LCOV - code coverage report
Current view: top level - src - qs_scf_post_tb.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:32ddf85) Lines: 720 766 94.0 %
Date: 2025-05-17 08:08:58 Functions: 9 9 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Does all kind of post scf calculations for DFTB
      10             : !> \par History
      11             : !>      Started as a copy from the GPW file
      12             : !>      - Revise MO information printout (10.05.2021, MK)
      13             : !> \author JHU (03.2013)
      14             : ! **************************************************************************************************
      15             : MODULE qs_scf_post_tb
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      17             :                                               get_atomic_kind
      18             :    USE cell_types,                      ONLY: cell_type,&
      19             :                                               pbc
      20             :    USE cp_array_utils,                  ONLY: cp_1d_r_p_type
      21             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      22             :    USE cp_control_types,                ONLY: dft_control_type
      23             :    USE cp_dbcsr_api,                    ONLY: dbcsr_p_type,&
      24             :                                               dbcsr_type
      25             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm
      26             :    USE cp_dbcsr_output,                 ONLY: cp_dbcsr_write_sparse_matrix
      27             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      28             :                                               cp_fm_cholesky_reduce,&
      29             :                                               cp_fm_cholesky_restore
      30             :    USE cp_fm_diag,                      ONLY: choose_eigv_solver
      31             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      32             :                                               cp_fm_struct_release,&
      33             :                                               cp_fm_struct_type
      34             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      35             :                                               cp_fm_get_info,&
      36             :                                               cp_fm_init_random,&
      37             :                                               cp_fm_release,&
      38             :                                               cp_fm_to_fm_submat,&
      39             :                                               cp_fm_type
      40             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      41             :                                               cp_logger_get_default_io_unit,&
      42             :                                               cp_logger_type
      43             :    USE cp_output_handling,              ONLY: cp_p_file,&
      44             :                                               cp_print_key_finished_output,&
      45             :                                               cp_print_key_should_output,&
      46             :                                               cp_print_key_unit_nr
      47             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      48             :    USE cp_result_methods,               ONLY: cp_results_erase,&
      49             :                                               put_results
      50             :    USE cp_result_types,                 ONLY: cp_result_type
      51             :    USE eeq_method,                      ONLY: eeq_print
      52             :    USE input_constants,                 ONLY: ot_precond_full_all
      53             :    USE input_section_types,             ONLY: section_get_ival,&
      54             :                                               section_get_ivals,&
      55             :                                               section_get_lval,&
      56             :                                               section_get_rval,&
      57             :                                               section_vals_get,&
      58             :                                               section_vals_get_subs_vals,&
      59             :                                               section_vals_type,&
      60             :                                               section_vals_val_get
      61             :    USE kinds,                           ONLY: default_path_length,&
      62             :                                               default_string_length,&
      63             :                                               dp
      64             :    USE machine,                         ONLY: m_flush
      65             :    USE mathconstants,                   ONLY: twopi
      66             :    USE memory_utilities,                ONLY: reallocate
      67             :    USE message_passing,                 ONLY: mp_para_env_type
      68             :    USE molden_utils,                    ONLY: write_mos_molden
      69             :    USE moments_utils,                   ONLY: get_reference_point
      70             :    USE mulliken,                        ONLY: mulliken_charges
      71             :    USE particle_list_types,             ONLY: particle_list_type
      72             :    USE particle_types,                  ONLY: particle_type
      73             :    USE physcon,                         ONLY: debye
      74             :    USE population_analyses,             ONLY: lowdin_population_analysis
      75             :    USE preconditioner_types,            ONLY: preconditioner_type
      76             :    USE pw_env_methods,                  ONLY: pw_env_create,&
      77             :                                               pw_env_rebuild
      78             :    USE pw_env_types,                    ONLY: pw_env_get,&
      79             :                                               pw_env_release,&
      80             :                                               pw_env_type
      81             :    USE pw_grid_types,                   ONLY: pw_grid_type
      82             :    USE pw_methods,                      ONLY: pw_axpy,&
      83             :                                               pw_copy,&
      84             :                                               pw_derive,&
      85             :                                               pw_scale,&
      86             :                                               pw_transfer,&
      87             :                                               pw_zero
      88             :    USE pw_poisson_types,                ONLY: do_ewald_none,&
      89             :                                               greens_fn_type,&
      90             :                                               pw_green_create,&
      91             :                                               pw_green_release,&
      92             :                                               pw_poisson_analytic,&
      93             :                                               pw_poisson_parameter_type
      94             :    USE pw_pool_types,                   ONLY: pw_pool_p_type,&
      95             :                                               pw_pool_type
      96             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      97             :                                               pw_r3d_rs_type
      98             :    USE qs_collocate_density,            ONLY: calculate_rho_core,&
      99             :                                               calculate_rho_elec,&
     100             :                                               calculate_wavefunction
     101             :    USE qs_dftb_types,                   ONLY: qs_dftb_atom_type
     102             :    USE qs_dftb_utils,                   ONLY: get_dftb_atom_param
     103             :    USE qs_dos,                          ONLY: calculate_dos,&
     104             :                                               calculate_dos_kp
     105             :    USE qs_elf_methods,                  ONLY: qs_elf_calc
     106             :    USE qs_energy_window,                ONLY: energy_windows
     107             :    USE qs_environment_types,            ONLY: get_qs_env,&
     108             :                                               qs_environment_type
     109             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     110             :                                               qs_kind_type
     111             :    USE qs_ks_types,                     ONLY: get_ks_env,&
     112             :                                               qs_ks_env_type,&
     113             :                                               set_ks_env
     114             :    USE qs_mo_methods,                   ONLY: calculate_subspace_eigenvalues,&
     115             :                                               make_mo_eig
     116             :    USE qs_mo_occupation,                ONLY: set_mo_occupation
     117             :    USE qs_mo_types,                     ONLY: get_mo_set,&
     118             :                                               mo_set_type
     119             :    USE qs_ot_eigensolver,               ONLY: ot_eigensolver
     120             :    USE qs_pdos,                         ONLY: calculate_projected_dos
     121             :    USE qs_rho_methods,                  ONLY: qs_rho_rebuild
     122             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     123             :                                               qs_rho_set,&
     124             :                                               qs_rho_type
     125             :    USE qs_scf_csr_write,                ONLY: write_ks_matrix_csr,&
     126             :                                               write_s_matrix_csr
     127             :    USE qs_scf_output,                   ONLY: qs_scf_write_mos
     128             :    USE qs_scf_types,                    ONLY: ot_method_nr,&
     129             :                                               qs_scf_env_type
     130             :    USE qs_scf_wfn_mix,                  ONLY: wfn_mix
     131             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     132             :                                               qs_subsys_type
     133             :    USE scf_control_types,               ONLY: scf_control_type
     134             :    USE stm_images,                      ONLY: th_stm_image
     135             :    USE task_list_methods,               ONLY: generate_qs_task_list
     136             :    USE task_list_types,                 ONLY: allocate_task_list,&
     137             :                                               task_list_type
     138             :    USE xtb_qresp,                       ONLY: build_xtb_qresp
     139             :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
     140             :                                               xtb_atom_type
     141             : #include "./base/base_uses.f90"
     142             : 
     143             :    IMPLICIT NONE
     144             :    PRIVATE
     145             : 
     146             :    ! Global parameters
     147             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'qs_scf_post_tb'
     148             :    PUBLIC :: scf_post_calculation_tb, make_lumo_tb
     149             : 
     150             : ! **************************************************************************************************
     151             : 
     152             : CONTAINS
     153             : 
     154             : ! **************************************************************************************************
     155             : !> \brief collects possible post - scf calculations and prints info / computes properties.
     156             : !> \param qs_env ...
     157             : !> \param tb_type ...
     158             : !> \param no_mos ...
     159             : !> \par History
     160             : !>      03.2013 copy of scf_post_gpw
     161             : !> \author JHU
     162             : !> \note
     163             : ! **************************************************************************************************
     164        6710 :    SUBROUTINE scf_post_calculation_tb(qs_env, tb_type, no_mos)
     165             : 
     166             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     167             :       CHARACTER(LEN=*)                                   :: tb_type
     168             :       LOGICAL, INTENT(IN)                                :: no_mos
     169             : 
     170             :       CHARACTER(len=*), PARAMETER :: routineN = 'scf_post_calculation_tb'
     171             : 
     172             :       CHARACTER(LEN=6)                                   :: ana
     173             :       CHARACTER(LEN=default_string_length)               :: aname
     174             :       INTEGER :: after, gfn_type, handle, homo, iat, iatom, ikind, img, ispin, iw, nat, natom, &
     175             :          nkind, nlumo_stm, nlumos, nspins, print_level, unit_nr
     176             :       LOGICAL                                            :: do_cube, do_kpoints, explicit, gfn0, &
     177             :                                                             has_homo, omit_headers, print_it, &
     178             :                                                             rebuild, vdip
     179             :       REAL(KIND=dp)                                      :: zeff
     180        6710 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: mcharge
     181             :       REAL(KIND=dp), DIMENSION(2, 2)                     :: homo_lumo
     182        6710 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: echarge, mo_eigenvalues
     183        6710 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: charges
     184        6710 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     185        6710 :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: unoccupied_evals_stm
     186        6710 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: unoccupied_orbs_stm
     187             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     188             :       TYPE(cp_logger_type), POINTER                      :: logger
     189        6710 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, mo_derivs
     190        6710 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_ks, matrix_p, matrix_s
     191             :       TYPE(dbcsr_type), POINTER                          :: mo_coeff_deriv
     192             :       TYPE(dft_control_type), POINTER                    :: dft_control
     193        6710 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     194             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     195             :       TYPE(particle_list_type), POINTER                  :: particles
     196        6710 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     197             :       TYPE(qs_dftb_atom_type), POINTER                   :: dftb_kind
     198        6710 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     199             :       TYPE(qs_rho_type), POINTER                         :: rho
     200             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     201             :       TYPE(qs_subsys_type), POINTER                      :: subsys
     202             :       TYPE(scf_control_type), POINTER                    :: scf_control
     203             :       TYPE(section_vals_type), POINTER                   :: dft_section, moments_section, print_key, &
     204             :                                                             print_section, sprint_section, &
     205             :                                                             wfn_mix_section
     206             :       TYPE(xtb_atom_type), POINTER                       :: xtb_kind
     207             : 
     208        6710 :       CALL timeset(routineN, handle)
     209             : 
     210        6710 :       logger => cp_get_default_logger()
     211             : 
     212        6710 :       gfn0 = .FALSE.
     213        6710 :       vdip = .FALSE.
