_charge", file_position=my_pos_cube, &
    3238           0 :                                         mpi_io=mpi_io)
    3239           0 :          CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
    3240           0 :          CALL auxbas_pw_pool%create_pw(aux_r)
    3241             : 
    3242           0 :          boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
    3243           0 :          SELECT CASE (boundary_condition)
    3244             :          CASE (MIXED_PERIODIC_BC)
    3245           0 :             CALL pw_copy(poisson_env%implicit_env%cstr_charge, aux_r)
    3246             :          CASE (MIXED_BC)
    3247             :             CALL pw_shrink(pw_env%poisson_env%parameters%ps_implicit_params%neumann_directions, &
    3248             :                            pw_env%poisson_env%implicit_env%dct_env%dests_shrink, &
    3249             :                            pw_env%poisson_env%implicit_env%dct_env%srcs_shrink, &
    3250             :                            pw_env%poisson_env%implicit_env%dct_env%bounds_local_shftd, &
    3251           0 :                            poisson_env%implicit_env%cstr_charge, aux_r)
    3252             :          END SELECT
    3253             : 
    3254             :          CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET CONSTRAINT CHARGE", particles=particles, &
    3255             :                             stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE%STRIDE"), &
    3256           0 :                             mpi_io=mpi_io)
    3257             :          CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3258           0 :                                            "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_CSTR_CHARGE_CUBE", mpi_io=mpi_io)
    3259             : 
    3260           0 :          CALL auxbas_pw_pool%give_back_pw(aux_r)
    3261             :       END IF
    3262             : 
    3263             :       ! Write Dirichlet type constranits into cube files
    3264             :       do_dirichlet_bc_cube = BTEST(cp_print_key_should_output(logger%iter_info, input, &
    3265       11051 :                                                               "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE"), cp_p_file)
    3266       11051 :       has_dirichlet_bc = .FALSE.
    3267       11051 :       IF (has_implicit_ps) THEN
    3268          86 :          boundary_condition = pw_env%poisson_env%parameters%ps_implicit_params%boundary_condition
    3269          86 :          IF (boundary_condition .EQ. MIXED_PERIODIC_BC .OR. boundary_condition .EQ. MIXED_BC) THEN
    3270          60 :             has_dirichlet_bc = .TRUE.
    3271             :          END IF
    3272             :       END IF
    3273             : 
    3274       11051 :       IF (has_implicit_ps .AND. has_dirichlet_bc .AND. do_dirichlet_bc_cube) THEN
    3275           0 :          append_cube = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%APPEND")
    3276           0 :          my_pos_cube = "REWIND"
    3277           0 :          IF (append_cube) THEN
    3278           0 :             my_pos_cube = "APPEND"
    3279             :          END IF
    3280           0 :          tile_cubes = section_get_lval(input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%TILE_CUBES")
    3281             : 
    3282           0 :          CALL pw_env_get(pw_env, poisson_env=poisson_env, auxbas_pw_pool=auxbas_pw_pool)
    3283           0 :          CALL auxbas_pw_pool%create_pw(aux_r)
    3284           0 :          CALL pw_zero(aux_r)
    3285             : 
    3286           0 :          IF (tile_cubes) THEN
    3287             :             ! one cube file per tile
    3288           0 :             n_cstr = SIZE(poisson_env%implicit_env%contacts)
    3289           0 :             DO j = 1, n_cstr
    3290           0 :                n_tiles = poisson_env%implicit_env%contacts(j)%dirichlet_bc%n_tiles
    3291           0 :                DO i = 1, n_tiles
    3292             :                   filename = "dirichlet_cstr_"//TRIM(ADJUSTL(cp_to_string(j)))// &
    3293           0 :                              "_tile_"//TRIM(ADJUSTL(cp_to_string(i)))
    3294           0 :                   mpi_io = .TRUE.
