LCOV - code coverage report
Current view: top level - src - response_solver.F (source / functions) Coverage Total Hit
Test: CP2K Regtests (git:936074a) Lines: 88.4 % 1341 1186
Test Date: 2025-12-04 06:27:48 Functions: 100.0 % 7 7

            Line data    Source code
       1              : !--------------------------------------------------------------------------------------------------!
       2              : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3              : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4              : !                                                                                                  !
       5              : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6              : !--------------------------------------------------------------------------------------------------!
       7              : 
       8              : ! **************************************************************************************************
       9              : !> \brief Calculate the CPKS equation and the resulting forces
      10              : !> \par History
      11              : !>       03.2014 created
      12              : !>       09.2019 Moved from KG to Kohn-Sham
      13              : !>       11.2019 Moved from energy_correction
      14              : !>       08.2020 AO linear response solver [fbelle]
      15              : !> \author JGH
      16              : ! **************************************************************************************************
      17              : MODULE response_solver
      18              :    USE admm_methods,                    ONLY: admm_projection_derivative
      19              :    USE admm_types,                      ONLY: admm_type,&
      20              :                                               get_admm_env
      21              :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      22              :                                               get_atomic_kind
      23              :    USE cell_types,                      ONLY: cell_type
      24              :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      25              :    USE cp_control_types,                ONLY: dft_control_type
      26              :    USE cp_dbcsr_api,                    ONLY: &
      27              :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_distribution_type, dbcsr_multiply, &
      28              :         dbcsr_p_type, dbcsr_release, dbcsr_scale, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry
      29              :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      30              :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      31              :                                               copy_fm_to_dbcsr,&
      32              :                                               cp_dbcsr_sm_fm_multiply,&
      33              :                                               dbcsr_allocate_matrix_set,&
      34              :                                               dbcsr_deallocate_matrix_set
      35              :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      36              :                                               cp_fm_struct_release,&
      37              :                                               cp_fm_struct_type
      38              :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      39              :                                               cp_fm_init_random,&
      40              :                                               cp_fm_release,&
      41              :                                               cp_fm_set_all,&
      42              :                                               cp_fm_to_fm,&
      43              :                                               cp_fm_type
      44              :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      45              :                                               cp_logger_get_default_unit_nr,&
      46              :                                               cp_logger_type
      47              :    USE ec_env_types,                    ONLY: energy_correction_type
      48              :    USE ec_methods,                      ONLY: create_kernel,&
      49              :                                               ec_mos_init
      50              :    USE ec_orth_solver,                  ONLY: ec_response_ao
      51              :    USE exstates_types,                  ONLY: excited_energy_type
      52              :    USE hartree_local_methods,           ONLY: Vh_1c_gg_integrals,&
      53              :                                               init_coulomb_local
      54              :    USE hartree_local_types,             ONLY: hartree_local_create,&
      55              :                                               hartree_local_release,&
      56              :                                               hartree_local_type
      57              :    USE hfx_derivatives,                 ONLY: derivatives_four_center
      58              :    USE hfx_energy_potential,            ONLY: integrate_four_center
      59              :    USE hfx_ri,                          ONLY: hfx_ri_update_forces,&
      60              :                                               hfx_ri_update_ks
      61              :    USE hfx_types,                       ONLY: hfx_type
      62              :    USE input_constants,                 ONLY: &
      63              :         do_admm_aux_exch_func_none, ec_functional_ext, ec_ls_solver, ec_mo_solver, &
      64              :         kg_tnadd_atomic, kg_tnadd_embed, kg_tnadd_embed_ri, ls_s_sqrt_ns, ls_s_sqrt_proot, &
      65              :         ot_precond_full_all, ot_precond_full_kinetic, ot_precond_full_single, &
      66              :         ot_precond_full_single_inverse, ot_precond_none, ot_precond_s_inverse, precond_mlp, xc_none
      67              :    USE input_section_types,             ONLY: section_vals_get,&
      68              :                                               section_vals_get_subs_vals,&
      69              :                                               section_vals_type,&
      70              :                                               section_vals_val_get
      71              :    USE kg_correction,                   ONLY: kg_ekin_subset
      72              :    USE kg_environment_types,            ONLY: kg_environment_type
      73              :    USE kg_tnadd_mat,                    ONLY: build_tnadd_mat
      74              :    USE kinds,                           ONLY: default_string_length,&
      75              :                                               dp
      76              :    USE machine,                         ONLY: m_flush
      77              :    USE mathlib,                         ONLY: det_3x3
      78              :    USE message_passing,                 ONLY: mp_para_env_type
      79              :    USE mulliken,                        ONLY: ao_charges
      80              :    USE parallel_gemm_api,               ONLY: parallel_gemm
      81              :    USE particle_types,                  ONLY: particle_type
      82              :    USE physcon,                         ONLY: pascal
      83              :    USE pw_env_types,                    ONLY: pw_env_get,&
      84              :                                               pw_env_type
      85              :    USE pw_methods,                      ONLY: pw_axpy,&
      86              :                                               pw_copy,&
      87              :                                               pw_integral_ab,&
      88              :                                               pw_scale,&
      89              :                                               pw_transfer,&
      90              :                                               pw_zero
      91              :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
      92              :    USE pw_poisson_types,                ONLY: pw_poisson_type
      93              :    USE pw_pool_types,                   ONLY: pw_pool_type
      94              :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      95              :                                               pw_r3d_rs_type
      96              :    USE qs_2nd_kernel_ao,                ONLY: build_dm_response
      97              :    USE qs_collocate_density,            ONLY: calculate_rho_elec
      98              :    USE qs_core_matrices,                ONLY: core_matrices,&
      99              :                                               kinetic_energy_matrix
     100              :    USE qs_density_matrices,             ONLY: calculate_whz_matrix,&
     101              :                                               calculate_wz_matrix
     102              :    USE qs_energy_types,                 ONLY: qs_energy_type
     103              :    USE qs_environment_types,            ONLY: get_qs_env,&
     104              :                                               qs_environment_type,&
     105              :                                               set_qs_env
     106              :    USE qs_force_types,                  ONLY: qs_force_type,&
     107              :                                               total_qs_force
     108              :    USE qs_gapw_densities,               ONLY: prepare_gapw_den
     109              :    USE qs_integrate_potential,          ONLY: integrate_v_core_rspace,&
     110              :                                               integrate_v_rspace
     111              :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     112              :                                               get_qs_kind_set,&
     113              :                                               qs_kind_type
     114              :    USE qs_ks_atom,                      ONLY: update_ks_atom
     115              :    USE qs_ks_methods,                   ONLY: calc_rho_tot_gspace
     116              :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     117              :    USE qs_linres_methods,               ONLY: linres_solver
     118              :    USE qs_linres_types,                 ONLY: linres_control_type
     119              :    USE qs_local_rho_types,              ONLY: local_rho_set_create,&
     120              :                                               local_rho_set_release,&
     121              :                                               local_rho_type
     122              :    USE qs_matrix_pools,                 ONLY: mpools_rebuild_fm_pools
     123              :    USE qs_mo_methods,                   ONLY: make_basis_sm
     124              :    USE qs_mo_types,                     ONLY: deallocate_mo_set,&
     125              :                                               get_mo_set,&
     126              :                                               mo_set_type
     127              :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
     128              :    USE qs_oce_types,                    ONLY: oce_matrix_type
     129              :    USE qs_overlap,                      ONLY: build_overlap_matrix
     130              :    USE qs_p_env_methods,                ONLY: p_env_create,&
     131              :                                               p_env_psi0_changed
     132              :    USE qs_p_env_types,                  ONLY: p_env_release,&
     133              :                                               qs_p_env_type
     134              :    USE qs_rho0_ggrid,                   ONLY: integrate_vhg0_rspace,&
     135              :                                               rho0_s_grid_create
     136              :    USE qs_rho0_methods,                 ONLY: init_rho0
     137              :    USE qs_rho_atom_methods,             ONLY: allocate_rho_atom_internals,&
     138              :                                               calculate_rho_atom_coeff
     139              :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     140              :                                               qs_rho_type
     141              :    USE qs_vxc_atom,                     ONLY: calculate_vxc_atom,&
     142              :                                               calculate_xc_2nd_deriv_atom
     143              :    USE task_list_types,                 ONLY: task_list_type
     144              :    USE virial_methods,                  ONLY: one_third_sum_diag
     145              :    USE virial_types,                    ONLY: virial_type
     146              :    USE xtb_ehess,                       ONLY: xtb_coulomb_hessian
     147              :    USE xtb_ehess_force,                 ONLY: calc_xtb_ehess_force
     148              :    USE xtb_hab_force,                   ONLY: build_xtb_hab_force
     149              :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
     150              :                                               xtb_atom_type
     151              : #include "./base/base_uses.f90"
     152              : 
     153              :    IMPLICIT NONE
     154              : 
     155              :    PRIVATE
     156              : 
     157              :    ! Global parameters
     158              : 
     159              :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'response_solver'
     160              : 
     161              :    PUBLIC :: response_calculation, response_equation, response_force, response_force_xtb, &
     162              :              response_equation_new
     163              : 
     164              : ! **************************************************************************************************
     165              : 
     166              : CONTAINS
     167              : 
     168              : ! **************************************************************************************************
     169              : !> \brief Initializes solver of linear response equation for energy correction
     170              : !> \brief Call AO or MO based linear response solver for energy correction
     171              : !>
     172              : !> \param qs_env The quickstep environment
     173              : !> \param ec_env The energy correction environment
     174              : !>
     175              : !> \date    01.2020
     176              : !> \author  Fabian Belleflamme
     177              : ! **************************************************************************************************
     178          468 :    SUBROUTINE response_calculation(qs_env, ec_env)
     179              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     180              :       TYPE(energy_correction_type), POINTER              :: ec_env
     181              : 
     182              :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_calculation'
     183              : 
     184              :       INTEGER                                            :: handle, homo, ispin, nao, nao_aux, nmo, &
     185              :                                                             nocc, nspins, solver_method, unit_nr
     186              :       LOGICAL                                            :: should_stop
     187              :       REAL(KIND=dp)                                      :: focc
     188              :       TYPE(admm_type), POINTER                           :: admm_env
     189              :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     190              :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     191              :       TYPE(cp_fm_type)                                   :: sv
     192          468 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: cpmos, mo_occ
     193              :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     194              :       TYPE(cp_logger_type), POINTER                      :: logger
     195          468 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux, rho_ao
     196              :       TYPE(dft_control_type), POINTER                    :: dft_control
     197              :       TYPE(linres_control_type), POINTER                 :: linres_control
     198          468 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     199              :       TYPE(mp_para_env_type), POINTER                    :: para_env
     200              :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     201          468 :          POINTER                                         :: sab_orb
     202              :       TYPE(qs_energy_type), POINTER                      :: energy
     203              :       TYPE(qs_p_env_type), POINTER                       :: p_env
     204              :       TYPE(qs_rho_type), POINTER                         :: rho
     205              :       TYPE(section_vals_type), POINTER                   :: input, solver_section
     206              : 
     207          468 :       CALL timeset(routineN, handle)
     208              : 
     209          468 :       NULLIFY (admm_env, dft_control, energy, logger, matrix_s, matrix_s_aux, mo_coeff, mos, para_env, &
     210          468 :                rho_ao, sab_orb, solver_section)
     211              : 
     212              :       ! Get useful output unit
     213          468 :       logger => cp_get_default_logger()
     214          468 :       IF (logger%para_env%is_source()) THEN
     215          234 :          unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     216              :       ELSE
     217          234 :          unit_nr = -1
     218              :       END IF
     219              : 
     220              :       CALL get_qs_env(qs_env, &
     221              :                       dft_control=dft_control, &
     222              :                       input=input, &
     223              :                       matrix_s=matrix_s, &
     224              :                       para_env=para_env, &
     225          468 :                       sab_orb=sab_orb)
     226          468 :       nspins = dft_control%nspins
     227              : 
     228              :       ! initialize linres_control
     229              :       NULLIFY (linres_control)
     230          468 :       ALLOCATE (linres_control)
     231          468 :       linres_control%do_kernel = .TRUE.
     232              :       linres_control%lr_triplet = .FALSE.
     233              :       linres_control%converged = .FALSE.
     234          468 :       linres_control%energy_gap = 0.02_dp
     235              : 
     236              :       ! Read input
     237          468 :       solver_section => section_vals_get_subs_vals(input, "DFT%ENERGY_CORRECTION%RESPONSE_SOLVER")
     238          468 :       CALL section_vals_val_get(solver_section, "EPS", r_val=linres_control%eps)
     239          468 :       CALL section_vals_val_get(solver_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     240          468 :       CALL section_vals_val_get(solver_section, "MAX_ITER", i_val=linres_control%max_iter)
     241          468 :       CALL section_vals_val_get(solver_section, "METHOD", i_val=solver_method)
     242          468 :       CALL section_vals_val_get(solver_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     243          468 :       CALL section_vals_val_get(solver_section, "RESTART", l_val=linres_control%linres_restart)
     244          468 :       CALL section_vals_val_get(solver_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     245          468 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     246              : 
     247              :       ! Write input section of response solver
     248          468 :       CALL response_solver_write_input(solver_section, linres_control, unit_nr)
     249              : 
     250              :       ! Allocate and initialize response density matrix Z,
     251              :       ! and the energy weighted response density matrix
     252              :       ! Template is the ground-state overlap matrix
     253          468 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_wz, nspins)
     254          468 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_z, nspins)
     255          936 :       DO ispin = 1, nspins
     256          468 :          ALLOCATE (ec_env%matrix_wz(ispin)%matrix)
     257          468 :          ALLOCATE (ec_env%matrix_z(ispin)%matrix)
     258              :          CALL dbcsr_create(ec_env%matrix_wz(ispin)%matrix, name="Wz MATRIX", &
     259          468 :                            template=matrix_s(1)%matrix)
     260              :          CALL dbcsr_create(ec_env%matrix_z(ispin)%matrix, name="Z MATRIX", &
     261          468 :                            template=matrix_s(1)%matrix)
     262          468 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_wz(ispin)%matrix, sab_orb)
     263          468 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_z(ispin)%matrix, sab_orb)
     264          468 :          CALL dbcsr_set(ec_env%matrix_wz(ispin)%matrix, 0.0_dp)
     265          936 :          CALL dbcsr_set(ec_env%matrix_z(ispin)%matrix, 0.0_dp)
     266              :       END DO
     267              : 
     268              :       ! MO solver requires MO's of the ground-state calculation,
     269              :       ! The MOs environment is not allocated if LS-DFT has been used.
     270              :       ! Introduce MOs here
     271              :       ! Remark: MOS environment also required for creation of p_env
     272          468 :       IF (dft_control%qs_control%do_ls_scf) THEN
     273              : 
     274              :          ! Allocate and initialize MO environment
     275           10 :          CALL ec_mos_init(qs_env, matrix_s(1)%matrix)
     276           10 :          CALL get_qs_env(qs_env, mos=mos, rho=rho)
     277              : 
     278              :          ! Get ground-state density matrix
     279           10 :          CALL qs_rho_get(rho, rho_ao=rho_ao)
     280              : 
     281           20 :          DO ispin = 1, nspins
     282              :             CALL get_mo_set(mo_set=mos(ispin), &
     283              :                             mo_coeff=mo_coeff, &
     284           10 :                             nmo=nmo, nao=nao, homo=homo)
     285              : 
     286           10 :             CALL cp_fm_set_all(mo_coeff, 0.0_dp)
     287           10 :             CALL cp_fm_init_random(mo_coeff, nmo)
     288              : 
     289           10 :             CALL cp_fm_create(sv, mo_coeff%matrix_struct, "SV")
     290              :             ! multiply times PS
     291              :             ! PS*C(:,1:nomo)+C(:,nomo+1:nmo) (nomo=NINT(nelectron/maxocc))
     292           10 :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, mo_coeff, sv, nmo)
     293           10 :             CALL cp_dbcsr_sm_fm_multiply(rho_ao(ispin)%matrix, sv, mo_coeff, homo)
     294           10 :             CALL cp_fm_release(sv)
     295              :             ! and ortho the result
     296           10 :             CALL make_basis_sm(mo_coeff, nmo, matrix_s(1)%matrix)
     297              : 
     298              :             ! rebuilds fm_pools
     299              :             ! originally done in qs_env_setup, only when mos associated
     300           10 :             NULLIFY (blacs_env)
     301           10 :             CALL get_qs_env(qs_env, blacs_env=blacs_env)
     302              :             CALL mpools_rebuild_fm_pools(qs_env%mpools, mos=mos, &
     303           40 :                                          blacs_env=blacs_env, para_env=para_env)
     304              :          END DO
     305              :       END IF
     306              : 
     307              :       ! initialize p_env
     308              :       ! Remark: mos environment is needed for this
     309          468 :       IF (ASSOCIATED(ec_env%p_env)) THEN
     310          220 :          CALL p_env_release(ec_env%p_env)
     311          220 :          DEALLOCATE (ec_env%p_env)
     312          220 :          NULLIFY (ec_env%p_env)
     313              :       END IF
     314         2340 :       ALLOCATE (ec_env%p_env)
     315              :       CALL p_env_create(ec_env%p_env, qs_env, orthogonal_orbitals=.TRUE., &
     316          468 :                         linres_control=linres_control)
     317          468 :       CALL p_env_psi0_changed(ec_env%p_env, qs_env)
     318              :       ! Total energy overwritten, replace with Etot from energy correction
     319          468 :       CALL get_qs_env(qs_env, energy=energy)
     320          468 :       energy%total = ec_env%etotal
     321              :       !