     214        6710 :       CALL get_qs_env(qs_env, dft_control=dft_control)
     215       11322 :       SELECT CASE (TRIM(tb_type))
     216             :       CASE ("DFTB")
     217             :       CASE ("xTB")
     218        4612 :          gfn_type = dft_control%qs_control%xtb_control%gfn_type
     219        4612 :          gfn0 = (gfn_type == 0)
     220        4612 :          vdip = dft_control%qs_control%xtb_control%var_dipole
     221             :       CASE DEFAULT
     222        6710 :          CPABORT("unknown TB type")
     223             :       END SELECT
     224             : 
     225        6710 :       CPASSERT(ASSOCIATED(qs_env))
     226        6710 :       NULLIFY (rho, para_env, matrix_s, matrix_p)
     227             :       CALL get_qs_env(qs_env, scf_env=scf_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set, &
     228             :                       rho=rho, natom=natom, para_env=para_env, &
     229        6710 :                       particle_set=particle_set, do_kpoints=do_kpoints, matrix_s_kp=matrix_s)
     230        6710 :       nspins = dft_control%nspins
     231        6710 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
     232             :       ! Mulliken charges
     233       40260 :       ALLOCATE (charges(natom, nspins), mcharge(natom))
     234             :       !
     235        6710 :       CALL mulliken_charges(matrix_p, matrix_s, para_env, charges)
     236             :       !
     237        6710 :       nkind = SIZE(atomic_kind_set)
     238       22594 :       DO ikind = 1, nkind
     239       15884 :          CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     240       20150 :          SELECT CASE (TRIM(tb_type))
     241             :          CASE ("DFTB")
     242        4266 :             CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     243       15884 :             CALL get_dftb_atom_param(dftb_kind, zeff=zeff)
     244             :          CASE ("xTB")
     245       11618 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     246       11618 :             CALL get_xtb_atom_param(xtb_kind, zeff=zeff)
     247             :          CASE DEFAULT
     248       31768 :             CPABORT("unknown TB type")
     249             :          END SELECT
     250       99490 :          DO iatom = 1, nat
     251       61012 :             iat = atomic_kind_set(ikind)%atom_list(iatom)
     252      139850 :             mcharge(iat) = zeff - SUM(charges(iat, 1:nspins))
     253             :          END DO
     254             :       END DO
     255             : 
     256        6710 :       dft_section => section_vals_get_subs_vals(qs_env%input, "DFT")
     257        6710 :       print_section => section_vals_get_subs_vals(dft_section, "PRINT")
     258             : 
     259             :       ! Mulliken
     260        6710 :       print_key => section_vals_get_subs_vals(print_section, "MULLIKEN")
     261        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     262             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "MULLIKEN", &
     263         416 :                                         extension=".mulliken", log_filename=.FALSE.)
     264         416 :          IF (unit_nr > 0) THEN
     265         219 :             WRITE (UNIT=unit_nr, FMT="(/,/,T2,A)") "MULLIKEN POPULATION ANALYSIS"
     266         219 :             IF (nspins == 1) THEN
     267             :                WRITE (UNIT=unit_nr, FMT="(/,T2,A,T70,A)") &
     268         212 :                   " # Atom   Element   Kind        Atomic population", " Net charge"
     269         644 :                DO ikind = 1, nkind
     270         432 :                   CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     271         432 :                   aname = ""
     272         144 :                   SELECT CASE (tb_type)
     273             :                   CASE ("DFTB")
     274         144 :                      CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     275         144 :                      CALL get_dftb_atom_param(dftb_kind, name=aname)
     276             :                   CASE ("xTB")
     277         288 :                      CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     278         288 :                      CALL get_xtb_atom_param(xtb_kind, symbol=aname)
     279             :                   CASE DEFAULT
     280         432 :                      CPABORT("unknown TB type")
     281             :                   END SELECT
     282         432 :                   ana = ADJUSTR(TRIM(ADJUSTL(aname)))
     283        2839 :                   DO iatom = 1, nat
     284        1763 :                      iat = atomic_kind_set(ikind)%atom_list(iatom)
     285             :                      WRITE (UNIT=unit_nr, &
     286             :                             FMT="(T2,I7,5X,A6,I6,T39,F12.6,T69,F12.6)") &
     287        2195 :                         iat, ADJUSTL(ana), ikind, charges(iat, 1), mcharge(iat)
     288             :                   END DO
     289             :                END DO
     290             :                WRITE (UNIT=unit_nr, &
     291             :                       FMT="(T2,A,T39,F12.6,T69,F12.6,/)") &
     292        3738 :                   "# Total charge", SUM(charges(:, 1)), SUM(mcharge(:))
     293             :             ELSE
     294             :                WRITE (UNIT=unit_nr, FMT="(/,T2,A)") &
     295           7 :                   "# Atom  Element  Kind  Atomic population (alpha,beta)   Net charge  Spin moment"
     296          21 :                DO ikind = 1, nkind
     297          14 :                   CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     298          14 :                   aname = ""
     299           3 :                   SELECT CASE (tb_type)
     300             :                   CASE ("DFTB")
     301           3 :                      CALL get_qs_kind(qs_kind_set(ikind), dftb_parameter=dftb_kind)
     302           3 :                      CALL get_dftb_atom_param(dftb_kind, name=aname)
     303             :                   CASE ("xTB")
     304          11 :                      CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
     305          11 :                      CALL get_xtb_atom_param(xtb_kind, symbol=aname)
     306             :                   CASE DEFAULT
     307          14 :                      CPABORT("unknown TB type")
     308             :                   END SELECT
     309          14 :                   ana = ADJUSTR(TRIM(ADJUSTL(aname)))
     310          62 :                   DO iatom = 1, nat
     311          27 :                      iat = atomic_kind_set(ikind)%atom_list(iatom)
     312             :                      WRITE (UNIT=unit_nr, &
     313             :                             FMT="(T2,I6,3X,A6,I6,T29,4(1X,F12.6))") &
     314          27 :                         iat, ADJUSTL(ana), ikind, charges(iat, 1:2), mcharge(iat), &
     315          68 :                         charges(iat, 1) - charges(iat, 2)
     316             :                   END DO
     317             :                END DO
     318             :                WRITE (UNIT=unit_nr, &
     319             :                       FMT="(T2,A,T29,4(1X,F12.6),/)") &
     320          88 :                   "# Total charge and spin", SUM(charges(:, 1)), SUM(charges(:, 2)), SUM(mcharge(:))
     321             :             END IF
     322         219 :             CALL m_flush(unit_nr)
     323             :          END IF
     324         416 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     325             :       END IF
     326             : 
     327             :       ! Compute the Lowdin charges
     328        6710 :       print_key => section_vals_get_subs_vals(print_section, "LOWDIN")
     329        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     330          42 :          SELECT CASE (tb_type)
     331             :          CASE ("DFTB")
     332          42 :             CPWARN("Lowdin population analysis not implemented for DFTB method.")
     333             :          CASE ("xTB")
     334             :             unit_nr = cp_print_key_unit_nr(logger, print_section, "LOWDIN", extension=".lowdin", &
     335          18 :                                            log_filename=.FALSE.)
     336          18 :             print_level = 1
     337          18 :             CALL section_vals_val_get(print_key, "PRINT_GOP", l_val=print_it)
     338          18 :             IF (print_it) print_level = 2
     339          18 :             CALL section_vals_val_get(print_key, "PRINT_ALL", l_val=print_it)
     340          18 :             IF (print_it) print_level = 3
     341          18 :             IF (do_kpoints) THEN
     342           2 :                CPWARN("Lowdin charges not implemented for k-point calculations!")
     343             :             ELSE
     344          16 :                CALL lowdin_population_analysis(qs_env, unit_nr, print_level)
     345             :             END IF
     346          18 :             CALL cp_print_key_finished_output(unit_nr, logger, print_section, "LOWDIN")
     347             :          CASE DEFAULT
     348          96 :             CPABORT("unknown TB type")
     349             :          END SELECT
     350             :       END IF
     351             : 
     352             :       ! EEQ Charges
     353        6710 :       print_key => section_vals_get_subs_vals(print_section, "EEQ_CHARGES")
     354        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     355             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "EEQ_CHARGES", &
     356           2 :                                         extension=".eeq", log_filename=.FALSE.)
     357           2 :          CALL eeq_print(qs_env, unit_nr, print_level, ext=gfn0)
     358           2 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     359             :       END IF
     360             : 
     361             :       ! Hirshfeld
     362        6710 :       print_key => section_vals_get_subs_vals(print_section, "HIRSHFELD")
     363        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     364        6710 :       IF (explicit) THEN
     365           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     366           0 :             CPWARN("Hirshfeld charges not available for TB methods.")
     367             :          END IF
     368             :       END IF
     369             : 
     370             :       ! MAO
     371        6710 :       print_key => section_vals_get_subs_vals(print_section, "MAO_ANALYSIS")
     372        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     373        6710 :       IF (explicit) THEN
     374           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     375           0 :             CPWARN("MAO analysis not available for TB methods.")
     376             :          END IF
     377             :       END IF
     378             : 
     379             :       ! ED
     380        6710 :       print_key => section_vals_get_subs_vals(print_section, "ENERGY_DECOMPOSITION_ANALYSIS")
     381        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     382        6710 :       IF (explicit) THEN
     383           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     384           0 :             CPWARN("ED analysis not available for TB methods.")
     385             :          END IF
     386             :       END IF
     387             : 
     388             :       ! Dipole Moments
     389        6710 :       print_key => section_vals_get_subs_vals(print_section, "MOMENTS")
     390        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     391             :          unit_nr = cp_print_key_unit_nr(logger, print_section, "MOMENTS", &
     392         980 :                                         extension=".data", middle_name="tb_dipole", log_filename=.FALSE.)
     393         980 :          moments_section => section_vals_get_subs_vals(print_section, "MOMENTS")
     394         980 :          IF (gfn0) THEN
     395         156 :             NULLIFY (echarge)
     396         156 :             CALL get_qs_env(qs_env, eeq=echarge)
     397         156 :             CPASSERT(ASSOCIATED(echarge))
     398         156 :             IF (vdip) THEN
     399          56 :                CALL build_xtb_qresp(qs_env, mcharge)
     400         280 :                mcharge(1:natom) = echarge(1:natom) - mcharge(1:natom)
     401             :             END IF
     402         156 :             CALL tb_dipole(qs_env, moments_section, unit_nr, mcharge)
     403             :          ELSE
     404         824 :             CALL tb_dipole(qs_env, moments_section, unit_nr, mcharge)
     405             :          END IF
     406         980 :          CALL cp_print_key_finished_output(unit_nr, logger, print_key)
     407             :       END IF
     408             : 
     409        6710 :       DEALLOCATE (charges, mcharge)
     410             : 
     411             :       ! MO
     412        6710 :       IF (.NOT. no_mos) THEN
     413        6580 :          print_key => section_vals_get_subs_vals(print_section, "MO")
     414        6580 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     415         138 :             CALL qs_scf_write_mos(qs_env, scf_env, final_mos=.TRUE.)