    3295             :                   unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", &
    3296             :                                                  extension=".cube", middle_name=filename, file_position=my_pos_cube, &
    3297           0 :                                                  mpi_io=mpi_io)
    3298             : 
    3299           0 :                   CALL pw_copy(poisson_env%implicit_env%contacts(j)%dirichlet_bc%tiles(i)%tile%tile_pw, aux_r)
    3300             : 
    3301             :                   CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET TYPE CONSTRAINT", particles=particles, &
    3302             :                                      stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%STRIDE"), &
    3303           0 :                                      mpi_io=mpi_io)
    3304             :                   CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3305           0 :                                                     "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", mpi_io=mpi_io)
    3306             :                END DO
    3307             :             END DO
    3308             :          ELSE
    3309             :             ! a single cube file
    3310           0 :             NULLIFY (dirichlet_tile)
    3311           0 :             ALLOCATE (dirichlet_tile)
    3312           0 :             CALL auxbas_pw_pool%create_pw(dirichlet_tile)
    3313           0 :             CALL pw_zero(dirichlet_tile)
    3314           0 :             mpi_io = .TRUE.
    3315             :             unit_nr = cp_print_key_unit_nr(logger, input, "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", &
    3316             :                                            extension=".cube", middle_name="DIRICHLET_CSTR", file_position=my_pos_cube, &
    3317           0 :                                            mpi_io=mpi_io)
    3318             : 
    3319           0 :             n_cstr = SIZE(poisson_env%implicit_env%contacts)
    3320           0 :             DO j = 1, n_cstr
    3321           0 :                n_tiles = poisson_env%implicit_env%contacts(j)%dirichlet_bc%n_tiles
    3322           0 :                DO i = 1, n_tiles
    3323           0 :                   CALL pw_copy(poisson_env%implicit_env%contacts(j)%dirichlet_bc%tiles(i)%tile%tile_pw, dirichlet_tile)
    3324           0 :                   CALL pw_axpy(dirichlet_tile, aux_r)
    3325             :                END DO
    3326             :             END DO
    3327             : 
    3328             :             CALL cp_pw_to_cube(aux_r, unit_nr, "DIRICHLET TYPE CONSTRAINT", particles=particles, &
    3329             :                                stride=section_get_ivals(dft_section, "PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE%STRIDE"), &
    3330           0 :                                mpi_io=mpi_io)
    3331             :             CALL cp_print_key_finished_output(unit_nr, logger, input, &
    3332           0 :                                               "DFT%PRINT%IMPLICIT_PSOLVER%DIRICHLET_BC_CUBE", mpi_io=mpi_io)
    3333           0 :             CALL auxbas_pw_pool%give_back_pw(dirichlet_tile)
    3334           0 :             DEALLOCATE (dirichlet_tile)
    3335             :          END IF
    3336             : 
    3337           0 :          CALL auxbas_pw_pool%give_back_pw(aux_r)
    3338             :       END IF
    3339             : 
    3340       11051 :       CALL timestop(handle)
    3341             : 
    3342       11051 :    END SUBROUTINE qs_scf_post_ps_implicit
    3343             : 
    3344             : !**************************************************************************************************
    3345             : !> \brief write an adjacency (interaction) matrix
    3346             : !> \param qs_env qs environment
    3347             : !> \param input the input
    3348             : !> \author Mohammad Hossein Bani-Hashemian
    3349             : ! **************************************************************************************************
    3350       11051 :    SUBROUTINE write_adjacency_matrix(qs_env, input)
    3351             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3352             :       TYPE(section_vals_type), POINTER                   :: input
    3353             : 
    3354             :       CHARACTER(len=*), PARAMETER :: routineN = 'write_adjacency_matrix'
    3355             : 
    3356             :       INTEGER                                            :: adjm_size, colind, handle, iatom, ikind, &
    3357             :                                                             ind, jatom, jkind, k, natom, nkind, &
    3358             :                                                             output_unit, rowind, unit_nr
    3359       11051 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: interact_adjm