     322          468 :       p_env => ec_env%p_env
     323              :       !
     324          468 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     325          468 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     326          936 :       DO ispin = 1, nspins
     327          468 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     328          468 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     329          468 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     330          468 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     331          936 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     332              :       END DO
     333          468 :       IF (dft_control%do_admm) THEN
     334          110 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     335          110 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     336          220 :          DO ispin = 1, nspins
     337          110 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     338              :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     339          110 :                               template=matrix_s_aux(1)%matrix)
     340          110 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     341          220 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     342              :          END DO
     343              :       END IF
     344              : 
     345              :       ! Choose between MO-solver and AO-solver
     346          336 :       SELECT CASE (solver_method)
     347              :       CASE (ec_mo_solver)
     348              : 
     349              :          ! CPKS vector cpmos - RHS of response equation as Ax + b = 0 (sign of b)
     350              :          ! Sign is changed in linres_solver!
     351              :          ! Projector Q applied in linres_solver!
     352          336 :          IF (ASSOCIATED(ec_env%cpmos)) THEN
     353              : 
     354           12 :             CALL response_equation_new(qs_env, p_env, ec_env%cpmos, unit_nr)
     355              : 
     356              :          ELSE
     357          324 :             CALL get_qs_env(qs_env, mos=mos)
     358         1944 :             ALLOCATE (cpmos(nspins), mo_occ(nspins))
     359          648 :             DO ispin = 1, nspins
     360          324 :                CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     361          324 :                NULLIFY (fm_struct)
     362              :                CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     363          324 :                                         template_fmstruct=mo_coeff%matrix_struct)
     364          324 :                CALL cp_fm_create(cpmos(ispin), fm_struct)
     365          324 :                CALL cp_fm_set_all(cpmos(ispin), 0.0_dp)
     366          324 :                CALL cp_fm_create(mo_occ(ispin), fm_struct)
     367          324 :                CALL cp_fm_to_fm(mo_coeff, mo_occ(ispin), nocc)
     368          972 :                CALL cp_fm_struct_release(fm_struct)
     369              :             END DO
     370              : 
     371          324 :             focc = 2.0_dp
     372          324 :             IF (nspins == 1) focc = 4.0_dp
     373          648 :             DO ispin = 1, nspins
     374          324 :                CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     375              :                CALL cp_dbcsr_sm_fm_multiply(ec_env%matrix_hz(ispin)%matrix, mo_occ(ispin), &
     376              :                                             cpmos(ispin), nocc, &
     377          648 :                                             alpha=focc, beta=0.0_dp)
     378              :             END DO
     379          324 :             CALL cp_fm_release(mo_occ)
     380              : 
     381          324 :             CALL response_equation_new(qs_env, p_env, cpmos, unit_nr)
     382              : 
     383          324 :             CALL cp_fm_release(cpmos)
     384              :          END IF
     385              : 
     386              :          ! Get the response density matrix,
     387              :          ! and energy-weighted response density matrix
     388          672 :          DO ispin = 1, nspins
     389          336 :             CALL dbcsr_copy(ec_env%matrix_z(ispin)%matrix, p_env%p1(ispin)%matrix)
     390          672 :             CALL dbcsr_copy(ec_env%matrix_wz(ispin)%matrix, p_env%w1(ispin)%matrix)
     391              :          END DO
     392              : 
     393              :       CASE (ec_ls_solver)
     394              : 
     395          132 :          IF (ec_env%energy_functional == ec_functional_ext) THEN
     396            0 :             CPABORT("AO Response Solver NYA for External Functional")
     397              :          END IF
     398              : 
     399              :          ! AO ortho solver
     400              :          CALL ec_response_ao(qs_env=qs_env, &
     401              :                              p_env=p_env, &
     402              :                              matrix_hz=ec_env%matrix_hz, &
     403              :                              matrix_pz=ec_env%matrix_z, &
     404              :                              matrix_wz=ec_env%matrix_wz, &
     405              :                              iounit=unit_nr, &
     406          132 :                              should_stop=should_stop)
     407              : 
     408          132 :          IF (dft_control%do_admm) THEN
     409           28 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     410           28 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     411           28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     412           28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     413           28 :             nao = admm_env%nao_orb
     414           28 :             nao_aux = admm_env%nao_aux_fit
     415           56 :             DO ispin = 1, nspins
     416           28 :                CALL copy_dbcsr_to_fm(ec_env%matrix_z(ispin)%matrix, admm_env%work_orb_orb)
     417              :                CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     418              :                                   1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     419           28 :                                   admm_env%work_aux_orb)
     420              :                CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     421              :                                   1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     422           28 :                                   admm_env%work_aux_aux)
     423              :                CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     424           56 :                                      keep_sparsity=.TRUE.)
     425              :             END DO
     426              :          END IF
     427              : 
     428              :       CASE DEFAULT
     429          600 :          CPABORT("Unknown solver for response equation requested")
     430              :       END SELECT
     431              : 
     432          468 :       IF (dft_control%do_admm) THEN
     433          110 :          CALL dbcsr_allocate_matrix_set(ec_env%z_admm, nspins)
     434          220 :          DO ispin = 1, nspins
     435          110 :             ALLOCATE (ec_env%z_admm(ispin)%matrix)
     436          110 :             CALL dbcsr_create(matrix=ec_env%z_admm(ispin)%matrix, template=matrix_s_aux(1)%matrix)
     437          110 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     438          220 :             CALL dbcsr_copy(ec_env%z_admm(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
     439              :          END DO
     440              :       END IF
     441              : 
     442              :       ! Get rid of MO environment again
     443          468 :       IF (dft_control%qs_control%do_ls_scf) THEN
     444           20 :          DO ispin = 1, nspins
     445           20 :             CALL deallocate_mo_set(mos(ispin))
     446              :          END DO
     447           10 :          IF (ASSOCIATED(qs_env%mos)) THEN
     448           20 :             DO ispin = 1, SIZE(qs_env%mos)
     449           20 :                CALL deallocate_mo_set(qs_env%mos(ispin))
     450              :             END DO
     451           10 :             DEALLOCATE (qs_env%mos)
     452              :          END IF
     453              :       END IF
     454              : 
     455          468 :       CALL timestop(handle)
     456              : 
     457          936 :    END SUBROUTINE response_calculation
     458              : 
     459              : ! **************************************************************************************************
     460              : !> \brief Parse the input section of the response solver
     461              : !> \param input Input section which controls response solver parameters
     462              : !> \param linres_control Environment for general setting of linear response calculation
     463              : !> \param unit_nr ...
     464              : !> \par History
     465              : !>       2020.05 created [Fabian Belleflamme]
     466              : !> \author Fabian Belleflamme
     467              : ! **************************************************************************************************
     468          468 :    SUBROUTINE response_solver_write_input(input, linres_control, unit_nr)
     469              :       TYPE(section_vals_type), POINTER                   :: input
     470              :       TYPE(linres_control_type), POINTER                 :: linres_control
     471              :       INTEGER, INTENT(IN)                                :: unit_nr
     472              : 
     473              :       CHARACTER(len=*), PARAMETER :: routineN = 'response_solver_write_input'
     474              : 
     475              :       INTEGER                                            :: handle, max_iter_lanczos, s_sqrt_method, &
     476              :                                                             s_sqrt_order, solver_method
     477              :       REAL(KIND=dp)                                      :: eps_lanczos
     478              : 
     479          468 :       CALL timeset(routineN, handle)
     480              : 
     481          468 :       IF (unit_nr > 0) THEN
     482              : 
     483              :          ! linres_control
     484              :          WRITE (unit_nr, '(/,T2,A)') &
     485          234 :             REPEAT("-", 30)//" Linear Response Solver "//REPEAT("-", 25)
     486              : 
     487              :          ! Which type of solver is used
     488          234 :          CALL section_vals_val_get(input, "METHOD", i_val=solver_method)
     489              : 
     490           66 :          SELECT CASE (solver_method)
     491              :          CASE (ec_ls_solver)
     492           66 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "AO-based CG-solver"
     493              :          CASE (ec_mo_solver)
     494          234 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "MO-based CG-solver"
     495              :          END SELECT
     496              : 
     497          234 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps:", linres_control%eps
     498          234 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps_filter:", linres_control%eps_filter
     499          234 :          WRITE (unit_nr, '(T2,A,T61,I20)') "Max iter:", linres_control%max_iter
     500              : 
     501          235 :          SELECT CASE (linres_control%preconditioner_type)
     502              :          CASE (ot_precond_full_all)
     503            1 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_ALL"
     504              :          CASE (ot_precond_full_single_inverse)
     505          167 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE_INVERSE"
     506              :          CASE (ot_precond_full_single)
     507            0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE"
     508              :          CASE (ot_precond_full_kinetic)
     509            0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_KINETIC"
     510              :          CASE (ot_precond_s_inverse)
     511            0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_S_INVERSE"
     512              :          CASE (precond_mlp)
     513           65 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "MULTI_LEVEL"
     514              :          CASE (ot_precond_none)
     515          234 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "NONE"
     516              :          END SELECT
     517              : 
     518           66 :          SELECT CASE (solver_method)
     519              :          CASE (ec_ls_solver)
     520              : 
     521           66 :             CALL section_vals_val_get(input, "S_SQRT_METHOD", i_val=s_sqrt_method)
     522           66 :             CALL section_vals_val_get(input, "S_SQRT_ORDER", i_val=s_sqrt_order)
     523           66 :             CALL section_vals_val_get(input, "EPS_LANCZOS", r_val=eps_lanczos)
     524           66 :             CALL section_vals_val_get(input, "MAX_ITER_LANCZOS", i_val=max_iter_lanczos)
     525              : 
     526              :             ! Response solver transforms P and KS into orthonormal basis,
     527              :             ! reuires matrx S sqrt and its inverse
     528           66 :             SELECT CASE (s_sqrt_method)
     529              :             CASE (ls_s_sqrt_ns)
     530           66 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "NEWTONSCHULZ"
     531              :             CASE (ls_s_sqrt_proot)
     532            0 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "PROOT"
     533              :             CASE DEFAULT
     534           66 :                CPABORT("Unknown sqrt method.")
     535              :             END SELECT
     536          300 :             WRITE (unit_nr, '(T2,A,T61,I20)') "S sqrt order:", s_sqrt_order
     537              : 
     538              :          CASE (ec_mo_solver)
     539              :          END SELECT
     540              : 
     541          234 :          WRITE (unit_nr, '(T2,A)') REPEAT("-", 79)
     542              : 
     543          234 :          CALL m_flush(unit_nr)
     544              :       END IF
     545              : 
     546          468 :       CALL timestop(handle)
     547              : 
     548          468 :    END SUBROUTINE response_solver_write_input
     549              : 
     550              : ! **************************************************************************************************
     551              : !> \brief Initializes vectors for MO-coefficient based linear response solver
     552              : !>        and calculates response density, and energy-weighted response density matrix
     553              : !>
     554              : !> \param qs_env ...
     555              : !> \param p_env ...
     556              : !> \param cpmos ...
     557              : !> \param iounit ...
     558              : ! **************************************************************************************************
     559          386 :    SUBROUTINE response_equation_new(qs_env, p_env, cpmos, iounit)
     560              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     561              :       TYPE(qs_p_env_type)                                :: p_env
     562              :       TYPE(cp_fm_type), DIMENSION(:), INTENT(INOUT)      :: cpmos
     563              :       INTEGER, INTENT(IN)                                :: iounit
     564              : 
     565              :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_equation_new'
     566              : 
     567              :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     568              :       LOGICAL                                            :: should_stop
     569              :       TYPE(admm_type), POINTER                           :: admm_env
     570              :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     571          386 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     572              :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     573          386 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     574              :       TYPE(dft_control_type), POINTER                    :: dft_control
     575          386 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     576              : 
     577          386 :       CALL timeset(routineN, handle)
     578              : 
     579          386 :       NULLIFY (dft_control, matrix_ks, mo_coeff, mos)
     580              : 
     581              :       CALL get_qs_env(qs_env, dft_control=dft_control, matrix_ks=matrix_ks, &
     582          386 :                       matrix_s=matrix_s, mos=mos)
     583          386 :       nspins = dft_control%nspins
     584              : 
     585              :       ! Initialize vectors:
     586              :       ! psi0 : The ground-state MO-coefficients
     587              :       ! psi1 : The "perturbed" linear response orbitals
     588         2726 :       ALLOCATE (psi0(nspins), psi1(nspins))
     589          784 :       DO ispin = 1, nspins
     590          398 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     591          398 :          NULLIFY (fm_struct)
     592              :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     593          398 :                                   template_fmstruct=mo_coeff%matrix_struct)
     594          398 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     595          398 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     596          398 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     597          398 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     598         1182 :          CALL cp_fm_struct_release(fm_struct)
     599              :       END DO
     600              : 
     601              :       should_stop = .FALSE.
     602              :       ! The response solver
     603          386 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     604              : 
     605              :       ! Building the response density matrix
     606          784 :       DO ispin = 1, nspins
     607          784 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     608              :       END DO
     609          386 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     610          784 :       DO ispin = 1, nspins
     611          784 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     612              :       END DO
     613              : 
     614          386 :       IF (dft_control%do_admm) THEN
     615           98 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     616           98 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     617           98 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     618           98 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     619           98 :          nao = admm_env%nao_orb
     620           98 :          nao_aux = admm_env%nao_aux_fit
     621          200 :          DO ispin = 1, nspins
     622          102 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     623              :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     624              :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     625          102 :                                admm_env%work_aux_orb)
     626              :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     627              :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     628          102 :                                admm_env%work_aux_aux)
     629              :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     630          200 :                                   keep_sparsity=.TRUE.)
     631              :          END DO
     632              :       END IF
     633              : 
     634              :       ! Calculate Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     635          784 :       DO ispin = 1, nspins
     636              :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     637          784 :                                   p_env%w1(ispin)%matrix)
     638              :       END DO
     639          784 :       DO ispin = 1, nspins
     640          784 :          CALL cp_fm_release(cpmos(ispin))
     641              :       END DO
     642          386 :       CALL cp_fm_release(psi1)
     643          386 :       CALL cp_fm_release(psi0)
     644              : 
     645          386 :       CALL timestop(handle)
     646              : 
     647          772 :    END SUBROUTINE response_equation_new
     648              : 
     649              : ! **************************************************************************************************
     650              : !> \brief Initializes vectors for MO-coefficient based linear response solver
     651              : !>        and calculates response density, and energy-weighted response density matrix
     652              : !>        J. Chem. Theory Comput. 2022, 18, 4186−4202 (https://doi.org/10.1021/acs.jctc.2c00144)
     653              : !>
     654              : !> \param qs_env ...
     655              : !> \param p_env Holds the two results of this routine, p_env%p1 = CZ^T + ZC^T,
     656              : !>              p_env%w1 = 0.5\sum_i(C_i*\epsilon_i*Z_i^T + Z_i*\epsilon_i*C_i^T)
     657              : !> \param cpmos RHS of equation as Ax + b = 0 (sign of b)
     658              : !> \param iounit ...
     659              : !> \param lr_section ...
     660              : ! **************************************************************************************************
     661          580 :    SUBROUTINE response_equation(qs_env, p_env, cpmos, iounit, lr_section)
     662              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     663              :       TYPE(qs_p_env_type)                                :: p_env
     664              :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: cpmos
     665              :       INTEGER, INTENT(IN)                                :: iounit
     666              :       TYPE(section_vals_type), OPTIONAL, POINTER         :: lr_section
     667              : 
     668              :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_equation'
     669              : 
     670              :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     671              :       LOGICAL                                            :: should_stop
     672              :       TYPE(admm_type), POINTER                           :: admm_env
     673              :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     674          580 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     675              :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     676          580 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s, matrix_s_aux
     677              :       TYPE(dft_control_type), POINTER                    :: dft_control
     678              :       TYPE(linres_control_type), POINTER                 :: linres_control
     679          580 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     680              :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     681          580 :          POINTER                                         :: sab_orb
     682              : 
     683          580 :       CALL timeset(routineN, handle)
     684              : 
     685              :       ! initialized linres_control
     686              :       NULLIFY (linres_control)
     687          580 :       ALLOCATE (linres_control)
     688          580 :       linres_control%do_kernel = .TRUE.
     689              :       linres_control%lr_triplet = .FALSE.
     690          580 :       IF (PRESENT(lr_section)) THEN
     691          580 :          CALL section_vals_val_get(lr_section, "RESTART", l_val=linres_control%linres_restart)
     692          580 :          CALL section_vals_val_get(lr_section, "MAX_ITER", i_val=linres_control%max_iter)
     693          580 :          CALL section_vals_val_get(lr_section, "EPS", r_val=linres_control%eps)
     694          580 :          CALL section_vals_val_get(lr_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     695          580 :          CALL section_vals_val_get(lr_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     696          580 :          CALL section_vals_val_get(lr_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     697          580 :          CALL section_vals_val_get(lr_section, "ENERGY_GAP", r_val=linres_control%energy_gap)
     698              :       ELSE
     699              :          linres_control%linres_restart = .FALSE.