     416         138 :             IF (.NOT. do_kpoints) THEN
     417          92 :                SELECT CASE (tb_type)
     418             :                CASE ("DFTB")
     419             :                CASE ("xTB")
     420          92 :                   sprint_section => section_vals_get_subs_vals(dft_section, "PRINT%MO_MOLDEN")
     421          92 :                   CALL get_qs_env(qs_env, mos=mos)
     422          92 :                   CALL write_mos_molden(mos, qs_kind_set, particle_set, sprint_section)
     423             :                CASE DEFAULT
     424         134 :                   CPABORT("Unknown TB type")
     425             :                END SELECT
     426             :             END IF
     427             :          END IF
     428             :       END IF
     429             : 
     430             :       ! Wavefunction mixing
     431        6710 :       IF (.NOT. no_mos) THEN
     432        6580 :          wfn_mix_section => section_vals_get_subs_vals(dft_section, "PRINT%WFN_MIX")
     433        6580 :          CALL section_vals_get(wfn_mix_section, explicit=explicit)
     434        6580 :          IF (explicit .AND. .NOT. qs_env%run_rtp) CALL wfn_mix_tb(qs_env, dft_section, scf_env)
     435             :       END IF
     436             : 
     437        6710 :       IF (.NOT. no_mos) THEN
     438        6580 :          print_key => section_vals_get_subs_vals(print_section, "DOS")
     439        6580 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     440           2 :             IF (do_kpoints) THEN
     441           2 :                CALL calculate_dos_kp(qs_env, dft_section)
     442             :             ELSE
     443           0 :                CALL get_qs_env(qs_env, mos=mos)
     444           0 :                CALL calculate_dos(mos, dft_section)
     445             :             END IF
     446             :          END IF
     447             :       END IF
     448             : 
     449             :       ! PDOS
     450        6710 :       IF (.NOT. no_mos) THEN
     451        6580 :          print_key => section_vals_get_subs_vals(print_section, "PDOS")
     452        6580 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     453          18 :             IF (do_kpoints) THEN
     454          14 :                CPWARN("Projected density of states not implemented for k-points.")
     455             :             ELSE
     456           4 :                CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv)
     457           8 :                DO ispin = 1, dft_control%nspins
     458           4 :                   IF (scf_env%method == ot_method_nr) THEN
     459             :                      CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
     460           0 :                                      eigenvalues=mo_eigenvalues)
     461           0 :                      IF (ASSOCIATED(qs_env%mo_derivs)) THEN
     462           0 :                         mo_coeff_deriv => qs_env%mo_derivs(ispin)%matrix
     463             :                      ELSE
     464           0 :                         mo_coeff_deriv => NULL()
     465             :                      END IF
     466             :                      CALL calculate_subspace_eigenvalues(mo_coeff, ks_rmpv(ispin)%matrix, mo_eigenvalues, &
     467             :                                                          do_rotation=.TRUE., &
     468           0 :                                                          co_rotate_dbcsr=mo_coeff_deriv)
     469           0 :                      CALL set_mo_occupation(mo_set=mos(ispin))
     470             :                   END IF
     471           8 :                   IF (dft_control%nspins == 2) THEN
     472             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
     473           0 :                                                   qs_kind_set, particle_set, qs_env, dft_section, ispin=ispin)
     474             :                   ELSE
     475             :                      CALL calculate_projected_dos(mos(ispin), atomic_kind_set, &
     476           4 :                                                   qs_kind_set, particle_set, qs_env, dft_section)
     477             :                   END IF
     478             :                END DO
     479             :             END IF
     480             :          END IF
     481             :       END IF
     482             : 
     483             :       ! can we do CUBE files?
     484             :       SELECT CASE (tb_type)
     485             :       CASE ("DFTB")
     486             :          do_cube = .FALSE.
     487        4612 :          rebuild = .FALSE.
     488             :       CASE ("xTB")
     489        4612 :          do_cube = .TRUE.
     490        4612 :          rebuild = .TRUE.
     491             :       CASE DEFAULT
     492        6710 :          CPABORT("unknown TB type")
     493             :       END SELECT
     494             : 
     495             :       ! Energy Windows for LS code
     496        6710 :       print_key => section_vals_get_subs_vals(print_section, "ENERGY_WINDOWS")
     497        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     498          60 :          IF (do_cube) THEN
     499          18 :             IF (do_kpoints) THEN
     500           2 :                CPWARN("Energy Windows not implemented for k-points.")
     501             :             ELSE
     502             :                IF (rebuild) THEN
     503          16 :                   CALL rebuild_pw_env(qs_env)
     504             :                   rebuild = .FALSE.
     505             :                END IF
     506          16 :                CALL energy_windows(qs_env)
     507             :             END IF
     508             :          ELSE
     509          42 :             CPWARN("Energy Windows not implemented for TB methods.")
     510             :          END IF
     511             :       END IF
     512             : 
     513             :       ! DENSITY CUBE FILE
     514        6710 :       print_key => section_vals_get_subs_vals(print_section, "E_DENSITY_CUBE")
     515        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     516          58 :          IF (do_cube) THEN
     517          16 :             IF (rebuild) THEN
     518           2 :                CALL rebuild_pw_env(qs_env)
     519           2 :                rebuild = .FALSE.
     520             :             END IF
     521          16 :             CALL print_e_density(qs_env, print_key)
     522             :          ELSE
     523          42 :             CPWARN("Electronic density cube file not implemented for TB methods.")
     524             :          END IF
     525             :       END IF
     526             : 
     527             :       ! TOTAL DENSITY CUBE FILE
     528        6710 :       print_key => section_vals_get_subs_vals(print_section, "TOT_DENSITY_CUBE")
     529        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     530          60 :          IF (do_cube) THEN
     531          18 :             IF (rebuild) THEN
     532           2 :                CALL rebuild_pw_env(qs_env)
     533           2 :                rebuild = .FALSE.
     534             :             END IF
     535          18 :             CALL print_density_cubes(qs_env, print_key, total_density=.TRUE.)
     536             :          ELSE
     537          42 :             CPWARN("Total density cube file not implemented for TB methods.")
     538             :          END IF
     539             :       END IF
     540             : 
     541             :       ! V_Hartree CUBE FILE
     542        6710 :       print_key => section_vals_get_subs_vals(print_section, "V_HARTREE_CUBE")
     543        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     544          58 :          IF (do_cube) THEN
     545          16 :             IF (rebuild) THEN
     546           0 :                CALL rebuild_pw_env(qs_env)
     547           0 :                rebuild = .FALSE.
     548             :             END IF
     549          16 :             CALL print_density_cubes(qs_env, print_key, v_hartree=.TRUE.)
     550             :          ELSE
     551          42 :             CPWARN("Hartree potential cube file not implemented for TB methods.")
     552             :          END IF
     553             :       END IF
     554             : 
     555             :       ! EFIELD CUBE FILE
     556        6710 :       print_key => section_vals_get_subs_vals(print_section, "EFIELD_CUBE")
     557        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     558          58 :          IF (do_cube) THEN
     559          16 :             IF (rebuild) THEN
     560           0 :                CALL rebuild_pw_env(qs_env)
     561           0 :                rebuild = .FALSE.
     562             :             END IF
     563          16 :             CALL print_density_cubes(qs_env, print_key, efield=.TRUE.)
     564             :          ELSE
     565          42 :             CPWARN("Efield cube file not implemented for TB methods.")
     566             :          END IF
     567             :       END IF
     568             : 
     569             :       ! ELF
     570        6710 :       print_key => section_vals_get_subs_vals(print_section, "ELF_CUBE")
     571        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     572          58 :          IF (do_cube) THEN
     573          16 :             IF (rebuild) THEN
     574           0 :                CALL rebuild_pw_env(qs_env)
     575           0 :                rebuild = .FALSE.
     576             :             END IF
     577          16 :             CALL print_elf(qs_env, print_key)
     578             :          ELSE
     579          42 :             CPWARN("ELF not implemented for TB methods.")
     580             :          END IF
     581             :       END IF
     582             : 
     583             :       ! MO CUBES
     584        6710 :       IF (.NOT. no_mos) THEN
     585        6580 :          print_key => section_vals_get_subs_vals(print_section, "MO_CUBES")
     586        6580 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     587          58 :             IF (do_cube) THEN
     588          16 :                IF (rebuild) THEN
     589           2 :                   CALL rebuild_pw_env(qs_env)
     590           2 :                   rebuild = .FALSE.
     591             :                END IF
     592          16 :                CALL print_mo_cubes(qs_env, print_key)
     593             :             ELSE
     594          42 :                CPWARN("Printing of MO cube files not implemented for TB methods.")
     595             :             END IF
     596             :          END IF
     597             :       END IF
     598             : 
     599             :       ! STM
     600        6710 :       IF (.NOT. no_mos) THEN
     601        6580 :          print_key => section_vals_get_subs_vals(print_section, "STM")
     602        6580 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     603           2 :             IF (do_cube) THEN
     604           2 :                IF (rebuild) THEN
     605           2 :                   CALL rebuild_pw_env(qs_env)
     606           2 :                   rebuild = .FALSE.
     607             :                END IF
     608           2 :                IF (do_kpoints) THEN
     609           0 :                   CPWARN("STM not implemented for k-point calculations!")
     610             :                ELSE
     611           2 :                   nlumo_stm = section_get_ival(print_key, "NLUMO")
     612           2 :                   CPASSERT(.NOT. dft_control%restricted)
     613             :                   CALL get_qs_env(qs_env, mos=mos, mo_derivs=mo_derivs, &
     614           2 :                                   scf_control=scf_control, matrix_ks=ks_rmpv)
     615           2 :                   CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
     616           4 :                   DO ispin = 1, dft_control%nspins
     617           2 :                      CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=homo)
     618           4 :                      homo_lumo(ispin, 1) = mo_eigenvalues(homo)
     619             :                   END DO
     620           2 :                   has_homo = .TRUE.