    3360             :       LOGICAL                                            :: do_adjm_write, do_symmetric
    3361             :       TYPE(cp_logger_type), POINTER                      :: logger
    3362       11051 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_list_a, basis_set_list_b
    3363             :       TYPE(gto_basis_set_type), POINTER                  :: basis_set_a, basis_set_b
    3364             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    3365             :       TYPE(neighbor_list_iterator_p_type), &
    3366       11051 :          DIMENSION(:), POINTER                           :: nl_iterator
    3367             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    3368       11051 :          POINTER                                         :: nl
    3369       11051 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3370             :       TYPE(section_vals_type), POINTER                   :: dft_section
    3371             : 
    3372       11051 :       CALL timeset(routineN, handle)
    3373             : 
    3374       11051 :       NULLIFY (dft_section)
    3375             : 
    3376       11051 :       logger => cp_get_default_logger()
    3377       11051 :       output_unit = cp_logger_get_default_io_unit(logger)
    3378             : 
    3379       11051 :       dft_section => section_vals_get_subs_vals(input, "DFT")
    3380             :       do_adjm_write = BTEST(cp_print_key_should_output(logger%iter_info, dft_section, &
    3381       11051 :                                                        "PRINT%ADJMAT_WRITE"), cp_p_file)
    3382             : 
    3383       11051 :       IF (do_adjm_write) THEN
    3384          28 :          NULLIFY (qs_kind_set, nl_iterator)
    3385          28 :          NULLIFY (basis_set_list_a, basis_set_list_b, basis_set_a, basis_set_b)
    3386             : 
    3387          28 :          CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, sab_orb=nl, natom=natom, para_env=para_env)
    3388             : 
    3389          28 :          nkind = SIZE(qs_kind_set)
    3390          28 :          CPASSERT(SIZE(nl) .GT. 0)
    3391          28 :          CALL get_neighbor_list_set_p(neighbor_list_sets=nl, symmetric=do_symmetric)
    3392          28 :          CPASSERT(do_symmetric)
    3393         216 :          ALLOCATE (basis_set_list_a(nkind), basis_set_list_b(nkind))
    3394          28 :          CALL basis_set_list_setup(basis_set_list_a, "ORB", qs_kind_set)
    3395          28 :          CALL basis_set_list_setup(basis_set_list_b, "ORB", qs_kind_set)
    3396             : 
    3397          28 :          adjm_size = ((natom + 1)*natom)/2
    3398          84 :          ALLOCATE (interact_adjm(4*adjm_size))
    3399         620 :          interact_adjm = 0
    3400             : 
    3401          28 :          NULLIFY (nl_iterator)
    3402          28 :          CALL neighbor_list_iterator_create(nl_iterator, nl)
    3403        2021 :          DO WHILE (neighbor_list_iterate(nl_iterator) .EQ. 0)
    3404             :             CALL get_iterator_info(nl_iterator, &
    3405             :                                    ikind=ikind, jkind=jkind, &
    3406        1993 :                                    iatom=iatom, jatom=jatom)
    3407             : 
    3408        1993 :             basis_set_a => basis_set_list_a(ikind)%gto_basis_set
    3409        1993 :             IF (.NOT. ASSOCIATED(basis_set_a)) CYCLE
    3410        1993 :             basis_set_b => basis_set_list_b(jkind)%gto_basis_set
    3411        1993 :             IF (.NOT. ASSOCIATED(basis_set_b)) CYCLE
    3412             : 
    3413             :             ! move everything to the upper triangular part
    3414        1993 :             IF (iatom .LE. jatom) THEN
    3415             :                rowind = iatom
    3416             :                colind = jatom
    3417             :             ELSE
    3418         670 :                rowind = jatom
    3419         670 :                colind = iatom
    3420             :                ! swap the kinds too
    3421             :                ikind = ikind + jkind
    3422         670 :                jkind = ikind - jkind
    3423         670 :                ikind = ikind - jkind
    3424             :             END IF
    3425             : 
    3426             :             ! indexing upper triangular matrix
    3427        1993 :             ind = adjm_size - (natom - rowind + 1)*((natom - rowind + 1) + 1)/2 + colind - rowind + 1
    3428             :             ! convert the upper triangular matrix into a adjm_size x 4 matrix
    3429             :             ! columns are: iatom, jatom, ikind, jkind
    3430        1993 :             interact_adjm((ind - 1)*4 + 1) = rowind
    3431        1993 :             interact_adjm((ind - 1)*4 + 2) = colind
    3432        1993 :             interact_adjm((ind - 1)*4 + 3) = ikind
    3433        1993 :             interact_adjm((ind - 1)*4 + 4) = jkind