     700            0 :          linres_control%max_iter = 100
     701            0 :          linres_control%eps = 1.0e-10_dp
     702            0 :          linres_control%eps_filter = 1.0e-15_dp
     703            0 :          linres_control%restart_every = 50
     704            0 :          linres_control%preconditioner_type = ot_precond_full_single_inverse
     705            0 :          linres_control%energy_gap = 0.02_dp
     706              :       END IF
     707              : 
     708              :       ! initialized p_env
     709              :       CALL p_env_create(p_env, qs_env, orthogonal_orbitals=.TRUE., &
     710          580 :                         linres_control=linres_control)
     711          580 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     712          580 :       CALL p_env_psi0_changed(p_env, qs_env)
     713          580 :       p_env%new_preconditioner = .TRUE.
     714              : 
     715          580 :       CALL get_qs_env(qs_env, dft_control=dft_control, mos=mos)
     716              :       !
     717          580 :       nspins = dft_control%nspins
     718              : 
     719              :       ! Initialize vectors:
     720              :       ! psi0 : The ground-state MO-coefficients
     721              :       ! psi1 : The "perturbed" linear response orbitals
     722         4276 :       ALLOCATE (psi0(nspins), psi1(nspins))
     723         1268 :       DO ispin = 1, nspins
     724          688 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     725          688 :          NULLIFY (fm_struct)
     726              :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     727          688 :                                   template_fmstruct=mo_coeff%matrix_struct)
     728          688 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     729          688 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     730          688 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     731          688 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     732         1956 :          CALL cp_fm_struct_release(fm_struct)
     733              :       END DO
     734              : 
     735          580 :       should_stop = .FALSE.
     736              :       ! The response solver
     737          580 :       CALL get_qs_env(qs_env, matrix_s=matrix_s, sab_orb=sab_orb)
     738          580 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     739          580 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     740         1268 :       DO ispin = 1, nspins
     741          688 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     742          688 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     743          688 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     744          688 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     745         1268 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     746              :       END DO
     747          580 :       IF (dft_control%do_admm) THEN
     748          128 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     749          128 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     750          276 :          DO ispin = 1, nspins
     751          148 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     752              :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     753          148 :                               template=matrix_s_aux(1)%matrix)
     754          148 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     755          276 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     756              :          END DO
     757              :       END IF
     758              : 
     759          580 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     760              : 
     761              :       ! Building the response density matrix
     762         1268 :       DO ispin = 1, nspins
     763         1268 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     764              :       END DO
     765          580 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     766         1268 :       DO ispin = 1, nspins
     767         1268 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     768              :       END DO
     769          580 :       IF (dft_control%do_admm) THEN
     770          128 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     771          128 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     772          128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     773          128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     774          128 :          nao = admm_env%nao_orb
     775          128 :          nao_aux = admm_env%nao_aux_fit
     776          276 :          DO ispin = 1, nspins
     777          148 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     778              :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     779              :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     780          148 :                                admm_env%work_aux_orb)
     781              :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     782              :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     783          148 :                                admm_env%work_aux_aux)
     784              :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     785          276 :                                   keep_sparsity=.TRUE.)
     786              :          END DO
     787              :       END IF
     788              : 
     789              :       ! Calculate the second term of Eq. 51 Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     790          580 :       CALL get_qs_env(qs_env, matrix_ks=matrix_ks)
     791         1268 :       DO ispin = 1, nspins
     792              :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     793         1268 :                                   p_env%w1(ispin)%matrix)
     794              :       END DO
     795          580 :       CALL cp_fm_release(psi0)
     796          580 :       CALL cp_fm_release(psi1)
     797              : 
     798          580 :       CALL timestop(handle)
     799              : 
     800         1740 :    END SUBROUTINE response_equation
     801              : 
     802              : ! **************************************************************************************************
     803              : !> \brief ...
     804              : !> \param qs_env ...
     805              : !> \param vh_rspace ...
     806              : !> \param vxc_rspace ...
     807              : !> \param vtau_rspace ...
     808              : !> \param vadmm_rspace ...
     809              : !> \param matrix_hz Right-hand-side of linear response equation
     810              : !> \param matrix_pz Linear response density matrix
     811              : !> \param matrix_pz_admm Linear response density matrix in ADMM basis
     812              : !> \param matrix_wz Energy-weighted linear response density
     813              : !> \param zehartree Hartree volume response contribution to stress tensor
     814              : !> \param zexc XC volume response contribution to stress tensor
     815              : !> \param zexc_aux_fit ADMM XC volume response contribution to stress tensor
     816              : !> \param rhopz_r Response density on real space grid
     817              : !> \param p_env ...
     818              : !> \param ex_env ...
     819              : !> \param debug ...
     820              : ! **************************************************************************************************
     821         1032 :    SUBROUTINE response_force(qs_env, vh_rspace, vxc_rspace, vtau_rspace, vadmm_rspace, &
     822              :                              matrix_hz, matrix_pz, matrix_pz_admm, matrix_wz, &
     823         1032 :                              zehartree, zexc, zexc_aux_fit, rhopz_r, p_env, ex_env, debug)
     824              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     825              :       TYPE(pw_r3d_rs_type), INTENT(IN)                   :: vh_rspace
     826              :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: vxc_rspace, vtau_rspace, vadmm_rspace
     827              :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz, matrix_pz, matrix_pz_admm, &
     828              :                                                             matrix_wz
     829              :       REAL(KIND=dp), OPTIONAL                            :: zehartree, zexc, zexc_aux_fit
     830              :       TYPE(pw_r3d_rs_type), DIMENSION(:), &
     831              :          INTENT(INOUT), OPTIONAL                         :: rhopz_r
     832              :       TYPE(qs_p_env_type), OPTIONAL                      :: p_env
     833              :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
     834              :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
     835              : 
     836              :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_force'
     837              : 
     838              :       CHARACTER(LEN=default_string_length)               :: basis_type, unitstr
     839              :       INTEGER                                            :: handle, iounit, ispin, mspin, myfun, &
     840              :                                                             n_rep_hf, nao, nao_aux, natom, nder, &
     841              :                                                             nocc, nspins
     842              :       LOGICAL :: debug_forces, debug_stress, distribute_fock_matrix, do_ex, do_hfx, gapw, gapw_xc, &
     843              :          hfx_treat_lsd_in_core, resp_only, s_mstruct_changed, use_virial
     844              :       REAL(KIND=dp)                                      :: eh1, ehartree, ekin_mol, eps_filter, &
     845              :                                                             exc, exc_aux_fit, fconv, focc, &
     846              :                                                             hartree_gs, hartree_t
     847         1032 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: ftot1, ftot2, ftot3
     848              :       REAL(KIND=dp), DIMENSION(2)                        :: total_rho_gs, total_rho_t
     849              :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
     850              :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_stress, pv_loc, stdeb, sttot, sttot2
     851              :       TYPE(admm_type), POINTER                           :: admm_env
     852         1032 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     853              :       TYPE(cell_type), POINTER                           :: cell
     854              :       TYPE(cp_logger_type), POINTER                      :: logger
     855              :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     856         1032 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ht, matrix_pd, matrix_pza, &
     857         1032 :                                                             matrix_s, mpa, scrm
     858         1032 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_h, matrix_p, mhd, mhx, mhy, mhz, &
     859         1032 :                                                             mpa2, mpd, mpz, scrm2
     860              :       TYPE(dbcsr_type), POINTER                          :: dbwork
     861              :       TYPE(dft_control_type), POINTER                    :: dft_control
     862              :       TYPE(hartree_local_type), POINTER                  :: hartree_local_gs, hartree_local_t
     863         1032 :       TYPE(hfx_type), DIMENSION(:, :), POINTER           :: x_data
     864              :       TYPE(kg_environment_type), POINTER                 :: kg_env
     865              :       TYPE(local_rho_type), POINTER                      :: local_rho_set_f, local_rho_set_gs, &
     866              :                                                             local_rho_set_t, local_rho_set_vxc, &
     867              :                                                             local_rhoz_set_admm
     868         1032 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     869              :       TYPE(mp_para_env_type), POINTER                    :: para_env
     870              :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     871         1032 :          POINTER                                         :: sab_aux_fit, sab_orb
     872              :       TYPE(oce_matrix_type), POINTER                     :: oce
     873         1032 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     874              :       TYPE(pw_c1d_gs_type) :: rho_tot_gspace, rho_tot_gspace_gs, rho_tot_gspace_t, &
     875              :          rhoz_tot_gspace, v_hartree_gspace_gs, v_hartree_gspace_t, zv_hartree_gspace
     876         1032 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g_aux, rho_g_gs, rho_g_t, rhoz_g, &
     877         1032 :                                                             rhoz_g_aux, rhoz_g_xc
     878              :       TYPE(pw_c1d_gs_type), POINTER                      :: rho_core
     879              :       TYPE(pw_env_type), POINTER                         :: pw_env
     880              :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
     881              :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     882              :       TYPE(pw_r3d_rs_type)                               :: v_hartree_rspace_gs, v_hartree_rspace_t, &
     883              :                                                             vhxc_rspace, zv_hartree_rspace
     884         1032 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r_aux, rho_r_gs, rho_r_t, rhoz_r, &
     885         1032 :                                                             rhoz_r_aux, rhoz_r_xc, tau_r_aux, &
     886         1032 :                                                             tauz_r, tauz_r_xc, v_xc, v_xc_tau
     887         1032 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     888         1032 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     889              :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     890              :       TYPE(qs_rho_type), POINTER                         :: rho, rho_aux_fit, rho_xc
     891              :       TYPE(section_vals_type), POINTER                   :: hfx_section, xc_fun_section, xc_section
     892              :       TYPE(task_list_type), POINTER                      :: task_list, task_list_aux_fit
     893              :       TYPE(virial_type), POINTER                         :: virial
     894              : 
     895         1032 :       CALL timeset(routineN, handle)
     896              : 
     897         1032 :       IF (PRESENT(debug)) THEN
     898         1032 :          debug_forces = debug
     899         1032 :          debug_stress = debug
     900              :       ELSE
     901            0 :          debug_forces = .FALSE.
     902            0 :          debug_stress = .FALSE.
     903              :       END IF
     904              : 
     905         1032 :       logger => cp_get_default_logger()
     906         1032 :       IF (logger%para_env%is_source()) THEN
     907          516 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     908              :       ELSE
     909              :          iounit = -1
     910              :       END IF
     911              : 
     912         1032 :       do_ex = .FALSE.
     913         1032 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
     914              :       IF (do_ex) THEN
     915          564 :          CPASSERT(PRESENT(p_env))
     916              :       END IF
     917              : 
     918         1032 :       NULLIFY (ks_env, sab_orb, virial)
     919              :       CALL get_qs_env(qs_env=qs_env, &
     920              :                       cell=cell, &
     921              :                       force=force, &
     922              :                       ks_env=ks_env, &
     923              :                       dft_control=dft_control, &
     924              :                       para_env=para_env, &
     925              :                       sab_orb=sab_orb, &
     926         1032 :                       virial=virial)
     927         1032 :       nspins = dft_control%nspins
     928         1032 :       gapw = dft_control%qs_control%gapw
     929         1032 :       gapw_xc = dft_control%qs_control%gapw_xc
     930              : 
     931         1032 :       IF (debug_forces) THEN
     932           94 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
     933          282 :          ALLOCATE (ftot1(3, natom))
     934           94 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
     935              :       END IF
     936              : 
     937              :       ! check for virial
     938         1032 :       use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
     939              : 
     940         1032 :       IF (use_virial .AND. do_ex) THEN
     941            0 :          CALL cp_abort(__LOCATION__, "Stress Tensor not available for TDDFT calculations.")
     942              :       END IF
     943              : 
     944         1032 :       fconv = 1.0E-9_dp*pascal/cell%deth
     945         1032 :       IF (debug_stress .AND. use_virial) THEN
     946            0 :          sttot = virial%pv_virial
     947              :       END IF
     948              : 
     949              :       !     *** If LSD, then combine alpha density and beta density to
     950              :       !     *** total density: alpha <- alpha + beta   and
     951         1032 :       NULLIFY (mpa)
     952         1032 :       NULLIFY (matrix_ht)
     953         1032 :       IF (do_ex) THEN
     954          564 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
     955         1236 :          DO ispin = 1, nspins
     956          672 :             ALLOCATE (mpa(ispin)%matrix)
     957          672 :             CALL dbcsr_create(mpa(ispin)%matrix, template=p_env%p1(ispin)%matrix)
     958          672 :             CALL dbcsr_copy(mpa(ispin)%matrix, p_env%p1(ispin)%matrix)
     959          672 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
     960         1236 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
     961              :          END DO
     962              :       ELSE
     963          468 :          mpa => matrix_pz
     964              :       END IF
     965              :       !
     966         1032 :       IF (do_ex .OR. (gapw .OR. gapw_xc)) THEN
     967          596 :          CALL dbcsr_allocate_matrix_set(matrix_ht, nspins)
     968         1300 :          DO ispin = 1, nspins
     969          704 :             ALLOCATE (matrix_ht(ispin)%matrix)
     970          704 :             CALL dbcsr_create(matrix_ht(ispin)%matrix, template=matrix_hz(ispin)%matrix)
     971          704 :             CALL dbcsr_copy(matrix_ht(ispin)%matrix, matrix_hz(ispin)%matrix)
     972         1736 :             CALL dbcsr_set(matrix_ht(ispin)%matrix, 0.0_dp)
     973              :          END DO
     974              :       END IF
     975              :       !
     976              :       ! START OF Tr[(P+Z)Hcore]
     977              :       !
     978              : 
     979              :       ! Kinetic energy matrix
     980         1032 :       NULLIFY (scrm2)
     981         1032 :       mpa2(1:nspins, 1:1) => mpa(1:nspins)
     982              :       CALL kinetic_energy_matrix(qs_env, matrixkp_t=scrm2, matrix_p=mpa2, &
     983              :                                  matrix_name="KINETIC ENERGY MATRIX", &
     984              :                                  basis_type="ORB", &
     985              :                                  sab_orb=sab_orb, calculate_forces=.TRUE., &
     986         1032 :                                  debug_forces=debug_forces, debug_stress=debug_stress)
     987         1032 :       CALL dbcsr_deallocate_matrix_set(scrm2)
     988              : 
     989              :       ! Initialize a matrix scrm, later used for scratch purposes
     990         1032 :       CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s)
     991         1032 :       NULLIFY (scrm)
     992         1032 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
     993         2172 :       DO ispin = 1, nspins
     994         1140 :          ALLOCATE (scrm(ispin)%matrix)
     995         1140 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_s(1)%matrix)
     996         1140 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_s(1)%matrix)
     997         2172 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
     998              :       END DO
     999              : 
    1000              :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, particle_set=particle_set, &
    1001         1032 :                       atomic_kind_set=atomic_kind_set)
    1002              : 
    1003         8472 :       ALLOCATE (matrix_p(nspins, 1), matrix_h(nspins, 1))
    1004         2172 :       DO ispin = 1, nspins
    1005         1140 :          matrix_p(ispin, 1)%matrix => mpa(ispin)%matrix
    1006         2172 :          matrix_h(ispin, 1)%matrix => scrm(ispin)%matrix
    1007              :       END DO
    1008         1032 :       matrix_h(1, 1)%matrix => scrm(1)%matrix
    1009              : 
    1010         1032 :       nder = 1
    1011              :       CALL core_matrices(qs_env, matrix_h, matrix_p, .TRUE., nder, &
    1012         1032 :                          debug_forces=debug_forces, debug_stress=debug_stress)
    1013              : 
    1014              :       ! Kim-Gordon subsystem DFT
    1015              :       ! Atomic potential for nonadditive kinetic energy contribution
    1016         1032 :       IF (dft_control%qs_control%do_kg) THEN
    1017           24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_atomic) THEN
    1018           12 :             CALL get_qs_env(qs_env=qs_env, kg_env=kg_env, dbcsr_dist=dbcsr_dist)
    1019              : 
    1020           12 :             IF (use_virial) THEN
    1021          130 :                pv_loc = virial%pv_virial
    1022              :             END IF
    1023              : 
    1024           12 :             IF (debug_forces) fodeb(1:3) = force(1)%kinetic(1:3, 1)
    1025           12 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1026              :             CALL build_tnadd_mat(kg_env=kg_env, matrix_p=matrix_p, force=force, virial=virial, &
    1027              :                                  calculate_forces=.TRUE., use_virial=use_virial, &
    1028              :                                  qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set, &
    1029           12 :                                  particle_set=particle_set, sab_orb=sab_orb, dbcsr_dist=dbcsr_dist)
    1030           12 :             IF (debug_forces) THEN
    1031            0 :                fodeb(1:3) = force(1)%kinetic(1:3, 1) - fodeb(1:3)
    1032            0 :                CALL para_env%sum(fodeb)
    1033            0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dTnadd  ", fodeb
    1034              :             END IF
    1035           12 :             IF (debug_stress .AND. use_virial) THEN
    1036            0 :                stdeb = fconv*(virial%pv_virial - stdeb)
    1037            0 :                CALL para_env%sum(stdeb)
    1038            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1039            0 :                   'STRESS| Pz*dTnadd   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1040              :             END IF
    1041              : 
    1042              :             ! Stress-tensor update components
    1043           12 :             IF (use_virial) THEN
    1044          130 :                virial%pv_ekinetic = virial%pv_ekinetic + (virial%pv_virial - pv_loc)
    1045              :             END IF
    1046              : 
    1047              :          END IF
    1048              :       END IF
    1049              : 
    1050         1032 :       DEALLOCATE (matrix_h)
    1051         1032 :       DEALLOCATE (matrix_p)
    1052         1032 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1053              : 
    1054              :       ! initialize src matrix
    1055              :       ! Necessary as build_kinetic_matrix will only allocate scrm(1)
    1056              :       ! and not scrm(2) in open-shell case
    1057         1032 :       NULLIFY (scrm)
    1058         1032 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
    1059         2172 :       DO ispin = 1, nspins
    1060         1140 :          ALLOCATE (scrm(ispin)%matrix)
    1061         1140 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_pz(1)%matrix)
    1062         1140 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_pz(ispin)%matrix)
    1063         2172 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
    1064              :       END DO
    1065              : 
    1066         1032 :       IF (debug_forces) THEN
    1067          282 :          ALLOCATE (ftot2(3, natom))
    1068           94 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    1069          376 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    1070           94 :          CALL para_env%sum(fodeb)
    1071           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dHcore", fodeb
    1072              :       END IF
    1073         1032 :       IF (debug_stress .AND. use_virial) THEN
    1074            0 :          stdeb = fconv*(virial%pv_virial - sttot)
    1075            0 :          CALL para_env%sum(stdeb)
    1076            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1077            0 :             'STRESS| Stress Pz*dHcore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1078              :          ! save current total viral, does not contain volume terms yet
    1079            0 :          sttot2 = virial%pv_virial
    1080              :       END IF
    1081              :       !