     621           2 :                   NULLIFY (unoccupied_orbs_stm, unoccupied_evals_stm)
     622           2 :                   IF (nlumo_stm > 0) THEN
     623           8 :                      ALLOCATE (unoccupied_orbs_stm(dft_control%nspins))
     624           8 :                      ALLOCATE (unoccupied_evals_stm(dft_control%nspins))
     625             :                      CALL make_lumo_tb(qs_env, scf_env, unoccupied_orbs_stm, unoccupied_evals_stm, &
     626           2 :                                        nlumo_stm, nlumos)
     627             :                   END IF
     628             : 
     629           2 :                   CALL get_qs_env(qs_env, subsys=subsys)
     630           2 :                   CALL qs_subsys_get(subsys, particles=particles)
     631             :                   CALL th_stm_image(qs_env, print_key, particles, unoccupied_orbs_stm, &
     632           2 :                                     unoccupied_evals_stm)
     633             : 
     634           2 :                   IF (nlumo_stm > 0) THEN
     635           4 :                      DO ispin = 1, dft_control%nspins
     636           4 :                         DEALLOCATE (unoccupied_evals_stm(ispin)%array)
     637             :                      END DO
     638           2 :                      DEALLOCATE (unoccupied_evals_stm)
     639           2 :                      CALL cp_fm_release(unoccupied_orbs_stm)
     640             :                   END IF
     641             :                END IF
     642             :             END IF
     643             :          END IF
     644             :       END IF
     645             : 
     646             :       ! Write the density matrix
     647        6710 :       CALL get_qs_env(qs_env, matrix_ks_kp=matrix_ks)
     648        6710 :       CALL section_vals_val_get(print_section, "AO_MATRICES%OMIT_HEADERS", l_val=omit_headers)
     649        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, &
     650             :                                            "AO_MATRICES/DENSITY"), cp_p_file)) THEN
     651             :          iw = cp_print_key_unit_nr(logger, print_section, "AO_MATRICES/DENSITY", &
     652          50 :                                    extension=".Log")
     653          50 :          CALL section_vals_val_get(print_section, "AO_MATRICES%NDIGITS", i_val=after)
     654          50 :          after = MIN(MAX(after, 1), 16)
     655         100 :          DO ispin = 1, dft_control%nspins
     656         150 :             DO img = 1, SIZE(matrix_p, 2)
     657             :                CALL cp_dbcsr_write_sparse_matrix(matrix_p(ispin, img)%matrix, 4, after, qs_env, &
     658         100 :                                                  para_env, output_unit=iw, omit_headers=omit_headers)
     659             :             END DO
     660             :          END DO
     661          50 :          CALL cp_print_key_finished_output(iw, logger, print_section, "AO_MATRICES/DENSITY")
     662             :       END IF
     663             : 
     664             :       ! The xTB matrix itself
     665        6710 :       IF (BTEST(cp_print_key_should_output(logger%iter_info, print_section, &
     666             :                                            "AO_MATRICES/KOHN_SHAM_MATRIX"), cp_p_file)) THEN
     667             :          iw = cp_print_key_unit_nr(logger, print_section, "AO_MATRICES/KOHN_SHAM_MATRIX", &
     668          50 :                                    extension=".Log")
     669          50 :          CALL section_vals_val_get(print_section, "AO_MATRICES%NDIGITS", i_val=after)
     670          50 :          after = MIN(MAX(after, 1), 16)
     671         100 :          DO ispin = 1, dft_control%nspins
     672         150 :             DO img = 1, SIZE(matrix_ks, 2)
     673             :                CALL cp_dbcsr_write_sparse_matrix(matrix_ks(ispin, img)%matrix, 4, after, qs_env, para_env, &
     674         100 :                                                  output_unit=iw, omit_headers=omit_headers)
     675             :             END DO
     676             :          END DO
     677          50 :          CALL cp_print_key_finished_output(iw, logger, print_section, "AO_MATRICES/KOHN_SHAM_MATRIX")
     678             :       END IF
     679             : 
     680             :       ! these print keys are not supported in TB
     681             : 
     682             :       ! V_XC CUBE FILE
     683        6710 :       print_key => section_vals_get_subs_vals(print_section, "V_XC_CUBE")
     684        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     685        6710 :       IF (explicit) THEN
     686           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     687           0 :             CPWARN("XC potential cube file not available for TB methods.")
     688             :          END IF
     689             :       END IF
     690             : 
     691             :       ! Electric field gradients
     692        6710 :       print_key => section_vals_get_subs_vals(print_section, "ELECTRIC_FIELD_GRADIENT")
     693        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     694        6710 :       IF (explicit) THEN
     695           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     696           0 :             CPWARN("Electric field gradient not implemented for TB methods.")
     697             :          END IF
     698             :       END IF
     699             : 
     700             :       ! KINETIC ENERGY
     701        6710 :       print_key => section_vals_get_subs_vals(print_section, "KINETIC_ENERGY")
     702        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     703        6710 :       IF (explicit) THEN
     704           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     705           0 :             CPWARN("Kinetic energy not available for TB methods.")
     706             :          END IF
     707             :       END IF
     708             : 
     709             :       ! Xray diffraction spectrum
     710        6710 :       print_key => section_vals_get_subs_vals(print_section, "XRAY_DIFFRACTION_SPECTRUM")
     711        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     712        6710 :       IF (explicit) THEN
     713           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     714           0 :             CPWARN("Xray diffraction spectrum not implemented for TB methods.")
     715             :          END IF
     716             :       END IF
     717             : 
     718             :       ! EPR Hyperfine Coupling
     719        6710 :       print_key => section_vals_get_subs_vals(print_section, "HYPERFINE_COUPLING_TENSOR")
     720        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     721        6710 :       IF (explicit) THEN
     722           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     723           0 :             CPWARN("Hyperfine Coupling not implemented for TB methods.")
     724             :          END IF
     725             :       END IF
     726             : 
     727             :       ! PLUS_U
     728        6710 :       print_key => section_vals_get_subs_vals(print_section, "PLUS_U")
     729        6710 :       CALL section_vals_get(print_key, explicit=explicit)
     730        6710 :       IF (explicit) THEN
     731           0 :          IF (BTEST(cp_print_key_should_output(logger%iter_info, print_key), cp_p_file)) THEN
     732           0 :             CPWARN("DFT+U method not implemented for TB methods.")
     733             :          END IF
     734             :       END IF
     735             : 
     736        6710 :       CALL write_ks_matrix_csr(qs_env, qs_env%input)
     737        6710 :       CALL write_s_matrix_csr(qs_env, qs_env%input)
     738             : 
     739        6710 :       CALL timestop(handle)
     740             : 
     741       73810 :    END SUBROUTINE scf_post_calculation_tb
     742             : 
     743             : ! **************************************************************************************************
     744             : !> \brief ...
     745             : !> \param qs_env ...
     746             : !> \param input ...
     747             : !> \param unit_nr ...
     748             : !> \param charges ...
     749             : ! **************************************************************************************************
     750         980 :    SUBROUTINE tb_dipole(qs_env, input, unit_nr, charges)
     751             : 
     752             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     753             :       TYPE(section_vals_type), POINTER                   :: input
     754             :       INTEGER, INTENT(in)                                :: unit_nr
     755             :       REAL(KIND=dp), DIMENSION(:), INTENT(in)            :: charges
     756             : 
     757             :       CHARACTER(LEN=default_string_length)               :: description, dipole_type
     758             :       COMPLEX(KIND=dp)                                   :: dzeta, dzphase(3), zeta, zphase(3)
     759             :       COMPLEX(KIND=dp), DIMENSION(3)                     :: dggamma, ggamma
     760             :       INTEGER                                            :: i, iat, ikind, j, nat, reference
     761             :       LOGICAL                                            :: do_berry
     762             :       REAL(KIND=dp) :: charge_tot, ci(3), dci(3), dipole(3), dipole_deriv(3), drcc(3), dria(3), &
     763             :          dtheta, gvec(3), q, rcc(3), ria(3), theta, tmp(3), via(3)
     764         980 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: ref_point
     765         980 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     766             :       TYPE(cell_type), POINTER                           :: cell
     767             :       TYPE(cp_result_type), POINTER                      :: results
     768         980 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     769             : 
     770         980 :       NULLIFY (atomic_kind_set, cell, results)
     771             :       CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, &
     772         980 :                       particle_set=particle_set, cell=cell, results=results)
     773             : 
     774             :       ! Reference point
     775         980 :       reference = section_get_ival(input, keyword_name="REFERENCE")
     776         980 :       NULLIFY (ref_point)
     777         980 :       description = '[DIPOLE]'
     778         980 :       CALL section_vals_val_get(input, "REF_POINT", r_vals=ref_point)
     779         980 :       CALL section_vals_val_get(input, "PERIODIC", l_val=do_berry)
     780             : 
     781         980 :       CALL get_reference_point(rcc, drcc, qs_env=qs_env, reference=reference, ref_point=ref_point)
     782             : 
     783             :       ! Dipole deriv will be the derivative of the Dipole(dM/dt=\sum e_j v_j)
     784         980 :       dipole_deriv = 0.0_dp
     785         980 :       dipole = 0.0_dp
     786         980 :       IF (do_berry) THEN
     787         612 :          dipole_type = "periodic (Berry phase)"
     788        2448 :          rcc = pbc(rcc, cell)
     789         612 :          charge_tot = 0._dp
     790        3904 :          charge_tot = SUM(charges)
     791        9792 :          ria = twopi*MATMUL(cell%h_inv, rcc)
     792        2448 :          zphase = CMPLX(COS(ria), SIN(ria), dp)**charge_tot
     793             : 
     794        9792 :          dria = twopi*MATMUL(cell%h_inv, drcc)
     795        2448 :          dzphase = charge_tot*CMPLX(-SIN(ria), COS(ria), dp)**(charge_tot - 1.0_dp)*dria
     796             : 
     797        2448 :          ggamma = CMPLX(1.0_dp, 0.0_dp, KIND=dp)
     798         612 :          dggamma = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
     799        2058 :          DO ikind = 1, SIZE(atomic_kind_set)
     800        1446 :             CALL get_atomic_kind(atomic_kind_set(ikind), natom=nat)
     801        5350 :             DO i = 1, nat
     802        3292 :                iat = atomic_kind_set(ikind)%atom_list(i)
     803       13168 :                ria = particle_set(iat)%r(:)
     804       13168 :                ria = pbc(ria, cell)
     805       13168 :                via = particle_set(iat)%v(:)
     806        3292 :                q = charges(iat)
     807       14614 :                DO j = 1, 3
     808       39504 :                   gvec = twopi*cell%h_inv(j, :)
     809       39504 :                   theta = SUM(ria(:)*gvec(:))
     810       39504 :                   dtheta = SUM(via(:)*gvec(:))
     811        9876 :                   zeta = CMPLX(COS(theta), SIN(theta), KIND=dp)**(-q)
     812        9876 :                   dzeta = -q*CMPLX(-SIN(theta), COS(theta), KIND=dp)**(-q - 1.0_dp)*dtheta
     813        9876 :                   dggamma(j) = dggamma(j)*zeta + ggamma(j)*dzeta
     814       13168 :                   ggamma(j) = ggamma(j)*zeta
     815             :                END DO
     816             :             END DO
     817             :          END DO
     818        2448 :          dggamma = dggamma*zphase + ggamma*dzphase
     819        2448 :          ggamma = ggamma*zphase
     820        2448 :          IF (ALL(REAL(ggamma, KIND=dp) /= 0.0_dp)) THEN
     821        2448 :             tmp = AIMAG(ggamma)/REAL(ggamma, KIND=dp)
     822        2448 :             ci = -ATAN(tmp)
     823             :             dci = -(1.0_dp/(1.0_dp + tmp**2))* &
     824        2448 :                   (AIMAG(dggamma)*REAL(ggamma, KIND=dp) - AIMAG(ggamma)*REAL(dggamma, KIND=dp))/(REAL(ggamma, KIND=dp))**2
     825        9792 :             dipole = MATMUL(cell%hmat, ci)/twopi
     826        9792 :             dipole_deriv = MATMUL(cell%hmat, dci)/twopi
     827             :          END IF
     828             :       ELSE
     829         368 :          dipole_type = "non-periodic"
     830        1714 :          DO i = 1, SIZE(particle_set)
     831             :             ! no pbc(particle_set(i)%r(:),cell) so that the total dipole is the sum of the molecular dipoles
     832        5384 :             ria = particle_set(i)%r(:)
     833        1346 :             q = charges(i)
     834        5384 :             dipole = dipole + q*(ria - rcc)
     835        5752 :             dipole_deriv(:) = dipole_deriv(:) + q*(particle_set(i)%v(:) - drcc)
     836             :          END DO
     837             :       END IF
     838         980 :       CALL cp_results_erase(results=results, description=description)
     839             :       CALL put_results(results=results, description=description, &
     840         980 :                        values=dipole(1:3))
     841         980 :       IF (unit_nr > 0) THEN
     842             :          WRITE (unit_nr, '(/,T2,A,T31,A50)') &
     843         530 :             'TB_DIPOLE| Dipole type', ADJUSTR(TRIM(dipole_type))
     844         530 :          WRITE (unit_nr, "(T2,A,T30,3(1X,F16.8))") "TB_DIPOLE| Ref. Point [Bohr]", rcc
     845             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     846         530 :             'TB_DIPOLE| Moment [a.u.]', dipole(1:3)
     847             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     848        2120 :             'TB_DIPOLE| Moment [Debye]', dipole(1:3)*debye
     849             :          WRITE (unit_nr, '(T2,A,T30,3(1X,F16.8))') &
     850         530 :             'TB_DIPOLE| Derivative [a.u.]', dipole_deriv(1:3)
     851             :       END IF
     852             : 
     853         980 :    END SUBROUTINE tb_dipole
     854             : 
     855             : ! **************************************************************************************************
     856             : !> \brief computes the MOs and calls the wavefunction mixing routine.
