LCOV - code coverage report
Current view: top level - src - response_solver.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:e7e05ae) Lines: 1218 1375 88.6 %
Date: 2024-04-18 06:59:28 Functions: 7 7 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Calculate the CPKS equation and the resulting forces
      10             : !> \par History
      11             : !>       03.2014 created
      12             : !>       09.2019 Moved from KG to Kohn-Sham
      13             : !>       11.2019 Moved from energy_correction
      14             : !>       08.2020 AO linear response solver [fbelle]
      15             : !> \author JGH
      16             : ! **************************************************************************************************
      17             : MODULE response_solver
      18             :    USE admm_methods,                    ONLY: admm_projection_derivative
      19             :    USE admm_types,                      ONLY: admm_type,&
      20             :                                               get_admm_env
      21             :    USE atomic_kind_types,               ONLY: atomic_kind_type,&
      22             :                                               get_atomic_kind
      23             :    USE cell_types,                      ONLY: cell_type
      24             :    USE core_ae,                         ONLY: build_core_ae
      25             :    USE core_ppl,                        ONLY: build_core_ppl
      26             :    USE core_ppnl,                       ONLY: build_core_ppnl
      27             :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28             :    USE cp_control_types,                ONLY: dft_control_type
      29             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      30             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      31             :                                               copy_fm_to_dbcsr,&
      32             :                                               cp_dbcsr_sm_fm_multiply,&
      33             :                                               dbcsr_allocate_matrix_set,&
      34             :                                               dbcsr_deallocate_matrix_set
      35             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      36             :                                               cp_fm_struct_release,&
      37             :                                               cp_fm_struct_type
      38             :    USE cp_fm_types,                     ONLY: cp_fm_create,&
      39             :                                               cp_fm_init_random,&
      40             :                                               cp_fm_release,&
      41             :                                               cp_fm_set_all,&
      42             :                                               cp_fm_to_fm,&
      43             :                                               cp_fm_type
      44             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      45             :                                               cp_logger_get_default_unit_nr,&
      46             :                                               cp_logger_type
      47             :    USE dbcsr_api,                       ONLY: &
      48             :         dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_distribution_type, dbcsr_multiply, &
      49             :         dbcsr_p_type, dbcsr_release, dbcsr_scale, dbcsr_set, dbcsr_type, dbcsr_type_no_symmetry
      50             :    USE ec_env_types,                    ONLY: energy_correction_type
      51             :    USE ec_methods,                      ONLY: create_kernel,&
      52             :                                               ec_mos_init
      53             :    USE ec_orth_solver,                  ONLY: ec_response_ao
      54             :    USE exstates_types,                  ONLY: excited_energy_type
      55             :    USE hartree_local_methods,           ONLY: Vh_1c_gg_integrals,&
      56             :                                               init_coulomb_local
      57             :    USE hartree_local_types,             ONLY: hartree_local_create,&
      58             :                                               hartree_local_release,&
      59             :                                               hartree_local_type
      60             :    USE hfx_derivatives,                 ONLY: derivatives_four_center
      61             :    USE hfx_energy_potential,            ONLY: integrate_four_center
      62             :    USE hfx_ri,                          ONLY: hfx_ri_update_forces,&
      63             :                                               hfx_ri_update_ks
      64             :    USE hfx_types,                       ONLY: hfx_type
      65             :    USE input_constants,                 ONLY: &
      66             :         do_admm_aux_exch_func_none, ec_ls_solver, ec_mo_solver, kg_tnadd_atomic, kg_tnadd_embed, &
      67             :         kg_tnadd_embed_ri, ls_s_sqrt_ns, ls_s_sqrt_proot, ot_precond_full_all, &
      68             :         ot_precond_full_kinetic, ot_precond_full_single, ot_precond_full_single_inverse, &
      69             :         ot_precond_none, ot_precond_s_inverse, precond_mlp, xc_none
      70             :    USE input_section_types,             ONLY: section_vals_get,&
      71             :                                               section_vals_get_subs_vals,&
      72             :                                               section_vals_type,&
      73             :                                               section_vals_val_get
      74             :    USE kg_correction,                   ONLY: kg_ekin_subset
      75             :    USE kg_environment_types,            ONLY: kg_environment_type
      76             :    USE kg_tnadd_mat,                    ONLY: build_tnadd_mat
      77             :    USE kinds,                           ONLY: default_string_length,&