    1082              :       ! END OF Tr(P+Z)Hcore
    1083              :       !
    1084              :       !
    1085              :       ! Vhxc (KS potentials calculated externally)
    1086         1032 :       CALL get_qs_env(qs_env, pw_env=pw_env)
    1087         1032 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
    1088              :       !
    1089         1032 :       IF (dft_control%do_admm) THEN
    1090          238 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1091          238 :          xc_section => admm_env%xc_section_primary
    1092              :       ELSE
    1093          794 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1094              :       END IF
    1095         1032 :       xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
    1096         1032 :       CALL section_vals_val_get(xc_fun_section, "_SECTION_PARAMETERS_", i_val=myfun)
    1097              :       !
    1098         1032 :       IF (gapw .OR. gapw_xc) THEN
    1099          110 :          NULLIFY (oce, sab_orb)
    1100          110 :          CALL get_qs_env(qs_env=qs_env, oce=oce, sab_orb=sab_orb)
    1101              :          ! set up local_rho_set for GS density
    1102          110 :          NULLIFY (local_rho_set_gs)
    1103          110 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1104          110 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1105          110 :          CALL local_rho_set_create(local_rho_set_gs)
    1106              :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1107          110 :                                           qs_kind_set, dft_control, para_env)
    1108          110 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1109          110 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1110              :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1111          110 :                                        qs_kind_set, oce, sab_orb, para_env)
    1112          110 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1113              :          ! set up local_rho_set for response density
    1114          110 :          NULLIFY (local_rho_set_t)
    1115          110 :          CALL local_rho_set_create(local_rho_set_t)
    1116              :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1117          110 :                                           qs_kind_set, dft_control, para_env)
    1118              :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1119          110 :                         zcore=0.0_dp)
    1120          110 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1121              :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1122          110 :                                        qs_kind_set, oce, sab_orb, para_env)
    1123          110 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1124              : 
    1125              :          ! compute soft GS potential
    1126          770 :          ALLOCATE (rho_r_gs(nspins), rho_g_gs(nspins))
    1127          220 :          DO ispin = 1, nspins
    1128          110 :             CALL auxbas_pw_pool%create_pw(rho_r_gs(ispin))
    1129          220 :             CALL auxbas_pw_pool%create_pw(rho_g_gs(ispin))
    1130              :          END DO
    1131          110 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_gs)
    1132              :          ! compute soft GS density
    1133          110 :          total_rho_gs = 0.0_dp
    1134          110 :          CALL pw_zero(rho_tot_gspace_gs)
    1135          220 :          DO ispin = 1, nspins
    1136              :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_p(ispin, 1)%matrix, &
    1137              :                                     rho=rho_r_gs(ispin), &
    1138              :                                     rho_gspace=rho_g_gs(ispin), &
    1139              :                                     soft_valid=(gapw .OR. gapw_xc), &
    1140          110 :                                     total_rho=total_rho_gs(ispin))
    1141          220 :             CALL pw_axpy(rho_g_gs(ispin), rho_tot_gspace_gs)
    1142              :          END DO
    1143          110 :          IF (gapw) THEN
    1144           82 :             CALL get_qs_env(qs_env, natom=natom)
    1145              :             ! add rho0 contributions to GS density (only for Coulomb) only for gapw
    1146           82 :             CALL pw_axpy(local_rho_set_gs%rho0_mpole%rho0_s_gs, rho_tot_gspace_gs)
    1147           82 :             IF (ASSOCIATED(local_rho_set_gs%rho0_mpole%rhoz_cneo_s_gs)) THEN
    1148            0 :                CALL pw_axpy(local_rho_set_gs%rho0_mpole%rhoz_cneo_s_gs, rho_tot_gspace_gs)
    1149              :             END IF
    1150           82 :             IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
    1151            4 :                CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
    1152            4 :                CALL pw_axpy(rho_core, rho_tot_gspace_gs)
    1153              :             END IF
    1154              :             ! compute GS potential
    1155           82 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_gs)
    1156           82 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_gs)
    1157           82 :             NULLIFY (hartree_local_gs)
    1158           82 :             CALL hartree_local_create(hartree_local_gs)
    1159           82 :             CALL init_coulomb_local(hartree_local_gs, natom)
    1160           82 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_gs, hartree_gs, v_hartree_gspace_gs)
    1161           82 :             CALL pw_transfer(v_hartree_gspace_gs, v_hartree_rspace_gs)
    1162           82 :             CALL pw_scale(v_hartree_rspace_gs, v_hartree_rspace_gs%pw_grid%dvol)
    1163              :          END IF
    1164              :       END IF
    1165              : 
    1166         1032 :       IF (gapw) THEN
    1167              :          ! Hartree grid PAW term
    1168           82 :          CPASSERT(.NOT. use_virial)
    1169          292 :          IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1170              :          CALL Vh_1c_gg_integrals(qs_env, hartree_gs, hartree_local_gs%ecoul_1c, local_rho_set_t, para_env, tddft=.TRUE., &
    1171           82 :                                  local_rho_set_2nd=local_rho_set_gs, core_2nd=.FALSE.) ! n^core for GS potential
    1172              :          ! 1st to define integral space, 2nd for potential, integral contributions stored on local_rho_set_gs
    1173              :          CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_gs, para_env, calculate_forces=.TRUE., &
    1174           82 :                                     local_rho_set=local_rho_set_t, local_rho_set_2nd=local_rho_set_gs)
    1175           82 :          IF (debug_forces) THEN
    1176          280 :             fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1177           70 :             CALL para_env%sum(fodeb)
    1178           70 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVh[D^GS]PAWg0", fodeb
    1179              :          END IF
    1180              :       END IF
    1181         1032 :       IF (gapw .OR. gapw_xc) THEN
    1182          110 :          IF (myfun /= xc_none) THEN
    1183              :             ! add 1c hard and soft XC contributions
    1184           94 :             NULLIFY (local_rho_set_vxc)
    1185           94 :             CALL local_rho_set_create(local_rho_set_vxc)
    1186              :             CALL allocate_rho_atom_internals(local_rho_set_vxc%rho_atom_set, atomic_kind_set, &
    1187           94 :                                              qs_kind_set, dft_control, para_env)
    1188              :             CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_vxc%rho_atom_set, &
    1189           94 :                                           qs_kind_set, oce, sab_orb, para_env)
    1190           94 :             CALL prepare_gapw_den(qs_env, local_rho_set_vxc, do_rho0=.FALSE.)
    1191              :             ! compute hard and soft atomic contributions
    1192              :             CALL calculate_vxc_atom(qs_env, .FALSE., exc1=hartree_gs, xc_section_external=xc_section, &
    1193           94 :                                     rho_atom_set_external=local_rho_set_vxc%rho_atom_set)
    1194              :          END IF ! myfun
    1195              :       END IF ! gapw
    1196              : 
    1197         1032 :       CALL auxbas_pw_pool%create_pw(vhxc_rspace)
    1198              :       !
    1199              :       ! Stress-tensor: integration contribution direct term
    1200              :       ! int v_Hxc[n^in]*n^z
    1201         1032 :       IF (use_virial) THEN
    1202         2184 :          pv_loc = virial%pv_virial
    1203              :       END IF
    1204              : 
    1205         1314 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1206         1032 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1207         1032 :       IF (gapw .OR. gapw_xc) THEN
    1208              :          ! vtot = v_xc + v_hartree
    1209          220 :          DO ispin = 1, nspins
    1210          110 :             CALL pw_zero(vhxc_rspace)
    1211          110 :             IF (gapw) THEN
    1212           82 :                CALL pw_transfer(v_hartree_rspace_gs, vhxc_rspace)
    1213           28 :             ELSEIF (gapw_xc) THEN
    1214           28 :                CALL pw_transfer(vh_rspace, vhxc_rspace)
    1215              :             END IF
    1216              :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1217              :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1218              :                                     qs_env=qs_env, gapw=gapw, &
    1219          220 :                                     calculate_forces=.TRUE.)
    1220              :          END DO
    1221          110 :          IF (myfun /= xc_none) THEN
    1222          188 :             DO ispin = 1, nspins
    1223           94 :                CALL pw_zero(vhxc_rspace)
    1224           94 :                CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1225              :                CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1226              :                                        hmat=scrm(ispin), pmat=mpa(ispin), &
    1227              :                                        qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1228          188 :                                        calculate_forces=.TRUE.)
    1229              :             END DO
    1230              :          END IF
    1231              :       ELSE ! original GPW with Standard Hartree as Potential
    1232         1952 :          DO ispin = 1, nspins
    1233         1030 :             CALL pw_transfer(vh_rspace, vhxc_rspace)
    1234         1030 :             CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1235              :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1236              :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1237         1952 :                                     qs_env=qs_env, gapw=gapw, calculate_forces=.TRUE.)
    1238              :          END DO
    1239              :       END IF
    1240              : 
    1241         1032 :       IF (debug_forces) THEN
    1242          376 :          fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1243           94 :          CALL para_env%sum(fodeb)
    1244           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]   ", fodeb
    1245              :       END IF
    1246         1032 :       IF (debug_stress .AND. use_virial) THEN
    1247            0 :          stdeb = fconv*(virial%pv_virial - pv_loc)
    1248            0 :          CALL para_env%sum(stdeb)
    1249            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1250            0 :             'STRESS| INT Pz*dVhxc   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1251              :       END IF
    1252              : 
    1253         1032 :       IF (gapw .OR. gapw_xc) THEN
    1254              :          ! HXC term
    1255          380 :          IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1256          110 :          IF (gapw) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1257           82 :                                        rho_atom_external=local_rho_set_gs%rho_atom_set)
    1258          110 :          IF (myfun /= xc_none) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1259           94 :                                                    rho_atom_external=local_rho_set_vxc%rho_atom_set)
    1260          110 :          IF (debug_forces) THEN
    1261          360 :             fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1262           90 :             CALL para_env%sum(fodeb)
    1263           90 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]PAW ", fodeb
    1264              :          END IF
    1265              :          ! release local environments for GAPW
    1266          110 :          IF (myfun /= xc_none) THEN
    1267           94 :             IF (ASSOCIATED(local_rho_set_vxc)) CALL local_rho_set_release(local_rho_set_vxc)
    1268              :          END IF
    1269          110 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1270          110 :          IF (gapw) THEN
    1271           82 :             IF (ASSOCIATED(hartree_local_gs)) CALL hartree_local_release(hartree_local_gs)
    1272           82 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_gs)
    1273           82 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_gs)
    1274              :          END IF
    1275          110 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_gs)
    1276          110 :          IF (ASSOCIATED(rho_r_gs)) THEN
    1277          220 :          DO ispin = 1, nspins
    1278          220 :             CALL auxbas_pw_pool%give_back_pw(rho_r_gs(ispin))
    1279              :          END DO
    1280          110 :          DEALLOCATE (rho_r_gs)
    1281              :          END IF
    1282          110 :          IF (ASSOCIATED(rho_g_gs)) THEN
    1283          220 :          DO ispin = 1, nspins
    1284          220 :             CALL auxbas_pw_pool%give_back_pw(rho_g_gs(ispin))
    1285              :          END DO
    1286          110 :          DEALLOCATE (rho_g_gs)
    1287              :          END IF
    1288              :       END IF !gapw
    1289              : 
    1290         1032 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1291           32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1292           32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1293           32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1294           64 :          DO ispin = 1, nspins
    1295              :             CALL integrate_v_rspace(v_rspace=vtau_rspace(ispin), &
    1296              :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1297              :                                     qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1298           96 :                                     calculate_forces=.TRUE., compute_tau=.TRUE.)
    1299              :          END DO
    1300           32 :          IF (debug_forces) THEN
    1301            0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1302            0 :             CALL para_env%sum(fodeb)
    1303            0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVxc_tau   ", fodeb
    1304              :          END IF
    1305           32 :          IF (debug_stress .AND. use_virial) THEN
    1306            0 :             stdeb = fconv*(virial%pv_virial - pv_loc)
    1307            0 :             CALL para_env%sum(stdeb)
    1308            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1309            0 :                'STRESS| INT Pz*dVxc_tau   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1310              :          END IF
    1311              :       END IF
    1312         1032 :       CALL auxbas_pw_pool%give_back_pw(vhxc_rspace)
    1313              : 
    1314              :       ! Stress-tensor Pz*v_Hxc[Pin]
    1315         1032 :       IF (use_virial) THEN
    1316         2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1317              :       END IF
    1318              : 
    1319              :       ! KG Embedding
    1320              :       ! calculate kinetic energy potential and integrate with response density
    1321         1032 :       IF (dft_control%qs_control%do_kg) THEN
    1322           24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1323              :              qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1324              : 
    1325           12 :             ekin_mol = 0.0_dp
    1326           12 :             IF (use_virial) THEN
    1327          104 :                pv_loc = virial%pv_virial
    1328              :             END IF
    1329              : 
    1330           12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1331              :             CALL kg_ekin_subset(qs_env=qs_env, &
    1332              :                                 ks_matrix=scrm, &
    1333              :                                 ekin_mol=ekin_mol, &
    1334              :                                 calc_force=.TRUE., &
    1335              :                                 do_kernel=.FALSE., &
    1336           12 :                                 pmat_ext=mpa)
    1337           12 :             IF (debug_forces) THEN
    1338            0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1339            0 :                CALL para_env%sum(fodeb)
    1340            0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVkg   ", fodeb
    1341              :             END IF
    1342           12 :             IF (debug_stress .AND. use_virial) THEN
    1343              :                !IF (iounit > 0) WRITE(iounit, *) &
    1344              :                !   "response_force | VOL 1st KG - v_KG[n_in]*n_z: ", ekin_mol
    1345            0 :                stdeb = 1.0_dp*fconv*ekin_mol
    1346            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1347            0 :                   'STRESS| VOL KG Pz*dVKG ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1348              : 
    1349            0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1350            0 :                CALL para_env%sum(stdeb)
    1351            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1352            0 :                   'STRESS| INT KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1353              : 
    1354            0 :                stdeb = fconv*virial%pv_xc
    1355            0 :                CALL para_env%sum(stdeb)
    1356            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1357            0 :                   'STRESS| GGA KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1358              :             END IF
    1359           12 :             IF (use_virial) THEN
    1360              :                ! Direct integral contribution
    1361          104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1362              :             END IF
    1363              : 
    1364              :          END IF ! tnadd_method
    1365              :       END IF ! do_kg
    1366              : 
    1367         1032 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1368              : 
    1369              :       !
    1370              :       ! Hartree potential of response density
    1371              :       !