     857             : !> \param qs_env ...
     858             : !> \param dft_section ...
     859             : !> \param scf_env ...
     860             : !> \author Florian Schiffmann
     861             : !> \note
     862             : ! **************************************************************************************************
     863             : 
     864           2 :    SUBROUTINE wfn_mix_tb(qs_env, dft_section, scf_env)
     865             : 
     866             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     867             :       TYPE(section_vals_type), POINTER                   :: dft_section
     868             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     869             : 
     870             :       INTEGER                                            :: ispin, nao, nmo, output_unit
     871           2 :       REAL(dp), DIMENSION(:), POINTER                    :: mo_eigenvalues
     872           2 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     873             :       TYPE(cp_fm_struct_type), POINTER                   :: ao_ao_fmstruct, ao_lumo_struct
     874             :       TYPE(cp_fm_type)                                   :: KS_tmp, MO_tmp, S_tmp, work
     875           2 :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: lumos
     876             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     877             :       TYPE(cp_logger_type), POINTER                      :: logger
     878           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     879           2 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     880             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     881           2 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     882           2 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     883             :       TYPE(section_vals_type), POINTER                   :: wfn_mix_section
     884             : 
     885           4 :       logger => cp_get_default_logger()
     886             :       CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s, matrix_ks=matrix_ks, &
     887             :                       particle_set=particle_set, atomic_kind_set=atomic_kind_set, &
     888           2 :                       qs_kind_set=qs_kind_set, mos=mos, para_env=para_env)
     889             : 
     890           2 :       wfn_mix_section => section_vals_get_subs_vals(dft_section, "PRINT%WFN_MIX")
     891             : 
     892           2 :       CALL get_mo_set(mos(1), mo_coeff=mo_coeff, nao=nao)
     893             : 
     894             :       CALL cp_fm_struct_create(fmstruct=ao_ao_fmstruct, nrow_global=nao, ncol_global=nao, &
     895           2 :                                template_fmstruct=mo_coeff%matrix_struct)
     896           2 :       CALL cp_fm_create(S_tmp, matrix_struct=ao_ao_fmstruct)
     897           2 :       CALL cp_fm_create(KS_tmp, matrix_struct=ao_ao_fmstruct)
     898           2 :       CALL cp_fm_create(MO_tmp, matrix_struct=ao_ao_fmstruct)
     899           2 :       CALL cp_fm_create(work, matrix_struct=ao_ao_fmstruct)
     900          10 :       ALLOCATE (lumos(SIZE(mos)))
     901             : 
     902           2 :       CALL copy_dbcsr_to_fm(matrix_s(1)%matrix, S_tmp)
     903           2 :       CALL cp_fm_cholesky_decompose(S_tmp)
     904             : 
     905           6 :       DO ispin = 1, SIZE(mos)
     906           4 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, eigenvalues=mo_eigenvalues, nmo=nmo)
     907             :          CALL cp_fm_struct_create(fmstruct=ao_lumo_struct, nrow_global=nao, ncol_global=nao - nmo, &
     908           4 :                                   template_fmstruct=mo_coeff%matrix_struct)
     909             : 
     910           4 :          CALL cp_fm_create(lumos(ispin), matrix_struct=ao_lumo_struct)
     911           4 :          CALL copy_dbcsr_to_fm(matrix_ks(ispin)%matrix, KS_tmp)
     912           4 :          CALL cp_fm_cholesky_reduce(KS_tmp, S_tmp)
     913           4 :          CALL choose_eigv_solver(KS_tmp, work, mo_eigenvalues)
     914           4 :          CALL cp_fm_cholesky_restore(work, nao, S_tmp, MO_tmp, "SOLVE")
     915           4 :          CALL cp_fm_to_fm_submat(MO_tmp, mo_coeff, nao, nmo, 1, 1, 1, 1)
     916           4 :          CALL cp_fm_to_fm_submat(MO_tmp, lumos(ispin), nao, nao - nmo, 1, nmo + 1, 1, 1)
     917             : 
     918          10 :          CALL cp_fm_struct_release(ao_lumo_struct)
     919             :       END DO
     920             : 
     921           2 :       output_unit = cp_logger_get_default_io_unit(logger)
     922             :       CALL wfn_mix(mos, particle_set, dft_section, qs_kind_set, para_env, output_unit, &
     923           2 :                    unoccupied_orbs=lumos, scf_env=scf_env, matrix_s=matrix_s)
     924             : 
     925           2 :       CALL cp_fm_release(lumos)
     926           2 :       CALL cp_fm_release(S_tmp)
     927           2 :       CALL cp_fm_release(MO_tmp)
     928           2 :       CALL cp_fm_release(KS_tmp)
     929           2 :       CALL cp_fm_release(work)
     930           2 :       CALL cp_fm_struct_release(ao_ao_fmstruct)
     931             : 
     932           6 :    END SUBROUTINE wfn_mix_tb
     933             : 
     934             : ! **************************************************************************************************
     935             : !> \brief Gets the lumos, and eigenvalues for the lumos
     936             : !> \param qs_env ...
     937             : !> \param scf_env ...
     938             : !> \param unoccupied_orbs ...
     939             : !> \param unoccupied_evals ...
     940             : !> \param nlumo ...
     941             : !> \param nlumos ...
     942             : ! **************************************************************************************************
     943           2 :    SUBROUTINE make_lumo_tb(qs_env, scf_env, unoccupied_orbs, unoccupied_evals, nlumo, nlumos)
     944             : 
     945             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     946             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
     947             :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: unoccupied_orbs
     948             :       TYPE(cp_1d_r_p_type), DIMENSION(:), INTENT(INOUT)  :: unoccupied_evals
     949             :       INTEGER                                            :: nlumo
     950             :       INTEGER, INTENT(OUT)                               :: nlumos
     951             : 
     952             :       INTEGER                                            :: homo, iounit, ispin, n, nao, nmo
     953             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     954             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_tmp
     955             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     956             :       TYPE(cp_logger_type), POINTER                      :: logger
     957           2 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, matrix_s
     958             :       TYPE(dft_control_type), POINTER                    :: dft_control
     959           2 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     960             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     961             :       TYPE(preconditioner_type), POINTER                 :: local_preconditioner
     962             :       TYPE(scf_control_type), POINTER                    :: scf_control
     963             : 
     964           2 :       NULLIFY (mos, ks_rmpv, scf_control, dft_control, para_env, blacs_env)
     965             :       CALL get_qs_env(qs_env, &
     966             :                       mos=mos, &
     967             :                       matrix_ks=ks_rmpv, &
     968             :                       scf_control=scf_control, &
     969             :                       dft_control=dft_control, &
     970             :                       matrix_s=matrix_s, &
     971             :                       para_env=para_env, &
     972           2 :                       blacs_env=blacs_env)
     973             : 
     974           2 :       logger => cp_get_default_logger()
     975           2 :       iounit = cp_logger_get_default_io_unit(logger)
     976             : 
     977           4 :       DO ispin = 1, dft_control%nspins
     978           2 :          NULLIFY (unoccupied_evals(ispin)%array)
     979             :          ! Always write eigenvalues
     980           2 :          IF (iounit > 0) WRITE (iounit, *) " "
     981           2 :          IF (iounit > 0) WRITE (iounit, *) " Lowest Eigenvalues of the unoccupied subspace spin ", ispin
     982           2 :          IF (iounit > 0) WRITE (iounit, FMT='(1X,A)') "-----------------------------------------------------"
     983           2 :          CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=homo, nao=nao, nmo=nmo)
     984           2 :          CALL cp_fm_get_info(mo_coeff, nrow_global=n)
     985           2 :          nlumos = MAX(1, MIN(nlumo, nao - nmo))
     986           2 :          IF (nlumo == -1) nlumos = nao - nmo
     987           6 :          ALLOCATE (unoccupied_evals(ispin)%array(nlumos))
     988             :          CALL cp_fm_struct_create(fm_struct_tmp, para_env=para_env, context=blacs_env, &
     989           2 :                                   nrow_global=n, ncol_global=nlumos)
     990           2 :          CALL cp_fm_create(unoccupied_orbs(ispin), fm_struct_tmp, name="lumos")
     991           2 :          CALL cp_fm_struct_release(fm_struct_tmp)
     992           2 :          CALL cp_fm_init_random(unoccupied_orbs(ispin), nlumos)
     993             : 
     994             :          ! the full_all preconditioner makes not much sense for lumos search
     995           2 :          NULLIFY (local_preconditioner)
     996           2 :          IF (ASSOCIATED(scf_env%ot_preconditioner)) THEN
     997           2 :             local_preconditioner => scf_env%ot_preconditioner(1)%preconditioner
     998             :             ! this one can for sure not be right (as it has to match a given C0)
     999           2 :             IF (local_preconditioner%in_use == ot_precond_full_all) THEN
    1000           2 :                NULLIFY (local_preconditioner)
    1001             :             END IF
    1002             :          END IF
    1003             : 
    1004             :          CALL ot_eigensolver(matrix_h=ks_rmpv(ispin)%matrix, matrix_s=matrix_s(1)%matrix, &
    1005             :                              matrix_c_fm=unoccupied_orbs(ispin), &
    1006             :                              matrix_orthogonal_space_fm=mo_coeff, &
    1007             :                              eps_gradient=scf_control%eps_lumos, &
    1008             :                              preconditioner=local_preconditioner, &
    1009             :                              iter_max=scf_control%max_iter_lumos, &
    1010           2 :                              size_ortho_space=nmo)
    1011             : 
    1012             :          CALL calculate_subspace_eigenvalues(unoccupied_orbs(ispin), ks_rmpv(ispin)%matrix, &
    1013             :                                              unoccupied_evals(ispin)%array, scr=iounit, &
    1014           6 :                                              ionode=iounit > 0)
    1015             : 
    1016             :       END DO
    1017             : 
    1018           2 :    END SUBROUTINE make_lumo_tb
    1019             : 
    1020             : ! **************************************************************************************************
    1021             : !> \brief ...
    1022             : !> \param qs_env ...