    3434             :          END DO
    3435             : 
    3436          28 :          CALL para_env%sum(interact_adjm)
    3437             : 
    3438             :          unit_nr = cp_print_key_unit_nr(logger, dft_section, "PRINT%ADJMAT_WRITE", &
    3439             :                                         extension=".adjmat", file_form="FORMATTED", &
    3440          28 :                                         file_status="REPLACE")
    3441          28 :          IF (unit_nr .GT. 0) THEN
    3442          14 :             WRITE (unit_nr, "(1A,2X,1A,5X,1A,4X,A5,3X,A5)") "#", "iatom", "jatom", "ikind", "jkind"
    3443          88 :             DO k = 1, 4*adjm_size, 4
    3444             :                ! print only the interacting atoms
    3445          88 :                IF (interact_adjm(k) .GT. 0 .AND. interact_adjm(k + 1) .GT. 0) THEN
    3446          74 :                   WRITE (unit_nr, "(I8,2X,I8,3X,I6,2X,I6)") interact_adjm(k:k + 3)
    3447             :                END IF
    3448             :             END DO
    3449             :          END IF
    3450             : 
    3451          28 :          CALL cp_print_key_finished_output(unit_nr, logger, dft_section, "PRINT%ADJMAT_WRITE")
    3452             : 
    3453          28 :          CALL neighbor_list_iterator_release(nl_iterator)
    3454          56 :          DEALLOCATE (basis_set_list_a, basis_set_list_b)
    3455             :       END IF
    3456             : 
    3457       11051 :       CALL timestop(handle)
    3458             : 
    3459       22102 :    END SUBROUTINE write_adjacency_matrix
    3460             : 
    3461             : ! **************************************************************************************************
    3462             : !> \brief Updates Hartree potential with MP2 density. Important for REPEAT charges
    3463             : !> \param rho ...
    3464             : !> \param qs_env ...
    3465             : !> \author Vladimir Rybkin
    3466             : ! **************************************************************************************************
    3467         314 :    SUBROUTINE update_hartree_with_mp2(rho, qs_env)
    3468             :       TYPE(qs_rho_type), POINTER                         :: rho
    3469             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3470             : 
    3471             :       LOGICAL                                            :: use_virial
    3472             :       TYPE(pw_c1d_gs_type)                               :: rho_tot_gspace, v_hartree_gspace
    3473             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho_core
    3474             :       TYPE(pw_env_type), POINTER                         :: pw_env
    3475             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
    3476             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    3477             :       TYPE(pw_r3d_rs_type), POINTER                      :: v_hartree_rspace
    3478             :       TYPE(qs_energy_type), POINTER                      :: energy
    3479             :       TYPE(virial_type), POINTER                         :: virial
    3480             : 
    3481         314 :       NULLIFY (auxbas_pw_pool, pw_env, poisson_env, energy, rho_core, v_hartree_rspace, virial)
    3482             :       CALL get_qs_env(qs_env, pw_env=pw_env, energy=energy, &
    3483             :                       rho_core=rho_core, virial=virial, &
    3484         314 :                       v_hartree_rspace=v_hartree_rspace)
    3485             : 
    3486         314 :       use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
    3487             : 
    3488             :       IF (.NOT. use_virial) THEN
    3489             : 
    3490             :          CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, &
    3491         260 :                          poisson_env=poisson_env)
    3492         260 :          CALL auxbas_pw_pool%create_pw(v_hartree_gspace)
    3493         260 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
    3494             : 
    3495         260 :          CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
    3496             :          CALL pw_poisson_solve(poisson_env, rho_tot_gspace, energy%hartree, &
    3497         260 :                                v_hartree_gspace, rho_core=rho_core)
    3498             : 
    3499         260 :          CALL pw_transfer(v_hartree_gspace, v_hartree_rspace)
    3500         260 :          CALL pw_scale(v_hartree_rspace, v_hartree_rspace%pw_grid%dvol)
    3501             : 
    3502         260 :          CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace)
    3503         260 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    3504             :       END IF
    3505             : 
    3506         314 :    END SUBROUTINE update_hartree_with_mp2
    3507             : 
    3508             : END MODULE qs_scf_post_gpw

Generated by: LCOV version 1.15