    1372         7440 :       ALLOCATE (rhoz_r(nspins), rhoz_g(nspins))
    1373         2172 :       DO ispin = 1, nspins
    1374         1140 :          CALL auxbas_pw_pool%create_pw(rhoz_r(ispin))
    1375         2172 :          CALL auxbas_pw_pool%create_pw(rhoz_g(ispin))
    1376              :       END DO
    1377         1032 :       CALL auxbas_pw_pool%create_pw(rhoz_tot_gspace)
    1378         1032 :       CALL auxbas_pw_pool%create_pw(zv_hartree_rspace)
    1379         1032 :       CALL auxbas_pw_pool%create_pw(zv_hartree_gspace)
    1380              : 
    1381         1032 :       CALL pw_zero(rhoz_tot_gspace)
    1382         2172 :       DO ispin = 1, nspins
    1383              :          CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1384              :                                  rho=rhoz_r(ispin), rho_gspace=rhoz_g(ispin), &
    1385         1140 :                                  soft_valid=gapw)
    1386         2172 :          CALL pw_axpy(rhoz_g(ispin), rhoz_tot_gspace)
    1387              :       END DO
    1388         1032 :       IF (gapw_xc) THEN
    1389           28 :          NULLIFY (tauz_r_xc)
    1390          140 :          ALLOCATE (rhoz_r_xc(nspins), rhoz_g_xc(nspins))
    1391           56 :          DO ispin = 1, nspins
    1392           28 :             CALL auxbas_pw_pool%create_pw(rhoz_r_xc(ispin))
    1393           56 :             CALL auxbas_pw_pool%create_pw(rhoz_g_xc(ispin))
    1394              :          END DO
    1395           56 :          DO ispin = 1, nspins
    1396              :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1397              :                                     rho=rhoz_r_xc(ispin), rho_gspace=rhoz_g_xc(ispin), &
    1398           56 :                                     soft_valid=gapw_xc)
    1399              :          END DO
    1400              :       END IF
    1401              : 
    1402         1032 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1403           32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1404              :          BLOCK
    1405              :             TYPE(pw_c1d_gs_type) :: work_g
    1406           96 :             ALLOCATE (tauz_r(nspins))
    1407           32 :             CALL auxbas_pw_pool%create_pw(work_g)
    1408           64 :             DO ispin = 1, nspins
    1409           32 :                CALL auxbas_pw_pool%create_pw(tauz_r(ispin))
    1410              :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1411              :                                        rho=tauz_r(ispin), rho_gspace=work_g, &
    1412           64 :                                        compute_tau=.TRUE.)
    1413              :             END DO
    1414           64 :             CALL auxbas_pw_pool%give_back_pw(work_g)
    1415              :          END BLOCK
    1416              :       END IF
    1417              : 
    1418              :       !
    1419         1032 :       IF (PRESENT(rhopz_r)) THEN
    1420          936 :          DO ispin = 1, nspins
    1421          936 :             CALL pw_copy(rhoz_r(ispin), rhopz_r(ispin))
    1422              :          END DO
    1423              :       END IF
    1424              : 
    1425              :       ! Stress-tensor contribution second derivative
    1426              :       ! Volume : int v_H[n^z]*n_in
    1427              :       ! Volume : int epsilon_xc*n_z
    1428         1032 :       IF (use_virial) THEN
    1429              : 
    1430          168 :          CALL get_qs_env(qs_env, rho=rho)
    1431          168 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
    1432              : 
    1433              :          ! Get the total input density in g-space [ions + electrons]
    1434          168 :          CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
    1435              : 
    1436          168 :          h_stress(:, :) = 0.0_dp
    1437              :          ! calculate associated hartree potential
    1438              :          ! This term appears twice in the derivation of the equations
    1439              :          ! v_H[n_in]*n_z and v_H[n_z]*n_in
    1440              :          ! due to symmetry we only need to call this routine once,
    1441              :          ! and count the Volume and Green function contribution
    1442              :          ! which is stored in h_stress twice
    1443              :          CALL pw_poisson_solve(poisson_env, &
    1444              :                                density=rhoz_tot_gspace, &     ! n_z
    1445              :                                ehartree=ehartree, &
    1446              :                                vhartree=zv_hartree_gspace, &  ! v_H[n_z]
    1447              :                                h_stress=h_stress, &
    1448          168 :                                aux_density=rho_tot_gspace)  ! n_in
    1449              : 
    1450          168 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    1451              : 
    1452              :          ! Stress tensor Green function contribution
    1453         2184 :          virial%pv_ehartree = virial%pv_ehartree + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1454         2184 :          virial%pv_virial = virial%pv_virial + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1455              : 
    1456          168 :          IF (debug_stress) THEN
    1457            0 :             stdeb = -1.0_dp*fconv*ehartree
    1458            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1459            0 :                'STRESS| VOL 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1460            0 :             stdeb = -1.0_dp*fconv*ehartree
    1461            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1462            0 :                'STRESS| VOL 2nd v_H[n_in]*n_z  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1463            0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1464            0 :             CALL para_env%sum(stdeb)
    1465            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1466            0 :                'STRESS| GREEN 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1467            0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1468            0 :             CALL para_env%sum(stdeb)
    1469            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1470            0 :                'STRESS| GREEN 2nd v_H[n_in]*n_z   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1471              :          END IF
    1472              : 
    1473              :          ! Stress tensor volume term: \int v_xc[n_in]*n_z
    1474              :          ! vxc_rspace already scaled, we need to unscale it!
    1475          168 :          exc = 0.0_dp
    1476          336 :          DO ispin = 1, nspins
    1477              :             exc = exc + pw_integral_ab(rhoz_r(ispin), vxc_rspace(ispin))/ &
    1478          336 :                   vxc_rspace(ispin)%pw_grid%dvol
    1479              :          END DO
    1480          168 :          IF (ASSOCIATED(vtau_rspace)) THEN
    1481           32 :             DO ispin = 1, nspins
    1482              :                exc = exc + pw_integral_ab(tauz_r(ispin), vtau_rspace(ispin))/ &
    1483           32 :                      vtau_rspace(ispin)%pw_grid%dvol
    1484              :             END DO
    1485              :          END IF
    1486              : 
    1487              :          ! Add KG embedding correction
    1488          168 :          IF (dft_control%qs_control%do_kg) THEN
    1489           18 :             IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1490              :                 qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1491            8 :                exc = exc - ekin_mol
    1492              :             END IF
    1493              :          END IF
    1494              : 
    1495          168 :          IF (debug_stress) THEN
    1496            0 :             stdeb = -1.0_dp*fconv*exc
    1497            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1498            0 :                'STRESS| VOL 1st eps_XC[n_in]*n_z', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1499              :          END IF
    1500              : 
    1501              :       ELSE ! use_virial
    1502              : 
    1503              :          ! calculate associated hartree potential
    1504              :          ! contribution for both T and D^Z
    1505          864 :          IF (gapw) THEN
    1506           82 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rhoz_tot_gspace)
    1507           82 :             IF (ASSOCIATED(local_rho_set_t%rho0_mpole%rhoz_cneo_s_gs)) THEN
    1508            0 :                CALL pw_axpy(local_rho_set_t%rho0_mpole%rhoz_cneo_s_gs, rhoz_tot_gspace)
    1509              :             END IF
    1510              :          END IF
    1511          864 :          CALL pw_poisson_solve(poisson_env, rhoz_tot_gspace, ehartree, zv_hartree_gspace)
    1512              : 
    1513              :       END IF ! use virial
    1514         1032 :       IF (gapw .OR. gapw_xc) THEN
    1515          110 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1516              :       END IF
    1517              : 
    1518         1314 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_core(1:3, 1)
    1519         1032 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_ehartree
    1520         1032 :       CALL pw_transfer(zv_hartree_gspace, zv_hartree_rspace)
    1521         1032 :       CALL pw_scale(zv_hartree_rspace, zv_hartree_rspace%pw_grid%dvol)
    1522              :       ! Getting nuclear force contribution from the core charge density (not for GAPW)
    1523         1032 :       CALL integrate_v_core_rspace(zv_hartree_rspace, qs_env)
    1524         1032 :       IF (debug_forces) THEN
    1525          376 :          fodeb(1:3) = force(1)%rho_core(1:3, 1) - fodeb(1:3)
    1526           94 :          CALL para_env%sum(fodeb)
    1527           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(rhoz)*dncore ", fodeb
    1528              :       END IF
    1529         1032 :       IF (debug_stress .AND. use_virial) THEN
    1530            0 :          stdeb = fconv*(virial%pv_ehartree - stdeb)
    1531            0 :          CALL para_env%sum(stdeb)
    1532            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1533            0 :             'STRESS| INT Vh(rhoz)*dncore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1534              :       END IF
    1535              : 
    1536              :       !
    1537         1032 :       IF (gapw_xc) THEN
    1538           28 :          CALL get_qs_env(qs_env=qs_env, rho_xc=rho_xc)
    1539              :       ELSE
    1540         1004 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1541              :       END IF
    1542         1032 :       IF (dft_control%do_admm) THEN
    1543          238 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1544          238 :          xc_section => admm_env%xc_section_primary
    1545              :       ELSE
    1546          794 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1547              :       END IF
    1548              : 
    1549         1032 :       IF (use_virial) THEN
    1550         2184 :          virial%pv_xc = 0.0_dp
    1551              :       END IF
    1552              :       !
    1553         1032 :       NULLIFY (v_xc, v_xc_tau)
    1554         1032 :       IF (gapw_xc) THEN
    1555              :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1556              :                             rho=rho_xc, rho1_r=rhoz_r_xc, rho1_g=rhoz_g_xc, tau1_r=tauz_r_xc, &
    1557           28 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1558              :       ELSE
    1559              :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1560              :                             rho=rho, rho1_r=rhoz_r, rho1_g=rhoz_g, tau1_r=tauz_r, &
    1561         1004 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1562              :       END IF
    1563              : 
    1564         1032 :       IF (gapw .OR. gapw_xc) THEN
    1565              :          !get local_rho_set for GS density and response potential / density
    1566          110 :          NULLIFY (local_rho_set_t)
    1567          110 :          CALL local_rho_set_create(local_rho_set_t)
    1568              :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1569          110 :                                           qs_kind_set, dft_control, para_env)
    1570              :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1571          110 :                         zcore=0.0_dp)
    1572          110 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1573              :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1574          110 :                                        qs_kind_set, oce, sab_orb, para_env)
    1575          110 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1576          110 :          NULLIFY (local_rho_set_gs)
    1577          110 :          CALL local_rho_set_create(local_rho_set_gs)
    1578              :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1579          110 :                                           qs_kind_set, dft_control, para_env)
    1580          110 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1581          110 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1582              :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1583          110 :                                        qs_kind_set, oce, sab_orb, para_env)
    1584          110 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1585              :          ! compute response potential
    1586          550 :          ALLOCATE (rho_r_t(nspins), rho_g_t(nspins))
    1587          220 :          DO ispin = 1, nspins
    1588          110 :             CALL auxbas_pw_pool%create_pw(rho_r_t(ispin))
    1589          220 :             CALL auxbas_pw_pool%create_pw(rho_g_t(ispin))
    1590              :          END DO
    1591          110 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_t)
    1592          110 :          total_rho_t = 0.0_dp
    1593          110 :          CALL pw_zero(rho_tot_gspace_t)
    1594          220 :          DO ispin = 1, nspins
    1595              :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1596              :                                     rho=rho_r_t(ispin), &
    1597              :                                     rho_gspace=rho_g_t(ispin), &
    1598              :                                     soft_valid=gapw, &
    1599          110 :                                     total_rho=total_rho_t(ispin))
    1600          220 :             CALL pw_axpy(rho_g_t(ispin), rho_tot_gspace_t)
    1601              :          END DO
    1602              :          ! add rho0 contributions to response density (only for Coulomb) only for gapw
    1603          110 :          IF (gapw) THEN
    1604           82 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rho_tot_gspace_t)
    1605           82 :             IF (ASSOCIATED(local_rho_set_t%rho0_mpole%rhoz_cneo_s_gs)) THEN
    1606            0 :                CALL pw_axpy(local_rho_set_t%rho0_mpole%rhoz_cneo_s_gs, rho_tot_gspace_t)
    1607              :             END IF
    1608              :             ! compute response Coulomb potential
    1609           82 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_t)
    1610           82 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_t)
    1611           82 :             NULLIFY (hartree_local_t)
    1612           82 :             CALL hartree_local_create(hartree_local_t)
    1613           82 :             CALL init_coulomb_local(hartree_local_t, natom)
    1614           82 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_t, hartree_t, v_hartree_gspace_t)
    1615           82 :             CALL pw_transfer(v_hartree_gspace_t, v_hartree_rspace_t)
    1616           82 :             CALL pw_scale(v_hartree_rspace_t, v_hartree_rspace_t%pw_grid%dvol)
    1617              :             !
    1618          292 :             IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1619              :             CALL Vh_1c_gg_integrals(qs_env, hartree_t, hartree_local_t%ecoul_1c, local_rho_set_gs, para_env, tddft=.FALSE., &
    1620           82 :                                     local_rho_set_2nd=local_rho_set_t, core_2nd=.TRUE.) ! n^core for GS potential
    1621              :             CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_t, para_env, calculate_forces=.TRUE., &
    1622           82 :                                        local_rho_set=local_rho_set_gs, local_rho_set_2nd=local_rho_set_t)
    1623           82 :             IF (debug_forces) THEN
    1624          280 :                fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1625           70 :                CALL para_env%sum(fodeb)
    1626           70 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(T)*dncore PAWg0", fodeb
    1627              :             END IF
    1628              :          END IF !gapw
    1629              :       END IF !gapw
    1630              : 
    1631         1032 :       IF (gapw .OR. gapw_xc) THEN
    1632              :          !GAPW compute atomic fxc contributions
    1633          110 :          IF (myfun /= xc_none) THEN
    1634              :             ! local_rho_set_f
    1635           94 :             NULLIFY (local_rho_set_f)
    1636           94 :             CALL local_rho_set_create(local_rho_set_f)
    1637              :             CALL allocate_rho_atom_internals(local_rho_set_f%rho_atom_set, atomic_kind_set, &
    1638           94 :                                              qs_kind_set, dft_control, para_env)
    1639              :             CALL calculate_rho_atom_coeff(qs_env, mpa, local_rho_set_f%rho_atom_set, &
    1640           94 :                                           qs_kind_set, oce, sab_orb, para_env)
    1641           94 :             CALL prepare_gapw_den(qs_env, local_rho_set_f, do_rho0=.FALSE.)
    1642              :             ! add hard and soft atomic contributions
    1643              :             CALL calculate_xc_2nd_deriv_atom(local_rho_set_gs%rho_atom_set, &
    1644              :                                              local_rho_set_f%rho_atom_set, &
    1645              :                                              qs_env, xc_section, para_env, &
    1646           94 :                                              do_triplet=.FALSE.)
    1647              :          END IF ! myfun
    1648              :       END IF
    1649              : 
    1650              :       ! Stress-tensor XC-kernel GGA contribution
    1651         1032 :       IF (use_virial) THEN
    1652         2184 :          virial%pv_exc = virial%pv_exc + virial%pv_xc
    1653         2184 :          virial%pv_virial = virial%pv_virial + virial%pv_xc
    1654              :       END IF
    1655              : 
    1656         1032 :       IF (debug_stress .AND. use_virial) THEN
    1657            0 :          stdeb = 1.0_dp*fconv*virial%pv_xc
    1658            0 :          CALL para_env%sum(stdeb)
    1659            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1660            0 :             'STRESS| GGA 2nd Pin*dK*rhoz', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1661              :       END IF
    1662              : 
    1663              :       ! Stress-tensor integral contribution of 2nd derivative terms
    1664         1032 :       IF (use_virial) THEN
    1665         2184 :          pv_loc = virial%pv_virial
    1666              :       END IF
    1667              : 
    1668         1032 :       CALL get_qs_env(qs_env=qs_env, rho=rho)
    1669         1032 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1670         1032 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1671              : 
    1672         2172 :       DO ispin = 1, nspins
    1673         2172 :          CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    1674              :       END DO
    1675         1032 :       IF ((.NOT. (gapw)) .AND. (.NOT. gapw_xc)) THEN
    1676          934 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1677         1952 :          DO ispin = 1, nspins
    1678         1030 :             CALL pw_axpy(zv_hartree_rspace, v_xc(ispin)) ! Hartree potential of response density
    1679              :             CALL integrate_v_rspace(qs_env=qs_env, &
    1680              :                                     v_rspace=v_xc(ispin), &
    1681              :                                     hmat=matrix_hz(ispin), &
    1682              :                                     pmat=matrix_p(ispin, 1), &
    1683              :                                     gapw=.FALSE., &
    1684         1952 :                                     calculate_forces=.TRUE.)
    1685              :          END DO
    1686          922 :          IF (debug_forces) THEN
    1687           16 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1688            4 :             CALL para_env%sum(fodeb)
    1689            4 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1690              :          END IF
    1691              :       ELSE
    1692          380 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1693          110 :          IF (myfun /= xc_none) THEN
    1694          188 :             DO ispin = 1, nspins
    1695              :                CALL integrate_v_rspace(qs_env=qs_env, &
    1696              :                                        v_rspace=v_xc(ispin), &
    1697              :                                        hmat=matrix_hz(ispin), &
    1698              :                                        pmat=matrix_p(ispin, 1), &
    1699              :                                        gapw=.TRUE., &
    1700          188 :                                        calculate_forces=.TRUE.)