    1023             : ! **************************************************************************************************
    1024          24 :    SUBROUTINE rebuild_pw_env(qs_env)
    1025             : 
    1026             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1027             : 
    1028             :       LOGICAL                                            :: skip_load_balance_distributed
    1029             :       TYPE(cell_type), POINTER                           :: cell
    1030             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1031             :       TYPE(pw_env_type), POINTER                         :: new_pw_env
    1032             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1033             :       TYPE(qs_rho_type), POINTER                         :: rho
    1034             :       TYPE(task_list_type), POINTER                      :: task_list
    1035             : 
    1036          24 :       CALL get_qs_env(qs_env, ks_env=ks_env, dft_control=dft_control, pw_env=new_pw_env)
    1037          24 :       IF (.NOT. ASSOCIATED(new_pw_env)) THEN
    1038           0 :          CALL pw_env_create(new_pw_env)
    1039           0 :          CALL set_ks_env(ks_env, pw_env=new_pw_env)
    1040           0 :          CALL pw_env_release(new_pw_env)
    1041             :       END IF
    1042          24 :       CALL get_qs_env(qs_env, pw_env=new_pw_env, dft_control=dft_control, cell=cell)
    1043             : 
    1044         624 :       new_pw_env%cell_hmat = cell%hmat
    1045          24 :       CALL pw_env_rebuild(new_pw_env, qs_env=qs_env)
    1046             : 
    1047          24 :       NULLIFY (task_list)
    1048          24 :       CALL get_ks_env(ks_env, task_list=task_list)
    1049          24 :       IF (.NOT. ASSOCIATED(task_list)) THEN
    1050          24 :          CALL allocate_task_list(task_list)
    1051          24 :          CALL set_ks_env(ks_env, task_list=task_list)
    1052             :       END IF
    1053          24 :       skip_load_balance_distributed = dft_control%qs_control%skip_load_balance_distributed
    1054             :       CALL generate_qs_task_list(ks_env, task_list, &
    1055             :                                  reorder_rs_grid_ranks=.TRUE., soft_valid=.FALSE., &
    1056          24 :                                  skip_load_balance_distributed=skip_load_balance_distributed)
    1057          24 :       CALL get_qs_env(qs_env, rho=rho)
    1058          24 :       CALL qs_rho_rebuild(rho, qs_env=qs_env, rebuild_ao=.FALSE., rebuild_grids=.TRUE.)
    1059             : 
    1060          24 :    END SUBROUTINE rebuild_pw_env
    1061             : 
    1062             : ! **************************************************************************************************
    1063             : !> \brief ...
    1064             : !> \param qs_env ...
    1065             : !> \param cube_section ...
    1066             : ! **************************************************************************************************
    1067          16 :    SUBROUTINE print_e_density(qs_env, cube_section)
    1068             : 
    1069             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1070             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1071             : 
    1072             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube
    1073             :       INTEGER                                            :: iounit, ispin, unit_nr
    1074             :       LOGICAL                                            :: append_cube, mpi_io
    1075          16 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1076             :       TYPE(cp_logger_type), POINTER                      :: logger
    1077          16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1078          16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1079             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1080             :       TYPE(particle_list_type), POINTER                  :: particles
    1081          16 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1082             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1083          16 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1084             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1085          16 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1086             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1087             :       TYPE(qs_rho_type), POINTER                         :: rho
    1088             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1089             : 
    1090          16 :       CALL get_qs_env(qs_env, dft_control=dft_control)
    1091             : 
    1092          16 :       append_cube = section_get_lval(cube_section, "APPEND")
    1093          16 :       my_pos_cube = "REWIND"
    1094          16 :       IF (append_cube) my_pos_cube = "APPEND"
    1095             : 
    1096          16 :       logger => cp_get_default_logger()
    1097          16 :       iounit = cp_logger_get_default_io_unit(logger)
    1098             : 
    1099             :       ! we need to construct the density on a realspace grid
    1100          16 :       CALL get_qs_env(qs_env, ks_env=ks_env, rho=rho)
    1101          16 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1102             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1103          16 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1104          34 :       DO ispin = 1, dft_control%nspins
    1105          18 :          rho_ao => rho_ao_kp(ispin, :)
    1106             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1107             :                                  rho=rho_r(ispin), &
    1108             :                                  rho_gspace=rho_g(ispin), &
    1109             :                                  total_rho=tot_rho_r(ispin), &
    1110          34 :                                  ks_env=ks_env)
    1111             :       END DO
    1112          16 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1113             : 
    1114          16 :       CALL get_qs_env(qs_env, subsys=subsys)
    1115          16 :       CALL qs_subsys_get(subsys, particles=particles)
    1116             : 
    1117          16 :       IF (dft_control%nspins > 1) THEN
    1118           2 :          IF (iounit > 0) THEN
    1119             :             WRITE (UNIT=iounit, FMT="(/,T2,A,T51,2F15.6)") &
    1120           1 :                "Integrated alpha and beta electronic density:", tot_rho_r(1:2)
    1121             :          END IF
    1122           2 :          CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1123           2 :          CALL pw_env_get(pw_env=pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1124             :          BLOCK
    1125             :             TYPE(pw_r3d_rs_type) :: rho_elec_rspace
    1126           2 :             CALL auxbas_pw_pool%create_pw(pw=rho_elec_rspace)
    1127           2 :             CALL pw_copy(rho_r(1), rho_elec_rspace)
    1128           2 :             CALL pw_axpy(rho_r(2), rho_elec_rspace)
    1129           2 :             filename = "ELECTRON_DENSITY"
    1130           2 :             mpi_io = .TRUE.
    1131             :             unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1132             :                                            extension=".cube", middle_name=TRIM(filename), &
    1133             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1134           2 :                                            fout=mpi_filename)
    1135           2 :             IF (iounit > 0) THEN
    1136           1 :                IF (.NOT. mpi_io) THEN
    1137           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    1138             :                ELSE
    1139           1 :                   filename = mpi_filename
    1140             :                END IF
    1141             :                WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1142           1 :                   "The sum of alpha and beta density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1143             :             END IF
    1144             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SUM OF ALPHA AND BETA DENSITY", &
    1145             :                                particles=particles, stride=section_get_ivals(cube_section, "STRIDE"), &
    1146           2 :                                mpi_io=mpi_io)
    1147           2 :             CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1148           2 :             CALL pw_copy(rho_r(1), rho_elec_rspace)
    1149           2 :             CALL pw_axpy(rho_r(2), rho_elec_rspace, alpha=-1.0_dp)
    1150           2 :             filename = "SPIN_DENSITY"
    1151           2 :             mpi_io = .TRUE.
    1152             :             unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1153             :                                            extension=".cube", middle_name=TRIM(filename), &
    1154             :                                            file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1155           2 :                                            fout=mpi_filename)
    1156           2 :             IF (iounit > 0) THEN
    1157           1 :                IF (.NOT. mpi_io) THEN
    1158           0 :                   INQUIRE (UNIT=unit_nr, NAME=filename)
    1159             :                ELSE
    1160           1 :                   filename = mpi_filename
    1161             :                END IF
    1162             :                WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1163           1 :                   "The spin density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1164             :             END IF
    1165             :             CALL cp_pw_to_cube(rho_elec_rspace, unit_nr, "SPIN DENSITY", &
    1166             :                                particles=particles, &
    1167           2 :                                stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1168           2 :             CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1169           2 :             CALL auxbas_pw_pool%give_back_pw(rho_elec_rspace)
    1170             :          END BLOCK
    1171             :       ELSE
    1172          14 :          IF (iounit > 0) THEN
    1173             :             WRITE (UNIT=iounit, FMT="(/,T2,A,T66,F15.6)") &
    1174           7 :                "Integrated electronic density:", tot_rho_r(1)
    1175             :          END IF
    1176          14 :          filename = "ELECTRON_DENSITY"
    1177          14 :          mpi_io = .TRUE.
    1178             :          unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1179             :                                         extension=".cube", middle_name=TRIM(filename), &
    1180             :                                         file_position=my_pos_cube, log_filename=.FALSE., mpi_io=mpi_io, &
    1181          14 :                                         fout=mpi_filename)
    1182          14 :          IF (iounit > 0) THEN
    1183           7 :             IF (.NOT. mpi_io) THEN
    1184           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1185             :             ELSE
    1186           7 :                filename = mpi_filename
    1187             :             END IF
    1188             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1189           7 :                "The electron density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1190             :          END IF
    1191             :          CALL cp_pw_to_cube(rho_r(1), unit_nr, "ELECTRON DENSITY", &
    1192             :                             particles=particles, &
    1193          14 :                             stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1194          14 :          CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1195             :       END IF ! nspins
    1196             : 
    1197          16 :    END SUBROUTINE print_e_density
    1198             : ! **************************************************************************************************
    1199             : !> \brief ...
    1200             : !> \param qs_env ...
    1201             : !> \param cube_section ...
    1202             : !> \param total_density ...
    1203             : !> \param v_hartree ...
    1204             : !> \param efield ...
    1205             : ! **************************************************************************************************
    1206          50 :    SUBROUTINE print_density_cubes(qs_env, cube_section, total_density, v_hartree, efield)
    1207             : 
    1208             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1209             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1210             :       LOGICAL, INTENT(IN), OPTIONAL                      :: total_density, v_hartree, efield
    1211             : 
    1212             :       CHARACTER(len=1), DIMENSION(3), PARAMETER          :: cdir = (/"x", "y", "z"/)
    1213             : 
    1214             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube
    1215             :       INTEGER                                            :: id, iounit, ispin, nd(3), unit_nr
    1216             :       LOGICAL                                            :: append_cube, mpi_io, my_efield, &
    1217             :                                                             my_total_density, my_v_hartree
    1218             :       REAL(KIND=dp)                                      :: total_rho_core_rspace, udvol
    1219          50 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1220             :       TYPE(cell_type), POINTER                           :: cell
    1221             :       TYPE(cp_logger_type), POINTER                      :: logger
    1222          50 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1223          50 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1224             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1225             :       TYPE(particle_list_type), POINTER                  :: particles
    1226             :       TYPE(pw_c1d_gs_type)                               :: rho_core
    1227          50 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1228             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1229             :       TYPE(pw_poisson_parameter_type)                    :: poisson_params
    1230          50 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1231             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1232             :       TYPE(pw_r3d_rs_type)                               :: rho_tot_rspace
    1233          50 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1234             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1235             :       TYPE(qs_rho_type), POINTER                         :: rho
    1236             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1237             : 
    1238          50 :       CALL get_qs_env(qs_env, cell=cell, dft_control=dft_control)
    1239             : 
    1240          50 :       append_cube = section_get_lval(cube_section, "APPEND")
    1241          50 :       my_pos_cube = "REWIND"
    1242          50 :       IF (append_cube) my_pos_cube = "APPEND"
    1243             : 
    1244          50 :       IF (PRESENT(total_density)) THEN
    1245          18 :          my_total_density = total_density
    1246             :       ELSE
    1247             :          my_total_density = .FALSE.
    1248             :       END IF
    1249          50 :       IF (PRESENT(v_hartree)) THEN
    1250          16 :          my_v_hartree = v_hartree
    1251             :       ELSE
    1252             :          my_v_hartree = .FALSE.
    1253             :       END IF
    1254          50 :       IF (PRESENT(efield)) THEN
    1255          16 :          my_efield = efield
    1256             :       ELSE
    1257             :          my_efield = .FALSE.