      78             :                                               dp
      79             :    USE machine,                         ONLY: m_flush
      80             :    USE mathlib,                         ONLY: det_3x3
      81             :    USE message_passing,                 ONLY: mp_para_env_type
      82             :    USE mulliken,                        ONLY: ao_charges
      83             :    USE parallel_gemm_api,               ONLY: parallel_gemm
      84             :    USE particle_types,                  ONLY: particle_type
      85             :    USE physcon,                         ONLY: pascal
      86             :    USE pw_env_types,                    ONLY: pw_env_get,&
      87             :                                               pw_env_type
      88             :    USE pw_methods,                      ONLY: pw_axpy,&
      89             :                                               pw_copy,&
      90             :                                               pw_integral_ab,&
      91             :                                               pw_scale,&
      92             :                                               pw_transfer,&
      93             :                                               pw_zero
      94             :    USE pw_poisson_methods,              ONLY: pw_poisson_solve
      95             :    USE pw_poisson_types,                ONLY: pw_poisson_type
      96             :    USE pw_pool_types,                   ONLY: pw_pool_type
      97             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
      98             :                                               pw_r3d_rs_type
      99             :    USE qs_2nd_kernel_ao,                ONLY: build_dm_response
     100             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
     101             :    USE qs_density_matrices,             ONLY: calculate_whz_matrix,&
     102             :                                               calculate_wz_matrix
     103             :    USE qs_energy_types,                 ONLY: qs_energy_type
     104             :    USE qs_environment_types,            ONLY: get_qs_env,&
     105             :                                               qs_environment_type,&
     106             :                                               set_qs_env
     107             :    USE qs_force_types,                  ONLY: qs_force_type,&
     108             :                                               total_qs_force
     109             :    USE qs_gapw_densities,               ONLY: prepare_gapw_den
     110             :    USE qs_integrate_potential,          ONLY: integrate_v_core_rspace,&
     111             :                                               integrate_v_rspace
     112             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     113             :                                               get_qs_kind_set,&
     114             :                                               qs_kind_type
     115             :    USE qs_kinetic,                      ONLY: build_kinetic_matrix
     116             :    USE qs_ks_atom,                      ONLY: update_ks_atom
     117             :    USE qs_ks_methods,                   ONLY: calc_rho_tot_gspace
     118             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     119             :    USE qs_linres_methods,               ONLY: linres_solver
     120             :    USE qs_linres_types,                 ONLY: linres_control_type
     121             :    USE qs_local_rho_types,              ONLY: local_rho_set_create,&
     122             :                                               local_rho_set_release,&
     123             :                                               local_rho_type
     124             :    USE qs_matrix_pools,                 ONLY: mpools_rebuild_fm_pools
     125             :    USE qs_mo_methods,                   ONLY: make_basis_sm
     126             :    USE qs_mo_types,                     ONLY: deallocate_mo_set,&
     127             :                                               get_mo_set,&
     128             :                                               mo_set_type
     129             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type
     130             :    USE qs_oce_types,                    ONLY: oce_matrix_type
     131             :    USE qs_overlap,                      ONLY: build_overlap_matrix
     132             :    USE qs_p_env_methods,                ONLY: p_env_create,&
     133             :                                               p_env_psi0_changed
     134             :    USE qs_p_env_types,                  ONLY: p_env_release,&
     135             :                                               qs_p_env_type
     136             :    USE qs_rho0_ggrid,                   ONLY: integrate_vhg0_rspace,&
     137             :                                               rho0_s_grid_create
     138             :    USE qs_rho0_methods,                 ONLY: init_rho0
     139             :    USE qs_rho_atom_methods,             ONLY: allocate_rho_atom_internals,&
     140             :                                               calculate_rho_atom_coeff
     141             :    USE qs_rho_types,                    ONLY: qs_rho_get,&
     142             :                                               qs_rho_type
     143             :    USE qs_vxc_atom,                     ONLY: calculate_vxc_atom,&
     144             :                                               calculate_xc_2nd_deriv_atom
     145             :    USE task_list_types,                 ONLY: task_list_type
     146             :    USE virial_methods,                  ONLY: one_third_sum_diag
     147             :    USE virial_types,                    ONLY: virial_type
     148             :    USE xtb_ehess,                       ONLY: xtb_coulomb_hessian
     149             :    USE xtb_ehess_force,                 ONLY: calc_xtb_ehess_force
     150             :    USE xtb_matrices,                    ONLY: xtb_hab_force