    1701              :             END DO
    1702              :          END IF ! my_fun
    1703              :          ! Coulomb T+Dz
    1704          220 :          DO ispin = 1, nspins
    1705          110 :             CALL pw_zero(v_xc(ispin))
    1706          110 :             IF (gapw) THEN ! Hartree potential of response density
    1707           82 :                CALL pw_axpy(v_hartree_rspace_t, v_xc(ispin))
    1708           28 :             ELSEIF (gapw_xc) THEN
    1709           28 :                CALL pw_axpy(zv_hartree_rspace, v_xc(ispin))
    1710              :             END IF
    1711              :             CALL integrate_v_rspace(qs_env=qs_env, &
    1712              :                                     v_rspace=v_xc(ispin), &
    1713              :                                     hmat=matrix_ht(ispin), &
    1714              :                                     pmat=matrix_p(ispin, 1), &
    1715              :                                     gapw=gapw, &
    1716          220 :                                     calculate_forces=.TRUE.)
    1717              :          END DO
    1718          110 :          IF (debug_forces) THEN
    1719          360 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1720           90 :             CALL para_env%sum(fodeb)
    1721           90 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1722              :          END IF
    1723              :       END IF
    1724              : 
    1725         1032 :       IF (gapw .OR. gapw_xc) THEN
    1726              :          ! compute hard and soft atomic contributions
    1727          110 :          IF (myfun /= xc_none) THEN
    1728          316 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1729              :             CALL update_ks_atom(qs_env, matrix_hz, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1730           94 :                                 rho_atom_external=local_rho_set_f%rho_atom_set)
    1731           94 :             IF (debug_forces) THEN
    1732          296 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1733           74 :                CALL para_env%sum(fodeb)
    1734           74 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKxc*(Dz+T) PAW", fodeb
    1735              :             END IF
    1736              :          END IF !myfun
    1737              :          ! Coulomb contributions
    1738          110 :          IF (gapw) THEN
    1739          292 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1740              :             CALL update_ks_atom(qs_env, matrix_ht, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1741           82 :                                 rho_atom_external=local_rho_set_t%rho_atom_set)
    1742           82 :             IF (debug_forces) THEN
    1743          280 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1744           70 :                CALL para_env%sum(fodeb)
    1745           70 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKh*(Dz+T) PAW", fodeb
    1746              :             END IF
    1747              :          END IF
    1748              :          ! add Coulomb and XC
    1749          220 :          DO ispin = 1, nspins
    1750          220 :             CALL dbcsr_add(matrix_hz(ispin)%matrix, matrix_ht(ispin)%matrix, 1.0_dp, 1.0_dp)
    1751              :          END DO
    1752              : 
    1753              :          ! release
    1754          110 :          IF (myfun /= xc_none) THEN
    1755           94 :             IF (ASSOCIATED(local_rho_set_f)) CALL local_rho_set_release(local_rho_set_f)
    1756              :          END IF
    1757          110 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1758          110 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1759          110 :          IF (gapw) THEN
    1760           82 :             IF (ASSOCIATED(hartree_local_t)) CALL hartree_local_release(hartree_local_t)
    1761           82 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_t)
    1762           82 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_t)
    1763              :          END IF
    1764          110 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_t)
    1765          220 :          DO ispin = 1, nspins
    1766          110 :             CALL auxbas_pw_pool%give_back_pw(rho_r_t(ispin))
    1767          220 :             CALL auxbas_pw_pool%give_back_pw(rho_g_t(ispin))
    1768              :          END DO
    1769          110 :          DEALLOCATE (rho_r_t, rho_g_t)
    1770              :       END IF ! gapw
    1771              : 
    1772         1032 :       IF (debug_stress .AND. use_virial) THEN
    1773            0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1774            0 :          CALL para_env%sum(stdeb)
    1775            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1776            0 :             'STRESS| INT 2nd f_Hxc[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1777              :       END IF
    1778              :       !
    1779         1032 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1780           32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1781           32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1782           32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1783           64 :          DO ispin = 1, nspins
    1784           32 :             CALL pw_scale(v_xc_tau(ispin), v_xc_tau(ispin)%pw_grid%dvol)
    1785              :             CALL integrate_v_rspace(qs_env=qs_env, &
    1786              :                                     v_rspace=v_xc_tau(ispin), &
    1787              :                                     hmat=matrix_hz(ispin), &
    1788              :                                     pmat=matrix_p(ispin, 1), &
    1789              :                                     compute_tau=.TRUE., &
    1790              :                                     gapw=(gapw .OR. gapw_xc), &
    1791           96 :                                     calculate_forces=.TRUE.)
    1792              :          END DO
    1793           32 :          IF (debug_forces) THEN
    1794            0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1795            0 :             CALL para_env%sum(fodeb)
    1796            0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKtau*tauz ", fodeb
    1797              :          END IF
    1798              :       END IF
    1799         1032 :       IF (debug_stress .AND. use_virial) THEN
    1800            0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1801            0 :          CALL para_env%sum(stdeb)
    1802            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1803            0 :             'STRESS| INT 2nd f_xctau[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1804              :       END IF
    1805              :       ! Stress-tensor integral contribution of 2nd derivative terms
    1806         1032 :       IF (use_virial) THEN
    1807         2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1808              :       END IF
    1809              : 
    1810              :       ! KG Embedding
    1811              :       ! calculate kinetic energy kernel, folded with response density for partial integration
    1812         1032 :       IF (dft_control%qs_control%do_kg) THEN
    1813           24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed) THEN
    1814           12 :             ekin_mol = 0.0_dp
    1815           12 :             IF (use_virial) THEN
    1816          104 :                pv_loc = virial%pv_virial
    1817              :             END IF
    1818              : 
    1819           12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1820          108 :             IF (use_virial) virial%pv_xc = 0.0_dp
    1821              :             CALL kg_ekin_subset(qs_env=qs_env, &
    1822              :                                 ks_matrix=matrix_hz, &
    1823              :                                 ekin_mol=ekin_mol, &
    1824              :                                 calc_force=.TRUE., &
    1825              :                                 do_kernel=.TRUE., &
    1826           12 :                                 pmat_ext=matrix_pz)
    1827              : 
    1828           12 :             IF (debug_forces) THEN
    1829            0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1830            0 :                CALL para_env%sum(fodeb)
    1831            0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*d(Kkg)*rhoz ", fodeb
    1832              :             END IF
    1833           12 :             IF (debug_stress .AND. use_virial) THEN
    1834            0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1835            0 :                CALL para_env%sum(stdeb)
    1836            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1837            0 :                   'STRESS| INT KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1838              : 
    1839            0 :                stdeb = fconv*(virial%pv_xc)
    1840            0 :                CALL para_env%sum(stdeb)
    1841            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1842            0 :                   'STRESS| GGA KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1843              :             END IF
    1844              : 
    1845              :             ! Stress tensor
    1846           12 :             IF (use_virial) THEN
    1847              :                ! XC-kernel Integral contribution
    1848          104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1849              : 
    1850              :                ! XC-kernel GGA contribution
    1851          104 :                virial%pv_exc = virial%pv_exc - virial%pv_xc
    1852          104 :                virial%pv_virial = virial%pv_virial - virial%pv_xc
    1853          104 :                virial%pv_xc = 0.0_dp
    1854              :             END IF
    1855              :          END IF
    1856              :       END IF
    1857         1032 :       CALL auxbas_pw_pool%give_back_pw(rhoz_tot_gspace)
    1858         1032 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_gspace)
    1859         1032 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_rspace)
    1860         2172 :       DO ispin = 1, nspins
    1861         1140 :          CALL auxbas_pw_pool%give_back_pw(rhoz_r(ispin))
    1862         1140 :          CALL auxbas_pw_pool%give_back_pw(rhoz_g(ispin))
    1863         2172 :          CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    1864              :       END DO
    1865         1032 :       DEALLOCATE (rhoz_r, rhoz_g, v_xc)
    1866         1032 :       IF (gapw_xc) THEN
    1867           56 :          DO ispin = 1, nspins
    1868           28 :             CALL auxbas_pw_pool%give_back_pw(rhoz_r_xc(ispin))
    1869           56 :             CALL auxbas_pw_pool%give_back_pw(rhoz_g_xc(ispin))
    1870              :          END DO
    1871           28 :          DEALLOCATE (rhoz_r_xc, rhoz_g_xc)
    1872              :       END IF
    1873         1032 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1874           64 :       DO ispin = 1, nspins
    1875           32 :          CALL auxbas_pw_pool%give_back_pw(tauz_r(ispin))
    1876           64 :          CALL auxbas_pw_pool%give_back_pw(v_xc_tau(ispin))
    1877              :       END DO
    1878           32 :       DEALLOCATE (tauz_r, v_xc_tau)
    1879              :       END IF
    1880         1032 :       IF (debug_forces) THEN
    1881          282 :          ALLOCATE (ftot3(3, natom))
    1882           94 :          CALL total_qs_force(ftot3, force, atomic_kind_set)
    1883          376 :          fodeb(1:3) = ftot3(1:3, 1) - ftot2(1:3, 1)
    1884           94 :          CALL para_env%sum(fodeb)
    1885           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*V(rhoz)", fodeb
    1886              :       END IF
    1887         1032 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1888         1032 :       CALL dbcsr_deallocate_matrix_set(matrix_ht)
    1889              : 
    1890              :       ! -----------------------------------------
    1891              :       ! Apply ADMM exchange correction
    1892              :       ! -----------------------------------------
    1893              : 
    1894         1032 :       IF (dft_control%do_admm) THEN
    1895              :          ! volume term
    1896          238 :          exc_aux_fit = 0.0_dp
    1897              : 
    1898          238 :          IF (qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
    1899              :             ! nothing to do
    1900          102 :             NULLIFY (mpz, mhz, mhx, mhy)
    1901              :          ELSE
    1902              :             ! add ADMM xc_section_aux terms: Pz*Vxc + P0*K0[rhoz]
    1903          136 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    1904              :             CALL get_admm_env(admm_env, rho_aux_fit=rho_aux_fit, matrix_s_aux_fit=scrm, &
    1905          136 :                               task_list_aux_fit=task_list_aux_fit)
    1906              :             !
    1907          136 :             NULLIFY (mpz, mhz, mhx, mhy)
    1908          136 :             CALL dbcsr_allocate_matrix_set(mhx, nspins, 1)
    1909          136 :             CALL dbcsr_allocate_matrix_set(mhy, nspins, 1)
    1910          136 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    1911          280 :             DO ispin = 1, nspins
    1912          144 :                ALLOCATE (mhx(ispin, 1)%matrix)
    1913          144 :                CALL dbcsr_create(mhx(ispin, 1)%matrix, template=scrm(1)%matrix)
    1914          144 :                CALL dbcsr_copy(mhx(ispin, 1)%matrix, scrm(1)%matrix)
    1915          144 :                CALL dbcsr_set(mhx(ispin, 1)%matrix, 0.0_dp)
    1916          144 :                ALLOCATE (mhy(ispin, 1)%matrix)
    1917          144 :                CALL dbcsr_create(mhy(ispin, 1)%matrix, template=scrm(1)%matrix)
    1918          144 :                CALL dbcsr_copy(mhy(ispin, 1)%matrix, scrm(1)%matrix)
    1919          144 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    1920          144 :                ALLOCATE (mpz(ispin, 1)%matrix)
    1921          280 :                IF (do_ex) THEN
    1922           86 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=p_env%p1_admm(ispin)%matrix)
    1923           86 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    1924              :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    1925           86 :                                  1.0_dp, 1.0_dp)
    1926              :                ELSE
    1927           58 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=matrix_pz_admm(ispin)%matrix)
    1928           58 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    1929              :                END IF
    1930              :             END DO
    1931              :             !
    1932          136 :             xc_section => admm_env%xc_section_aux
    1933              :             ! Stress-tensor: integration contribution direct term
    1934              :             ! int Pz*v_xc[rho_admm]
    1935          136 :             IF (use_virial) THEN
    1936          260 :                pv_loc = virial%pv_virial
    1937              :             END IF
    1938              : 
    1939          136 :             basis_type = "AUX_FIT"
    1940          136 :             task_list => task_list_aux_fit
    1941          136 :             IF (admm_env%do_gapw) THEN
    1942            6 :                basis_type = "AUX_FIT_SOFT"
    1943            6 :                task_list => admm_env%admm_gapw_env%task_list
    1944              :             END IF
    1945              :             !
    1946          154 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1947          136 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1948          280 :             DO ispin = 1, nspins
    1949              :                CALL integrate_v_rspace(v_rspace=vadmm_rspace(ispin), &
    1950              :                                        hmat=mhx(ispin, 1), pmat=mpz(ispin, 1), &
    1951              :                                        qs_env=qs_env, calculate_forces=.TRUE., &
    1952          280 :                                        basis_type=basis_type, task_list_external=task_list)
    1953              :             END DO
    1954          136 :             IF (debug_forces) THEN
    1955           24 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1956            6 :                CALL para_env%sum(fodeb)
    1957            6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)", fodeb
    1958              :             END IF
    1959          136 :             IF (debug_stress .AND. use_virial) THEN
    1960            0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1961            0 :                CALL para_env%sum(stdeb)
    1962            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1963            0 :                   'STRESS| INT 1st Pz*dVxc(rho_admm)   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1964              :             END IF
    1965              :             ! Stress-tensor Pz_admm*v_xc[rho_admm]
    1966          136 :             IF (use_virial) THEN
    1967          260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1968              :             END IF
    1969              :             !
    1970          136 :             IF (admm_env%do_gapw) THEN
    1971            6 :                CALL get_admm_env(admm_env, sab_aux_fit=sab_aux_fit)
    1972           24 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1973              :                CALL update_ks_atom(qs_env, mhx(:, 1), mpz(:, 1), forces=.TRUE., tddft=.FALSE., &
    1974              :                                    rho_atom_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    1975              :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    1976              :                                    oce_external=admm_env%admm_gapw_env%oce, &
    1977            6 :                                    sab_external=sab_aux_fit)
    1978            6 :                IF (debug_forces) THEN
    1979           24 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1980            6 :                   CALL para_env%sum(fodeb)
    1981            6 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)PAW", fodeb
    1982              :                END IF
    1983              :             END IF
    1984              :             !
    1985          136 :             NULLIFY (rho_g_aux, rho_r_aux, tau_r_aux)
    1986          136 :             CALL qs_rho_get(rho_aux_fit, rho_r=rho_r_aux, rho_g=rho_g_aux, tau_r=tau_r_aux)
    1987              :             ! rhoz_aux
    1988          136 :             NULLIFY (rhoz_g_aux, rhoz_r_aux)
    1989          968 :             ALLOCATE (rhoz_r_aux(nspins), rhoz_g_aux(nspins))
    1990          280 :             DO ispin = 1, nspins
    1991          144 :                CALL auxbas_pw_pool%create_pw(rhoz_r_aux(ispin))
    1992          280 :                CALL auxbas_pw_pool%create_pw(rhoz_g_aux(ispin))
    1993              :             END DO
    1994          280 :             DO ispin = 1, nspins
    1995              :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpz(ispin, 1)%matrix, &
    1996              :                                        rho=rhoz_r_aux(ispin), rho_gspace=rhoz_g_aux(ispin), &
    1997          280 :                                        basis_type=basis_type, task_list_external=task_list)
    1998              :             END DO
    1999              :             !
    2000              :             ! Add ADMM volume contribution to stress tensor
    2001          136 :             IF (use_virial) THEN
    2002              : 
    2003              :                ! Stress tensor volume term: \int v_xc[n_in_admm]*n_z_admm
    2004              :                ! vadmm_rspace already scaled, we need to unscale it!
    2005           40 :                DO ispin = 1, nspins
    2006              :                   exc_aux_fit = exc_aux_fit + pw_integral_ab(rhoz_r_aux(ispin), vadmm_rspace(ispin))/ &
    2007           40 :                                 vadmm_rspace(ispin)%pw_grid%dvol
    2008              :                END DO
    2009              : 
    2010           20 :                IF (debug_stress) THEN
    2011            0 :                   stdeb = -1.0_dp*fconv*exc_aux_fit
    2012            0 :                   IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T43,2(1X,ES19.11))") &
    2013            0 :                      'STRESS| VOL 1st eps_XC[n_in_admm]*n_z_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2014              :                END IF
    2015              : 
    2016              :             END IF
    2017              :             !
    2018          136 :             NULLIFY (v_xc)
    2019              : 
    2020          376 :             IF (use_virial) virial%pv_xc = 0.0_dp
    2021              : 
    2022              :             CALL create_kernel(qs_env=qs_env, &
    2023              :                                vxc=v_xc, &
    2024              :                                vxc_tau=v_xc_tau, &
    2025              :                                rho=rho_aux_fit, &
    2026              :                                rho1_r=rhoz_r_aux, &
    2027              :                                rho1_g=rhoz_g_aux, &
    2028              :                                tau1_r=tau_r_aux, &
    2029              :                                xc_section=xc_section, &
    2030              :                                compute_virial=use_virial, &
    2031          136 :                                virial_xc=virial%pv_xc)
    2032              : 
    2033              :             ! Stress-tensor ADMM-kernel GGA contribution
    2034          136 :             IF (use_virial) THEN
    2035          260 :                virial%pv_exc = virial%pv_exc + virial%pv_xc
    2036          260 :                virial%pv_virial = virial%pv_virial + virial%pv_xc
    2037              :             END IF
    2038              : 
    2039          136 :             IF (debug_stress .AND. use_virial) THEN
    2040            0 :                stdeb = 1.0_dp*fconv*virial%pv_xc
    2041            0 :                CALL para_env%sum(stdeb)
    2042            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2043            0 :                   'STRESS| GGA 2nd Pin_admm*dK*rhoz_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2044              :             END IF
    2045              :             !