    1258             :       END IF
    1259             : 
    1260          50 :       logger => cp_get_default_logger()
    1261          50 :       iounit = cp_logger_get_default_io_unit(logger)
    1262             : 
    1263             :       ! we need to construct the density on a realspace grid
    1264          50 :       CALL get_qs_env(qs_env, ks_env=ks_env, rho=rho)
    1265          50 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1266             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1267          50 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1268         102 :       DO ispin = 1, dft_control%nspins
    1269          52 :          rho_ao => rho_ao_kp(ispin, :)
    1270             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1271             :                                  rho=rho_r(ispin), &
    1272             :                                  rho_gspace=rho_g(ispin), &
    1273             :                                  total_rho=tot_rho_r(ispin), &
    1274         102 :                                  ks_env=ks_env)
    1275             :       END DO
    1276          50 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1277             : 
    1278          50 :       CALL get_qs_env(qs_env, subsys=subsys)
    1279          50 :       CALL qs_subsys_get(subsys, particles=particles)
    1280             : 
    1281          50 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1282          50 :       CALL pw_env_get(pw_env=pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1283          50 :       CALL auxbas_pw_pool%create_pw(pw=rho_core)
    1284          50 :       CALL calculate_rho_core(rho_core, total_rho_core_rspace, qs_env)
    1285             : 
    1286          50 :       IF (iounit > 0) THEN
    1287             :          WRITE (UNIT=iounit, FMT="(/,T2,A,T66,F15.6)") &
    1288          51 :             "Integrated electronic density:", SUM(tot_rho_r(:))
    1289             :          WRITE (UNIT=iounit, FMT="(T2,A,T66,F15.6)") &
    1290          25 :             "Integrated core density:", total_rho_core_rspace
    1291             :       END IF
    1292             : 
    1293          50 :       CALL auxbas_pw_pool%create_pw(pw=rho_tot_rspace)
    1294          50 :       CALL pw_transfer(rho_core, rho_tot_rspace)
    1295         102 :       DO ispin = 1, dft_control%nspins
    1296         102 :          CALL pw_axpy(rho_r(ispin), rho_tot_rspace)
    1297             :       END DO
    1298             : 
    1299          50 :       IF (my_total_density) THEN
    1300          18 :          filename = "TOTAL_DENSITY"
    1301          18 :          mpi_io = .TRUE.
    1302             :          unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1303             :                                         extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1304          18 :                                         log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1305          18 :          IF (iounit > 0) THEN
    1306           9 :             IF (.NOT. mpi_io) THEN
    1307           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1308             :             ELSE
    1309           9 :                filename = mpi_filename
    1310             :             END IF
    1311             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1312           9 :                "The total density is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1313             :          END IF
    1314             :          CALL cp_pw_to_cube(rho_tot_rspace, unit_nr, "TOTAL DENSITY", &
    1315             :                             particles=particles, &
    1316          18 :                             stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1317          18 :          CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1318             :       END IF
    1319          50 :       IF (my_v_hartree .OR. my_efield) THEN
    1320             :          BLOCK
    1321             :             TYPE(pw_c1d_gs_type) :: rho_tot_gspace
    1322          32 :             CALL auxbas_pw_pool%create_pw(pw=rho_tot_gspace)
    1323          32 :             CALL pw_transfer(rho_tot_rspace, rho_tot_gspace)
    1324          32 :             poisson_params%solver = pw_poisson_analytic
    1325         128 :             poisson_params%periodic = cell%perd
    1326          32 :             poisson_params%ewald_type = do_ewald_none
    1327          64 :             BLOCK
    1328          32 :                TYPE(greens_fn_type)                     :: green_fft
    1329             :                TYPE(pw_grid_type), POINTER                        :: pwdummy
    1330          32 :                NULLIFY (pwdummy)
    1331          32 :                CALL pw_green_create(green_fft, poisson_params, cell%hmat, auxbas_pw_pool, pwdummy, pwdummy)
    1332      823262 :                rho_tot_gspace%array(:) = rho_tot_gspace%array(:)*green_fft%influence_fn%array(:)
    1333          64 :                CALL pw_green_release(green_fft, auxbas_pw_pool)
    1334             :             END BLOCK
    1335          32 :             IF (my_v_hartree) THEN
    1336             :                BLOCK
    1337             :                   TYPE(pw_r3d_rs_type) :: vhartree
    1338          16 :                   CALL auxbas_pw_pool%create_pw(pw=vhartree)
    1339          16 :                   CALL pw_transfer(rho_tot_gspace, vhartree)
    1340          16 :                   filename = "V_HARTREE"
    1341          16 :                   mpi_io = .TRUE.
    1342             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1343             :                                                  extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1344          16 :                                                  log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1345          16 :                   IF (iounit > 0) THEN
    1346           8 :                      IF (.NOT. mpi_io) THEN
    1347           0 :                         INQUIRE (UNIT=unit_nr, NAME=filename)
    1348             :                      ELSE
    1349           8 :                         filename = mpi_filename
    1350             :                      END IF
    1351             :                      WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1352           8 :                         "The Hartree potential is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1353             :                   END IF
    1354             :                   CALL cp_pw_to_cube(vhartree, unit_nr, "Hartree Potential", &
    1355             :                                      particles=particles, &
    1356          16 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1357          16 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1358          16 :                   CALL auxbas_pw_pool%give_back_pw(vhartree)
    1359             :                END BLOCK
    1360             :             END IF
    1361          32 :             IF (my_efield) THEN
    1362             :                BLOCK
    1363             :                   TYPE(pw_c1d_gs_type) :: vhartree
    1364          16 :                   CALL auxbas_pw_pool%create_pw(pw=vhartree)
    1365          16 :                   udvol = 1.0_dp/rho_tot_rspace%pw_grid%dvol
    1366          64 :                   DO id = 1, 3
    1367          48 :                      CALL pw_transfer(rho_tot_gspace, vhartree)
    1368          48 :                      nd = 0
    1369          48 :                      nd(id) = 1
    1370          48 :                      CALL pw_derive(vhartree, nd)
    1371          48 :                      CALL pw_transfer(vhartree, rho_tot_rspace)
    1372          48 :                      CALL pw_scale(rho_tot_rspace, udvol)
    1373             : 
    1374          48 :                      filename = "EFIELD_"//cdir(id)
    1375          48 :                      mpi_io = .TRUE.
    1376             :                      unit_nr = cp_print_key_unit_nr(logger, cube_section, '', &
    1377             :                                                     extension=".cube", middle_name=TRIM(filename), file_position=my_pos_cube, &
    1378          48 :                                                     log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1379          48 :                      IF (iounit > 0) THEN
    1380          24 :                         IF (.NOT. mpi_io) THEN
    1381           0 :                            INQUIRE (UNIT=unit_nr, NAME=filename)
    1382             :                         ELSE
    1383          24 :                            filename = mpi_filename
    1384             :                         END IF
    1385             :                         WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1386          24 :                            "The Efield is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1387             :                      END IF
    1388             :                      CALL cp_pw_to_cube(rho_tot_rspace, unit_nr, "EFIELD "//cdir(id), &
    1389             :                                         particles=particles, &
    1390          48 :                                         stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1391          64 :                      CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1392             :                   END DO
    1393          16 :                   CALL auxbas_pw_pool%give_back_pw(vhartree)
    1394             :                END BLOCK
    1395             :             END IF
    1396          32 :             CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    1397             :          END BLOCK
    1398             :       END IF
    1399             : 
    1400          50 :       CALL auxbas_pw_pool%give_back_pw(rho_tot_rspace)
    1401          50 :       CALL auxbas_pw_pool%give_back_pw(rho_core)
    1402             : 
    1403         200 :    END SUBROUTINE print_density_cubes
    1404             : 
    1405             : ! **************************************************************************************************
    1406             : !> \brief ...
    1407             : !> \param qs_env ...
    1408             : !> \param elf_section ...
    1409             : ! **************************************************************************************************
    1410          16 :    SUBROUTINE print_elf(qs_env, elf_section)
    1411             : 
    1412             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1413             :       TYPE(section_vals_type), POINTER                   :: elf_section
    1414             : 
    1415             :       CHARACTER(LEN=default_path_length)                 :: filename, mpi_filename, my_pos_cube, &
    1416             :                                                             title
    1417             :       INTEGER                                            :: iounit, ispin, unit_nr
    1418             :       LOGICAL                                            :: append_cube, mpi_io
    1419             :       REAL(KIND=dp)                                      :: rho_cutoff
    1420          16 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: tot_rho_r
    1421             :       TYPE(cp_logger_type), POINTER                      :: logger
    1422          16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    1423          16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_kp
    1424             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1425             :       TYPE(particle_list_type), POINTER                  :: particles
    1426          16 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g
    1427             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1428          16 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1429             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1430          16 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: elf_r
    1431          16 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r
    1432             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    1433             :       TYPE(qs_rho_type), POINTER                         :: rho
    1434             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1435             : 
    1436          32 :       logger => cp_get_default_logger()
    1437          16 :       iounit = cp_logger_get_default_io_unit(logger)
    1438             : 
    1439             :       ! we need to construct the density on a realspace grid
    1440          16 :       CALL get_qs_env(qs_env, dft_control=dft_control, ks_env=ks_env, rho=rho)
    1441          16 :       NULLIFY (rho_r, rho_g, tot_rho_r)
    1442             :       CALL qs_rho_get(rho, rho_ao_kp=rho_ao_kp, &
    1443          16 :                       rho_r=rho_r, rho_g=rho_g, tot_rho_r=tot_rho_r)
    1444          34 :       DO ispin = 1, dft_control%nspins
    1445          18 :          rho_ao => rho_ao_kp(ispin, :)
    1446             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    1447             :                                  rho=rho_r(ispin), &
    1448             :                                  rho_gspace=rho_g(ispin), &
    1449             :                                  total_rho=tot_rho_r(ispin), &
    1450          34 :                                  ks_env=ks_env)
    1451             :       END DO
    1452          16 :       CALL qs_rho_set(rho, rho_r_valid=.TRUE., rho_g_valid=.TRUE.)
    1453             : 
    1454          16 :       CALL get_qs_env(qs_env, subsys=subsys)
    1455          16 :       CALL qs_subsys_get(subsys, particles=particles)
    1456             : 
    1457          66 :       ALLOCATE (elf_r(dft_control%nspins))
    1458          16 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1459          16 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1460          34 :       DO ispin = 1, dft_control%nspins
    1461          18 :          CALL auxbas_pw_pool%create_pw(elf_r(ispin))
    1462          34 :          CALL pw_zero(elf_r(ispin))
    1463             :       END DO
    1464             : 
    1465          16 :       IF (iounit > 0) THEN
    1466             :          WRITE (UNIT=iounit, FMT="(/,T2,A)") &
    1467           8 :             "ELF is computed on the real space grid -----"
    1468             :       END IF
    1469          16 :       rho_cutoff = section_get_rval(elf_section, "density_cutoff")
    1470          16 :       CALL qs_elf_calc(qs_env, elf_r, rho_cutoff)
    1471             : 
    1472             :       ! write ELF into cube file
    1473          16 :       append_cube = section_get_lval(elf_section, "APPEND")
    1474          16 :       my_pos_cube = "REWIND"
    1475          16 :       IF (append_cube) my_pos_cube = "APPEND"
    1476          34 :       DO ispin = 1, dft_control%nspins
    1477          18 :          WRITE (filename, '(a5,I1.1)') "ELF_S", ispin
    1478          18 :          WRITE (title, *) "ELF spin ", ispin
    1479          18 :          mpi_io = .TRUE.