    2046          136 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2047              :             ! Stress-tensor Pin*dK*rhoz_admm
    2048          136 :             IF (use_virial) THEN
    2049          260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2050              :             END IF
    2051          154 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    2052          136 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    2053          280 :             DO ispin = 1, nspins
    2054          144 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    2055          144 :                CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    2056              :                CALL integrate_v_rspace(qs_env=qs_env, v_rspace=v_xc(ispin), &
    2057              :                                        hmat=mhy(ispin, 1), pmat=matrix_p(ispin, 1), &
    2058              :                                        calculate_forces=.TRUE., &
    2059          280 :                                        basis_type=basis_type, task_list_external=task_list)
    2060              :             END DO
    2061          136 :             IF (debug_forces) THEN
    2062           24 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    2063            6 :                CALL para_env%sum(fodeb)
    2064            6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm ", fodeb
    2065              :             END IF
    2066          136 :             IF (debug_stress .AND. use_virial) THEN
    2067            0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    2068            0 :                CALL para_env%sum(stdeb)
    2069            0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2070            0 :                   'STRESS| INT 2nd Pin*dK*rhoz_admm   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2071              :             END IF
    2072              :             ! Stress-tensor Pin*dK*rhoz_admm
    2073          136 :             IF (use_virial) THEN
    2074          260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2075              :             END IF
    2076          280 :             DO ispin = 1, nspins
    2077          144 :                CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    2078          144 :                CALL auxbas_pw_pool%give_back_pw(rhoz_r_aux(ispin))
    2079          280 :                CALL auxbas_pw_pool%give_back_pw(rhoz_g_aux(ispin))
    2080              :             END DO
    2081          136 :             DEALLOCATE (v_xc, rhoz_r_aux, rhoz_g_aux)
    2082              :             !
    2083          136 :             IF (admm_env%do_gapw) THEN
    2084            6 :                CALL local_rho_set_create(local_rhoz_set_admm)
    2085              :                CALL allocate_rho_atom_internals(local_rhoz_set_admm%rho_atom_set, atomic_kind_set, &
    2086            6 :                                                 admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
    2087              :                CALL calculate_rho_atom_coeff(qs_env, mpz(:, 1), local_rhoz_set_admm%rho_atom_set, &
    2088              :                                              admm_env%admm_gapw_env%admm_kind_set, &
    2089            6 :                                              admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
    2090              :                CALL prepare_gapw_den(qs_env, local_rho_set=local_rhoz_set_admm, &
    2091            6 :                                      do_rho0=.FALSE., kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2092              :                !compute the potential due to atomic densities
    2093              :                CALL calculate_xc_2nd_deriv_atom(admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    2094              :                                                 local_rhoz_set_admm%rho_atom_set, &
    2095              :                                                 qs_env, xc_section, para_env, do_triplet=.FALSE., &
    2096            6 :                                                 kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2097              :                !
    2098           24 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    2099              :                CALL update_ks_atom(qs_env, mhy(:, 1), matrix_p(:, 1), forces=.TRUE., tddft=.FALSE., &
    2100              :                                    rho_atom_external=local_rhoz_set_admm%rho_atom_set, &
    2101              :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    2102              :                                    oce_external=admm_env%admm_gapw_env%oce, &
    2103            6 :                                    sab_external=sab_aux_fit)
    2104            6 :                IF (debug_forces) THEN
    2105           24 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    2106            6 :                   CALL para_env%sum(fodeb)
    2107            6 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm[PAW] ", fodeb
    2108              :                END IF
    2109            6 :                CALL local_rho_set_release(local_rhoz_set_admm)
    2110              :             END IF
    2111              :             !
    2112          136 :             nao = admm_env%nao_orb
    2113          136 :             nao_aux = admm_env%nao_aux_fit
    2114          136 :             ALLOCATE (dbwork)
    2115          136 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2116          280 :             DO ispin = 1, nspins
    2117              :                CALL cp_dbcsr_sm_fm_multiply(mhy(ispin, 1)%matrix, admm_env%A, &
    2118          144 :                                             admm_env%work_aux_orb, nao)
    2119              :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2120              :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2121          144 :                                   admm_env%work_orb_orb)
    2122          144 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2123          144 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2124          144 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2125          280 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2126              :             END DO
    2127          136 :             CALL dbcsr_release(dbwork)
    2128          136 :             DEALLOCATE (dbwork)
    2129          136 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2130              :          END IF ! qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none
    2131              :       END IF ! do_admm
    2132              : 
    2133              :       ! -----------------------------------------
    2134              :       !  HFX
    2135              :       ! -----------------------------------------
    2136              : 
    2137              :       ! HFX
    2138         1032 :       hfx_section => section_vals_get_subs_vals(xc_section, "HF")
    2139         1032 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
    2140         1032 :       IF (do_hfx) THEN
    2141          456 :          CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
    2142          456 :          CPASSERT(n_rep_hf == 1)
    2143              :          CALL section_vals_val_get(hfx_section, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
    2144          456 :                                    i_rep_section=1)
    2145          456 :          mspin = 1
    2146          456 :          IF (hfx_treat_lsd_in_core) mspin = nspins
    2147         1272 :          IF (use_virial) virial%pv_fock_4c = 0.0_dp
    2148              :          !
    2149              :          CALL get_qs_env(qs_env=qs_env, rho=rho, x_data=x_data, &
    2150          456 :                          s_mstruct_changed=s_mstruct_changed)
    2151          456 :          distribute_fock_matrix = .TRUE.
    2152              : 
    2153              :          ! -----------------------------------------
    2154              :          !  HFX-ADMM
    2155              :          ! -----------------------------------------
    2156          456 :          IF (dft_control%do_admm) THEN
    2157          238 :             CALL get_qs_env(qs_env=qs_env, admm_env=admm_env)
    2158          238 :             CALL get_admm_env(admm_env, matrix_s_aux_fit=scrm, rho_aux_fit=rho_aux_fit)
    2159          238 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2160          238 :             NULLIFY (mpz, mhz, mpd, mhd)
    2161          238 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    2162          238 :             CALL dbcsr_allocate_matrix_set(mhz, nspins, 1)
    2163          238 :             CALL dbcsr_allocate_matrix_set(mpd, nspins, 1)
    2164          238 :             CALL dbcsr_allocate_matrix_set(mhd, nspins, 1)
    2165          496 :             DO ispin = 1, nspins
    2166          258 :                ALLOCATE (mhz(ispin, 1)%matrix, mhd(ispin, 1)%matrix)
    2167          258 :                CALL dbcsr_create(mhz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2168          258 :                CALL dbcsr_create(mhd(ispin, 1)%matrix, template=scrm(1)%matrix)
    2169          258 :                CALL dbcsr_copy(mhz(ispin, 1)%matrix, scrm(1)%matrix)
    2170          258 :                CALL dbcsr_copy(mhd(ispin, 1)%matrix, scrm(1)%matrix)
    2171          258 :                CALL dbcsr_set(mhz(ispin, 1)%matrix, 0.0_dp)
    2172          258 :                CALL dbcsr_set(mhd(ispin, 1)%matrix, 0.0_dp)
    2173          258 :                ALLOCATE (mpz(ispin, 1)%matrix)
    2174          258 :                IF (do_ex) THEN
    2175          148 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2176          148 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    2177              :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2178          148 :                                  1.0_dp, 1.0_dp)
    2179              :                ELSE
    2180          110 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2181          110 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    2182              :                END IF
    2183          496 :                mpd(ispin, 1)%matrix => matrix_p(ispin, 1)%matrix
    2184              :             END DO
    2185              :             !
    2186          238 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2187              : 
    2188              :                eh1 = 0.0_dp
    2189              :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2190              :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2191            6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2192              : 
    2193              :                eh1 = 0.0_dp
    2194              :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhd, eh1, rho_ao=mpd, &
    2195              :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2196            6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2197              : 
    2198              :             ELSE
    2199          464 :                DO ispin = 1, mspin
    2200              :                   eh1 = 0.0
    2201              :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2202              :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2203          464 :                                              ispin=ispin)
    2204              :                END DO
    2205          464 :                DO ispin = 1, mspin
    2206              :                   eh1 = 0.0
    2207              :                   CALL integrate_four_center(qs_env, x_data, mhd, eh1, mpd, hfx_section, &
    2208              :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2209          464 :                                              ispin=ispin)
    2210              :                END DO
    2211              :             END IF
    2212              :             !
    2213          238 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    2214          238 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
    2215          238 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
    2216          238 :             nao = admm_env%nao_orb
    2217          238 :             nao_aux = admm_env%nao_aux_fit
    2218          238 :             ALLOCATE (dbwork)
    2219          238 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2220          496 :             DO ispin = 1, nspins
    2221              :                CALL cp_dbcsr_sm_fm_multiply(mhz(ispin, 1)%matrix, admm_env%A, &
    2222          258 :                                             admm_env%work_aux_orb, nao)
    2223              :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2224              :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2225          258 :                                   admm_env%work_orb_orb)
    2226          258 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2227          258 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2228          258 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2229          496 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2230              :             END DO
    2231          238 :             CALL dbcsr_release(dbwork)
    2232          238 :             DEALLOCATE (dbwork)
    2233              :             ! derivatives Tr (Pz [A(T)H dA/dR])
    2234          274 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
    2235          238 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2236          280 :                DO ispin = 1, nspins
    2237          144 :                   CALL dbcsr_add(mhd(ispin, 1)%matrix, mhx(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2238          280 :                   CALL dbcsr_add(mhz(ispin, 1)%matrix, mhy(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2239              :                END DO
    2240              :             END IF
    2241          238 :             CALL qs_rho_get(rho, rho_ao=matrix_pd)
    2242          238 :             CALL admm_projection_derivative(qs_env, mhd(:, 1), mpa)
    2243          238 :             CALL admm_projection_derivative(qs_env, mhz(:, 1), matrix_pd)
    2244          238 :             IF (debug_forces) THEN
    2245           48 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
    2246           12 :                CALL para_env%sum(fodeb)
    2247           12 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx*S' ", fodeb
    2248              :             END IF
    2249          238 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2250          238 :             CALL dbcsr_deallocate_matrix_set(mhz)
    2251          238 :             CALL dbcsr_deallocate_matrix_set(mhd)
    2252          238 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2253          136 :                CALL dbcsr_deallocate_matrix_set(mhx)
    2254          136 :                CALL dbcsr_deallocate_matrix_set(mhy)
    2255              :             END IF
    2256          238 :             DEALLOCATE (mpd)
    2257              :          ELSE
    2258              :             ! -----------------------------------------
    2259              :             !  conventional HFX
    2260              :             ! -----------------------------------------
    2261         1792 :             ALLOCATE (mpz(nspins, 1), mhz(nspins, 1))
    2262          460 :             DO ispin = 1, nspins
    2263          242 :                mhz(ispin, 1)%matrix => matrix_hz(ispin)%matrix
    2264          460 :                mpz(ispin, 1)%matrix => mpa(ispin)%matrix
    2265              :             END DO
    2266              : 
    2267          218 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2268              : 
    2269              :                eh1 = 0.0_dp
    2270              :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2271              :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2272           18 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2273              :             ELSE
    2274          400 :                DO ispin = 1, mspin
    2275              :                   eh1 = 0.0
    2276              :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2277              :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2278          400 :                                              ispin=ispin)
    2279              :                END DO
    2280              :             END IF
    2281          218 :             DEALLOCATE (mhz, mpz)
    2282              :          END IF
    2283              : 
    2284              :          ! -----------------------------------------
    2285              :          !  HFX FORCES
    2286              :          ! -----------------------------------------
    2287              : 
    2288          456 :          resp_only = .TRUE.
    2289          558 :          IF (debug_forces) fodeb(1:3) = force(1)%fock_4c(1:3, 1)
    2290          456 :          IF (dft_control%do_admm) THEN
    2291              :             ! -----------------------------------------
    2292              :             !  HFX-ADMM FORCES
    2293              :             ! -----------------------------------------
    2294          238 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2295          238 :             NULLIFY (matrix_pza)
    2296          238 :             CALL dbcsr_allocate_matrix_set(matrix_pza, nspins)
    2297          496 :             DO ispin = 1, nspins
    2298          258 :                ALLOCATE (matrix_pza(ispin)%matrix)
    2299          496 :                IF (do_ex) THEN
    2300          148 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=p_env%p1_admm(ispin)%matrix)
    2301          148 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
    2302              :                   CALL dbcsr_add(matrix_pza(ispin)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2303          148 :                                  1.0_dp, 1.0_dp)
    2304              :                ELSE
    2305          110 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=matrix_pz_admm(ispin)%matrix)
    2306          110 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, matrix_pz_admm(ispin)%matrix)
    2307              :                END IF
    2308              :             END DO
    2309          238 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2310              : 
    2311              :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2312              :                                          x_data(1, 1)%general_parameter%fraction, &
    2313              :                                          rho_ao=matrix_p, rho_ao_resp=matrix_pza, &
    2314            6 :                                          use_virial=use_virial, resp_only=resp_only)
    2315              :             ELSE
    2316              :                CALL derivatives_four_center(qs_env, matrix_p, matrix_pza, hfx_section, para_env, &
    2317          232 :                                             1, use_virial, resp_only=resp_only)
    2318              :             END IF
    2319          238 :             CALL dbcsr_deallocate_matrix_set(matrix_pza)
    2320              :          ELSE
    2321              :             ! -----------------------------------------
    2322              :             !  conventional HFX FORCES
    2323              :             ! -----------------------------------------
    2324          218 :             CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2325          218 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2326              : 
    2327              :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2328              :                                          x_data(1, 1)%general_parameter%fraction, &
    2329              :                                          rho_ao=matrix_p, rho_ao_resp=mpa, &
    2330           18 :                                          use_virial=use_virial, resp_only=resp_only)
    2331              :             ELSE
    2332              :                CALL derivatives_four_center(qs_env, matrix_p, mpa, hfx_section, para_env, &
    2333          200 :                                             1, use_virial, resp_only=resp_only)
    2334              :             END IF
    2335              :          END IF ! do_admm
    2336              : 
    2337          456 :          IF (use_virial) THEN
    2338          884 :             virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
    2339          884 :             virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
    2340           68 :             virial%pv_calculate = .FALSE.