    1480             :          unit_nr = cp_print_key_unit_nr(logger, elf_section, '', extension=".cube", &
    1481             :                                         middle_name=TRIM(filename), file_position=my_pos_cube, &
    1482          18 :                                         log_filename=.FALSE., mpi_io=mpi_io, fout=mpi_filename)
    1483          18 :          IF (iounit > 0) THEN
    1484           9 :             IF (.NOT. mpi_io) THEN
    1485           0 :                INQUIRE (UNIT=unit_nr, NAME=filename)
    1486             :             ELSE
    1487           9 :                filename = mpi_filename
    1488             :             END IF
    1489             :             WRITE (UNIT=iounit, FMT="(T2,A,/,T2,A79)") &
    1490           9 :                "ELF is written in cube file format to the file:", ADJUSTR(TRIM(filename))
    1491             :          END IF
    1492             : 
    1493             :          CALL cp_pw_to_cube(elf_r(ispin), unit_nr, title, particles=particles, &
    1494          18 :                             stride=section_get_ivals(elf_section, "STRIDE"), mpi_io=mpi_io)
    1495          18 :          CALL cp_print_key_finished_output(unit_nr, logger, elf_section, '', mpi_io=mpi_io)
    1496             : 
    1497          34 :          CALL auxbas_pw_pool%give_back_pw(elf_r(ispin))
    1498             :       END DO
    1499             : 
    1500          16 :       DEALLOCATE (elf_r)
    1501             : 
    1502          16 :    END SUBROUTINE print_elf
    1503             : ! **************************************************************************************************
    1504             : !> \brief ...
    1505             : !> \param qs_env ...
    1506             : !> \param cube_section ...
    1507             : ! **************************************************************************************************
    1508          32 :    SUBROUTINE print_mo_cubes(qs_env, cube_section)
    1509             : 
    1510             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1511             :       TYPE(section_vals_type), POINTER                   :: cube_section
    1512             : 
    1513             :       CHARACTER(LEN=default_path_length)                 :: filename, my_pos_cube, title
    1514             :       INTEGER                                            :: homo, i, ifirst, ilast, iounit, ir, &
    1515             :                                                             ispin, ivector, n_rep, nhomo, nlist, &
    1516             :                                                             nlumo, nmo, shomo, unit_nr
    1517          16 :       INTEGER, DIMENSION(:), POINTER                     :: list, list_index
    1518             :       LOGICAL                                            :: append_cube, mpi_io, write_cube
    1519             :       REAL(KIND=dp)                                      :: homo_lumo(2, 2)
    1520          16 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: mo_eigenvalues
    1521          16 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1522             :       TYPE(cell_type), POINTER                           :: cell
    1523             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
    1524             :       TYPE(cp_logger_type), POINTER                      :: logger
    1525          16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: ks_rmpv, mo_derivs
    1526             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1527          16 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    1528             :       TYPE(particle_list_type), POINTER                  :: particles
    1529          16 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1530             :       TYPE(pw_c1d_gs_type)                               :: wf_g
    1531             :       TYPE(pw_env_type), POINTER                         :: pw_env
    1532          16 :       TYPE(pw_pool_p_type), DIMENSION(:), POINTER        :: pw_pools
    1533             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    1534             :       TYPE(pw_r3d_rs_type)                               :: wf_r
    1535          16 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1536             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    1537             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1538             : 
    1539          32 :       logger => cp_get_default_logger()
    1540          16 :       iounit = cp_logger_get_default_io_unit(logger)
    1541             : 
    1542          16 :       CALL get_qs_env(qs_env, mos=mos, matrix_ks=ks_rmpv, scf_control=scf_control)
    1543          16 :       CALL get_qs_env(qs_env, dft_control=dft_control, mo_derivs=mo_derivs)
    1544          16 :       CALL make_mo_eig(mos, dft_control%nspins, ks_rmpv, scf_control, mo_derivs)
    1545          16 :       NULLIFY (mo_eigenvalues)
    1546          16 :       homo = 0
    1547          34 :       DO ispin = 1, dft_control%nspins
    1548          18 :          CALL get_mo_set(mo_set=mos(ispin), eigenvalues=mo_eigenvalues, homo=shomo)
    1549          18 :          homo_lumo(ispin, 1) = mo_eigenvalues(shomo)
    1550          34 :          homo = MAX(homo, shomo)
    1551             :       END DO
    1552          16 :       write_cube = section_get_lval(cube_section, "WRITE_CUBE")
    1553          16 :       nlumo = section_get_ival(cube_section, "NLUMO")
    1554          16 :       nhomo = section_get_ival(cube_section, "NHOMO")
    1555          16 :       NULLIFY (list_index)
    1556          16 :       CALL section_vals_val_get(cube_section, "HOMO_LIST", n_rep_val=n_rep)
    1557          16 :       IF (n_rep > 0) THEN
    1558           2 :          nlist = 0
    1559           4 :          DO ir = 1, n_rep
    1560           2 :             NULLIFY (list)
    1561           2 :             CALL section_vals_val_get(cube_section, "HOMO_LIST", i_rep_val=ir, i_vals=list)
    1562           4 :             IF (ASSOCIATED(list)) THEN
    1563           2 :                CALL reallocate(list_index, 1, nlist + SIZE(list))
    1564          14 :                DO i = 1, SIZE(list)
    1565          14 :                   list_index(i + nlist) = list(i)
    1566             :                END DO
    1567           2 :                nlist = nlist + SIZE(list)
    1568             :             END IF
    1569             :          END DO
    1570          14 :          nhomo = MAXVAL(list_index)
    1571             :       ELSE
    1572          14 :          IF (nhomo == -1) nhomo = homo
    1573          14 :          nlist = homo - MAX(1, homo - nhomo + 1) + 1
    1574          42 :          ALLOCATE (list_index(nlist))
    1575          28 :          DO i = 1, nlist
    1576          28 :             list_index(i) = MAX(1, homo - nhomo + 1) + i - 1
    1577             :          END DO
    1578             :       END IF
    1579             : 
    1580          16 :       CALL get_qs_env(qs_env=qs_env, pw_env=pw_env)
    1581          16 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, pw_pools=pw_pools)
    1582          16 :       CALL auxbas_pw_pool%create_pw(wf_r)
    1583          16 :       CALL auxbas_pw_pool%create_pw(wf_g)
    1584             : 
    1585          16 :       CALL get_qs_env(qs_env, subsys=subsys)
    1586          16 :       CALL qs_subsys_get(subsys, particles=particles)
    1587             : 
    1588          16 :       append_cube = section_get_lval(cube_section, "APPEND")
    1589          16 :       my_pos_cube = "REWIND"
    1590          16 :       IF (append_cube) THEN
    1591           0 :          my_pos_cube = "APPEND"
    1592             :       END IF
    1593             : 
    1594             :       CALL get_qs_env(qs_env=qs_env, &
    1595             :                       atomic_kind_set=atomic_kind_set, &
    1596             :                       qs_kind_set=qs_kind_set, &
    1597             :                       cell=cell, &
    1598          16 :                       particle_set=particle_set)
    1599             : 
    1600          16 :       IF (nhomo >= 0) THEN
    1601          34 :          DO ispin = 1, dft_control%nspins
    1602             :             ! Prints the cube files of OCCUPIED ORBITALS
    1603             :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
    1604          18 :                             eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
    1605          34 :             IF (write_cube) THEN
    1606          56 :                DO i = 1, nlist
    1607          38 :                   ivector = list_index(i)
    1608          38 :                   IF (ivector > homo) CYCLE
    1609             :                   CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, qs_kind_set, &
    1610          38 :                                               cell, dft_control, particle_set, pw_env)
    1611          38 :                   WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
    1612          38 :                   mpi_io = .TRUE.
    1613             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', extension=".cube", &
    1614             :                                                  middle_name=TRIM(filename), file_position=my_pos_cube, &
    1615          38 :                                                  log_filename=.FALSE., mpi_io=mpi_io)
    1616          38 :                   WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. HOMO - ", ivector - homo
    1617             :                   CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1618          38 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1619          56 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1620             :                END DO
    1621             :             END IF
    1622             :          END DO
    1623             :       END IF
    1624             : 
    1625          16 :       IF (nlumo /= 0) THEN
    1626           6 :          DO ispin = 1, dft_control%nspins
    1627             :             ! Prints the cube files of UNOCCUPIED ORBITALS
    1628             :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, &
    1629           4 :                             eigenvalues=mo_eigenvalues, homo=homo, nmo=nmo)
    1630           6 :             IF (write_cube) THEN
    1631           4 :                ifirst = homo + 1
    1632           4 :                IF (nlumo == -1) THEN
    1633           0 :                   ilast = nmo
    1634             :                ELSE
    1635           4 :                   ilast = ifirst + nlumo - 1
    1636           4 :                   ilast = MIN(nmo, ilast)
    1637             :                END IF
    1638          12 :                DO ivector = ifirst, ilast
    1639             :                   CALL calculate_wavefunction(mo_coeff, ivector, wf_r, wf_g, atomic_kind_set, &
    1640           8 :                                               qs_kind_set, cell, dft_control, particle_set, pw_env)
    1641           8 :                   WRITE (filename, '(a4,I5.5,a1,I1.1)') "WFN_", ivector, "_", ispin
    1642           8 :                   mpi_io = .TRUE.
    1643             :                   unit_nr = cp_print_key_unit_nr(logger, cube_section, '', extension=".cube", &
    1644             :                                                  middle_name=TRIM(filename), file_position=my_pos_cube, &
    1645           8 :                                                  log_filename=.FALSE., mpi_io=mpi_io)
    1646           8 :                   WRITE (title, *) "WAVEFUNCTION ", ivector, " spin ", ispin, " i.e. LUMO + ", ivector - ifirst
    1647             :                   CALL cp_pw_to_cube(wf_r, unit_nr, title, particles=particles, &
    1648           8 :                                      stride=section_get_ivals(cube_section, "STRIDE"), mpi_io=mpi_io)
    1649          12 :                   CALL cp_print_key_finished_output(unit_nr, logger, cube_section, '', mpi_io=mpi_io)
    1650             :                END DO
    1651             :             END IF
    1652             :          END DO
    1653             :       END IF
    1654             : 
    1655          16 :       CALL auxbas_pw_pool%give_back_pw(wf_g)
    1656          16 :       CALL auxbas_pw_pool%give_back_pw(wf_r)
    1657          16 :       IF (ASSOCIATED(list_index)) DEALLOCATE (list_index)
    1658             : 
    1659          16 :    END SUBROUTINE print_mo_cubes
    1660             : 
    1661             : ! **************************************************************************************************
    1662             : 
    1663             : END MODULE qs_scf_post_tb

Generated by: LCOV version 1.15