    2341              :          END IF
    2342              : 
    2343          456 :          IF (debug_forces) THEN
    2344          136 :             fodeb(1:3) = force(1)%fock_4c(1:3, 1) - fodeb(1:3)
    2345           34 :             CALL para_env%sum(fodeb)
    2346           34 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx ", fodeb
    2347              :          END IF
    2348          456 :          IF (debug_stress .AND. use_virial) THEN
    2349            0 :             stdeb = -1.0_dp*fconv*virial%pv_fock_4c
    2350            0 :             CALL para_env%sum(stdeb)
    2351            0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2352            0 :                'STRESS| Pz*hfx  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2353              :          END IF
    2354              :       END IF ! do_hfx
    2355              : 
    2356              :       ! Stress-tensor volume contributions
    2357              :       ! These need to be applied at the end of qs_force
    2358         1032 :       IF (use_virial) THEN
    2359              :          ! Adding mixed Hartree energy twice, due to symmetry
    2360          168 :          zehartree = zehartree + 2.0_dp*ehartree
    2361          168 :          zexc = zexc + exc
    2362              :          ! ADMM contribution handled differently in qs_force
    2363          168 :          IF (dft_control%do_admm) THEN
    2364           38 :             zexc_aux_fit = zexc_aux_fit + exc_aux_fit
    2365              :          END IF
    2366              :       END IF
    2367              : 
    2368              :       ! Overlap matrix
    2369              :       ! H(drho+dz) + Wz
    2370              :       ! If ground-state density matrix solved by diagonalization, then use this
    2371         1032 :       IF (dft_control%qs_control%do_ls_scf) THEN
    2372              :          ! Ground-state density has been calculated by LS
    2373           10 :          eps_filter = dft_control%qs_control%eps_filter_matrix
    2374           10 :          CALL calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_wz, eps_filter)
    2375              :       ELSE
    2376         1022 :          IF (do_ex) THEN
    2377          564 :             matrix_wz => p_env%w1
    2378              :          END IF
    2379         1022 :          focc = 1.0_dp
    2380         1022 :          IF (nspins == 1) focc = 2.0_dp
    2381         1022 :          CALL get_qs_env(qs_env, mos=mos)
    2382         2152 :          DO ispin = 1, nspins
    2383         1130 :             CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2384              :             CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2385         2152 :                                       matrix_wz(ispin)%matrix, focc, nocc)
    2386              :          END DO
    2387              :       END IF
    2388         1032 :       IF (nspins == 2) THEN
    2389              :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2390          108 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2391              :       END IF
    2392              : 
    2393         1314 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2394         1032 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_overlap
    2395         1032 :       NULLIFY (scrm)
    2396              :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2397              :                                 matrix_name="OVERLAP MATRIX", &
    2398              :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2399              :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2400         1032 :                                 matrix_p=matrix_wz(1)%matrix)
    2401              : 
    2402         1032 :       IF (SIZE(matrix_wz, 1) == 2) THEN
    2403              :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2404          108 :                         alpha_scalar=1.0_dp, beta_scalar=-1.0_dp)
    2405              :       END IF
    2406              : 
    2407         1032 :       IF (debug_forces) THEN
    2408          376 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2409           94 :          CALL para_env%sum(fodeb)
    2410           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2411              :       END IF
    2412         1032 :       IF (debug_stress .AND. use_virial) THEN
    2413            0 :          stdeb = fconv*(virial%pv_overlap - stdeb)
    2414            0 :          CALL para_env%sum(stdeb)
    2415            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2416            0 :             'STRESS| WHz   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2417              :       END IF
    2418         1032 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2419              : 
    2420         1032 :       IF (debug_forces) THEN
    2421           94 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2422          376 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2423           94 :          CALL para_env%sum(fodeb)
    2424           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Response Force", fodeb
    2425          376 :          fodeb(1:3) = ftot2(1:3, 1)
    2426           94 :          CALL para_env%sum(fodeb)
    2427           94 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Total Force ", fodeb
    2428           94 :          DEALLOCATE (ftot1, ftot2, ftot3)
    2429              :       END IF
    2430         1032 :       IF (debug_stress .AND. use_virial) THEN
    2431            0 :          stdeb = fconv*(virial%pv_virial - sttot)
    2432            0 :          CALL para_env%sum(stdeb)
    2433            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2434            0 :             'STRESS| Stress Response    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2435            0 :          stdeb = fconv*(virial%pv_virial)
    2436            0 :          CALL para_env%sum(stdeb)
    2437            0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2438            0 :             'STRESS| Total Stress       ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2439              :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,3(1X,ES19.11))") &
    2440            0 :             stdeb(1, 1), stdeb(2, 2), stdeb(3, 3)
    2441            0 :          unitstr = "bar"
    2442              :       END IF
    2443              : 
    2444         1032 :       IF (do_ex) THEN
    2445          564 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2446          564 :          CALL dbcsr_deallocate_matrix_set(matrix_hz)
    2447              :       END IF
    2448              : 
    2449         1032 :       CALL timestop(handle)
    2450              : 
    2451         4128 :    END SUBROUTINE response_force
    2452              : 
    2453              : ! **************************************************************************************************
    2454              : !> \brief ...
    2455              : !> \param qs_env ...
    2456              : !> \param p_env ...
    2457              : !> \param matrix_hz ...
    2458              : !> \param ex_env ...
    2459              : !> \param debug ...
    2460              : ! **************************************************************************************************
    2461           16 :    SUBROUTINE response_force_xtb(qs_env, p_env, matrix_hz, ex_env, debug)
    2462              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2463              :       TYPE(qs_p_env_type)                                :: p_env
    2464              :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz
    2465              :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
    2466              :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
    2467              : 
    2468              :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_force_xtb'
    2469              : 
    2470              :       INTEGER                                            :: atom_a, handle, iatom, ikind, iounit, &
    2471              :                                                             is, ispin, na, natom, natorb, nimages, &
    2472              :                                                             nkind, nocc, ns, nsgf, nspins
    2473              :       INTEGER, DIMENSION(25)                             :: lao
    2474              :       INTEGER, DIMENSION(5)                              :: occ
    2475              :       LOGICAL                                            :: debug_forces, do_ex, use_virial
    2476              :       REAL(KIND=dp)                                      :: focc
    2477           16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: mcharge, mcharge1
    2478           16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: aocg, aocg1, charges, charges1, ftot1, &
    2479           16 :                                                             ftot2
    2480              :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
    2481           16 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2482              :       TYPE(cp_logger_type), POINTER                      :: logger
    2483           16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_pz, matrix_wz, mpa, p_matrix, scrm
    2484           16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_p, matrix_s
    2485              :       TYPE(dbcsr_type), POINTER                          :: s_matrix
    2486              :       TYPE(dft_control_type), POINTER                    :: dft_control
    2487           16 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    2488              :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2489              :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2490           16 :          POINTER                                         :: sab_orb
    2491           16 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2492           16 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    2493           16 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2494              :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2495              :       TYPE(qs_rho_type), POINTER                         :: rho
    2496              :       TYPE(xtb_atom_type), POINTER                       :: xtb_kind
    2497              : 
    2498           16 :       CALL timeset(routineN, handle)
    2499              : 
    2500           16 :       IF (PRESENT(debug)) THEN
    2501           16 :          debug_forces = debug
    2502              :       ELSE
    2503            0 :          debug_forces = .FALSE.
    2504              :       END IF
    2505              : 
    2506           16 :       logger => cp_get_default_logger()
    2507           16 :       IF (logger%para_env%is_source()) THEN
    2508            8 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
    2509              :       ELSE
    2510              :          iounit = -1
    2511              :       END IF
    2512              : 
    2513           16 :       do_ex = .FALSE.
    2514           16 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
    2515              : 
    2516           16 :       NULLIFY (ks_env, sab_orb)
    2517              :       CALL get_qs_env(qs_env=qs_env, ks_env=ks_env, dft_control=dft_control, &
    2518           16 :                       sab_orb=sab_orb)
    2519           16 :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, force=force)
    2520           16 :       nspins = dft_control%nspins
    2521              : 
    2522           16 :       IF (debug_forces) THEN
    2523            0 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
    2524            0 :          ALLOCATE (ftot1(3, natom))
    2525            0 :          ALLOCATE (ftot2(3, natom))
    2526            0 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
    2527              :       END IF
    2528              : 
    2529           16 :       matrix_pz => p_env%p1
    2530           16 :       NULLIFY (mpa)
    2531           16 :       IF (do_ex) THEN
    2532           16 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
    2533           32 :          DO ispin = 1, nspins
    2534           16 :             ALLOCATE (mpa(ispin)%matrix)
    2535           16 :             CALL dbcsr_create(mpa(ispin)%matrix, template=matrix_pz(ispin)%matrix)
    2536           16 :             CALL dbcsr_copy(mpa(ispin)%matrix, matrix_pz(ispin)%matrix)
    2537           16 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
    2538           32 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
    2539              :          END DO
    2540              :       ELSE
    2541            0 :          mpa => p_env%p1
    2542              :       END IF
    2543              :       !
    2544              :       ! START OF Tr(P+Z)Hcore
    2545              :       !
    2546           16 :       IF (nspins == 2) THEN
    2547            0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, 1.0_dp)
    2548              :       END IF
    2549              :       ! Hcore  matrix
    2550           16 :       IF (debug_forces) fodeb(1:3) = force(1)%all_potential(1:3, 1)
    2551           16 :       CALL build_xtb_hab_force(qs_env, mpa(1)%matrix)
    2552           16 :       IF (debug_forces) THEN
    2553            0 :          fodeb(1:3) = force(1)%all_potential(1:3, 1) - fodeb(1:3)
    2554            0 :          CALL para_env%sum(fodeb)
    2555            0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHcore  ", fodeb
    2556              :       END IF
    2557           16 :       IF (nspins == 2) THEN
    2558            0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, -1.0_dp)
    2559              :       END IF
    2560              :       !
    2561              :       ! END OF Tr(P+Z)Hcore
    2562              :       !
    2563           16 :       use_virial = .FALSE.
    2564           16 :       nimages = 1
    2565              :       !
    2566              :       ! Hartree potential of response density
    2567              :       !
    2568           16 :       IF (dft_control%qs_control%xtb_control%coulomb_interaction) THEN
    2569              :          ! Mulliken charges
    2570           14 :          CALL get_qs_env(qs_env, rho=rho, particle_set=particle_set, matrix_s_kp=matrix_s)
    2571           14 :          natom = SIZE(particle_set)
    2572           14 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2573           70 :          ALLOCATE (mcharge(natom), charges(natom, 5))
    2574           42 :          ALLOCATE (mcharge1(natom), charges1(natom, 5))
    2575         1254 :          charges = 0.0_dp
    2576         1254 :          charges1 = 0.0_dp
    2577           14 :          CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
    2578           14 :          nkind = SIZE(atomic_kind_set)
    2579           14 :          CALL get_qs_kind_set(qs_kind_set, maxsgf=nsgf)
    2580           56 :          ALLOCATE (aocg(nsgf, natom))
    2581         1184 :          aocg = 0.0_dp
    2582           42 :          ALLOCATE (aocg1(nsgf, natom))
    2583         1184 :          aocg1 = 0.0_dp
    2584           14 :          p_matrix => matrix_p(:, 1)
    2585           14 :          s_matrix => matrix_s(1, 1)%matrix
    2586           14 :          CALL ao_charges(p_matrix, s_matrix, aocg, para_env)
    2587           14 :          CALL ao_charges(mpa, s_matrix, aocg1, para_env)
    2588           48 :          DO ikind = 1, nkind
    2589           34 :             CALL get_atomic_kind(atomic_kind_set(ikind), natom=na)
    2590           34 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
    2591           34 :             CALL get_xtb_atom_param(xtb_kind, natorb=natorb, lao=lao, occupation=occ)
    2592          316 :             DO iatom = 1, na
    2593          234 :                atom_a = atomic_kind_set(ikind)%atom_list(iatom)
    2594         1404 :                charges(atom_a, :) = REAL(occ(:), KIND=dp)
    2595          900 :                DO is = 1, natorb
    2596          632 :                   ns = lao(is) + 1
    2597          632 :                   charges(atom_a, ns) = charges(atom_a, ns) - aocg(is, atom_a)
    2598          866 :                   charges1(atom_a, ns) = charges1(atom_a, ns) - aocg1(is, atom_a)
    2599              :                END DO
    2600              :             END DO
    2601              :          END DO
    2602           14 :          DEALLOCATE (aocg, aocg1)
    2603          248 :          DO iatom = 1, natom
    2604         1404 :             mcharge(iatom) = SUM(charges(iatom, :))
    2605         1418 :             mcharge1(iatom) = SUM(charges1(iatom, :))
    2606              :          END DO
    2607              :          ! Coulomb Kernel
    2608           14 :          CALL xtb_coulomb_hessian(qs_env, matrix_hz, charges1, mcharge1, mcharge)
    2609              :          CALL calc_xtb_ehess_force(qs_env, p_matrix, mpa, charges, mcharge, charges1, &
    2610           14 :                                    mcharge1, debug_forces)
    2611              :          !
    2612           28 :          DEALLOCATE (charges, mcharge, charges1, mcharge1)
    2613              :       END IF
    2614              :       ! Overlap matrix
    2615              :       ! H(drho+dz) + Wz
    2616           16 :       matrix_wz => p_env%w1
    2617           16 :       focc = 0.5_dp
    2618           16 :       IF (nspins == 1) focc = 1.0_dp
    2619           16 :       CALL get_qs_env(qs_env, mos=mos)
    2620           32 :       DO ispin = 1, nspins
    2621           16 :          CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2622              :          CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2623           32 :                                    matrix_wz(ispin)%matrix, focc, nocc)
    2624              :       END DO
    2625           16 :       IF (nspins == 2) THEN
    2626              :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2627            0 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2628              :       END IF
    2629           16 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2630           16 :       NULLIFY (scrm)
    2631              :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2632              :                                 matrix_name="OVERLAP MATRIX", &
    2633              :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2634              :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2635           16 :                                 matrix_p=matrix_wz(1)%matrix)
    2636           16 :       IF (debug_forces) THEN
    2637            0 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2638            0 :          CALL para_env%sum(fodeb)
    2639            0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2640              :       END IF
    2641           16 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2642              : 
    2643           16 :       IF (debug_forces) THEN
    2644            0 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2645            0 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2646            0 :          CALL para_env%sum(fodeb)
    2647            0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T30,3F16.8)") "DEBUG:: Response Force", fodeb
    2648            0 :          DEALLOCATE (ftot1, ftot2)
    2649              :       END IF
    2650              : 
    2651           16 :       IF (do_ex) THEN
    2652           16 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2653              :       END IF
    2654              : 
    2655           16 :       CALL timestop(handle)
    2656              : 
    2657           32 :    END SUBROUTINE response_force_xtb
    2658              : 
    2659              : ! **************************************************************************************************
    2660              : !> \brief Win = focc*(P*(H[P_out - P_in] + H[Z] )*P)
    2661              : !>        Langrange multiplier matrix with response and perturbation (Harris) kernel matrices
    2662              : !>
    2663              : !> \param qs_env ...
    2664              : !> \param matrix_hz ...
    2665              : !> \param matrix_whz ...
    2666              : !> \param eps_filter ...
    2667              : !> \param
    2668              : !> \par History
    2669              : !>       2020.2 created [Fabian Belleflamme]
    2670              : !> \author Fabian Belleflamme
    2671              : ! **************************************************************************************************
    2672           10 :    SUBROUTINE calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_whz, eps_filter)
    2673              : 
    2674              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2675              :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN), &
    2676              :          POINTER                                         :: matrix_hz
    2677              :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
    2678              :          POINTER                                         :: matrix_whz
    2679              :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    2680              : 
    2681              :       CHARACTER(len=*), PARAMETER :: routineN = 'calculate_whz_ao_matrix'
    2682              : 
    2683              :       INTEGER                                            :: handle, ispin, nspins
    2684              :       REAL(KIND=dp)                                      :: scaling
    2685           10 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    2686              :       TYPE(dbcsr_type)                                   :: matrix_tmp
    2687              :       TYPE(dft_control_type), POINTER                    :: dft_control
    2688              :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2689              :       TYPE(qs_rho_type), POINTER                         :: rho
    2690              : 
    2691           10 :       CALL timeset(routineN, handle)
    2692              : 
    2693           10 :       CPASSERT(ASSOCIATED(qs_env))
    2694           10 :       CPASSERT(ASSOCIATED(matrix_hz))
    2695           10 :       CPASSERT(ASSOCIATED(matrix_whz))
    2696              : 
    2697              :       CALL get_qs_env(qs_env=qs_env, &
    2698              :                       dft_control=dft_control, &
    2699              :                       rho=rho, &
    2700           10 :                       para_env=para_env)
    2701           10 :       nspins = dft_control%nspins
    2702           10 :       CALL qs_rho_get(rho, rho_ao=rho_ao)
    2703              : 
    2704              :       ! init temp matrix
    2705              :       CALL dbcsr_create(matrix_tmp, template=matrix_hz(1)%matrix, &
    2706           10 :                         matrix_type=dbcsr_type_no_symmetry)
    2707              : 
    2708              :       !Spin factors simplify to
    2709           10 :       scaling = 1.0_dp
    2710           10 :       IF (nspins == 1) scaling = 0.5_dp
    2711              : 
    2712              :       ! Operation in MO-solver :
    2713              :       ! Whz = focc*(CC^T*Hz*CC^T)
    2714              :       ! focc = 2.0_dp Closed-shell
    2715              :       ! focc = 1.0_dp Open-shell
    2716              : 
    2717              :       ! Operation in AO-solver :
    2718              :       ! Whz = (scaling*P)*(focc*Hz)*(scaling*P)
    2719              :       ! focc see above
    2720              :       ! scaling = 0.5_dp Closed-shell (P = 2*CC^T), WHz = (0.5*P)*(2*Hz)*(0.5*P)
    2721              :       ! scaling = 1.0_dp Open-shell, WHz = P*Hz*P
    2722              : 
    2723              :       ! Spin factors from Hz and P simplify to
    2724              :       scaling = 1.0_dp
    2725           10 :       IF (nspins == 1) scaling = 0.5_dp
    2726              : 
    2727           20 :       DO ispin = 1, nspins
    2728              : 
    2729              :          ! tmp = H*CC^T
    2730              :          CALL dbcsr_multiply("N", "N", scaling, matrix_hz(ispin)%matrix, rho_ao(ispin)%matrix, &
    2731           10 :                              0.0_dp, matrix_tmp, filter_eps=eps_filter)
    2732              :          ! WHz = CC^T*tmp
    2733              :          ! WHz = Wz + (scaling*P)*(focc*Hz)*(scaling*P)
    2734              :          ! WHz = Wz + scaling*(P*Hz*P)
    2735              :          CALL dbcsr_multiply("N", "N", 1.0_dp, rho_ao(ispin)%matrix, matrix_tmp, &
    2736              :                              1.0_dp, matrix_whz(ispin)%matrix, filter_eps=eps_filter, &
    2737           20 :                              retain_sparsity=.TRUE.)
    2738              : 
    2739              :       END DO
    2740              : 
    2741           10 :       CALL dbcsr_release(matrix_tmp)
    2742              : 
    2743           10 :       CALL timestop(handle)
    2744              : 
    2745           10 :    END SUBROUTINE calculate_whz_ao_matrix
    2746              : 
    2747              : ! **************************************************************************************************
    2748              : 
    2749              : END MODULE response_solver
        

Generated by: LCOV version 2.0-1