     151             :    USE xtb_types,                       ONLY: get_xtb_atom_param,&
     152             :                                               xtb_atom_type
     153             : #include "./base/base_uses.f90"
     154             : 
     155             :    IMPLICIT NONE
     156             : 
     157             :    PRIVATE
     158             : 
     159             :    ! Global parameters
     160             : 
     161             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'response_solver'
     162             : 
     163             :    PUBLIC :: response_calculation, response_equation, response_force, response_force_xtb, &
     164             :              response_equation_new
     165             : 
     166             : ! **************************************************************************************************
     167             : 
     168             : CONTAINS
     169             : 
     170             : ! **************************************************************************************************
     171             : !> \brief Initializes solver of linear response equation for energy correction
     172             : !> \brief Call AO or MO based linear response solver for energy correction
     173             : !>
     174             : !> \param qs_env The quickstep environment
     175             : !> \param ec_env The energy correction environment
     176             : !>
     177             : !> \date    01.2020
     178             : !> \author  Fabian Belleflamme
     179             : ! **************************************************************************************************
     180         432 :    SUBROUTINE response_calculation(qs_env, ec_env)
     181             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     182             :       TYPE(energy_correction_type), POINTER              :: ec_env
     183             : 
     184             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_calculation'
     185             : 
     186             :       INTEGER                                            :: handle, homo, ispin, nao, nao_aux, nmo, &
     187             :                                                             nocc, nspins, solver_method, unit_nr
     188             :       LOGICAL                                            :: should_stop
     189             :       REAL(KIND=dp)                                      :: focc
     190             :       TYPE(admm_type), POINTER                           :: admm_env
     191             :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     192             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     193             :       TYPE(cp_fm_type)                                   :: sv
     194         432 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: cpmos, mo_occ
     195             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     196             :       TYPE(cp_logger_type), POINTER                      :: logger
     197         432 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux, rho_ao
     198             :       TYPE(dft_control_type), POINTER                    :: dft_control
     199             :       TYPE(linres_control_type), POINTER                 :: linres_control
     200         432 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     201             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     202             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     203         432 :          POINTER                                         :: sab_orb
     204             :       TYPE(qs_energy_type), POINTER                      :: energy
     205             :       TYPE(qs_p_env_type), POINTER                       :: p_env
     206             :       TYPE(qs_rho_type), POINTER                         :: rho
     207             :       TYPE(section_vals_type), POINTER                   :: input, solver_section
     208             : 
     209         432 :       CALL timeset(routineN, handle)
     210             : 
     211         432 :       NULLIFY (admm_env, dft_control, energy, logger, matrix_s, matrix_s_aux, mo_coeff, mos, para_env, &
     212         432 :                rho_ao, sab_orb, solver_section)
     213             : 
     214             :       ! Get useful output unit
     215         432 :       logger => cp_get_default_logger()
     216         432 :       IF (logger%para_env%is_source()) THEN
     217         216 :          unit_nr = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     218             :       ELSE
     219         216 :          unit_nr = -1
     220             :       END IF
     221             : 
     222             :       CALL get_qs_env(qs_env, &
     223             :                       dft_control=dft_control, &
     224             :                       input=input, &
     225             :                       matrix_s=matrix_s, &
     226             :                       para_env=para_env, &
     227         432 :                       sab_orb=sab_orb)
     228         432 :       nspins = dft_control%nspins
     229             : 
     230             :       ! initialize linres_control
     231             :       NULLIFY (linres_control)
     232         432 :       ALLOCATE (linres_control)
     233         432 :       linres_control%do_kernel = .TRUE.
     234             :       linres_control%lr_triplet = .FALSE.
     235             :       linres_control%converged = .FALSE.
     236         432 :       linres_control%energy_gap = 0.02_dp
     237             : 
     238             :       ! Read input
     239         432 :       solver_section => section_vals_get_subs_vals(input, "DFT%ENERGY_CORRECTION%RESPONSE_SOLVER")
     240         432 :       CALL section_vals_val_get(solver_section, "EPS", r_val=linres_control%eps)
     241         432 :       CALL section_vals_val_get(solver_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     242         432 :       CALL section_vals_val_get(solver_section, "MAX_ITER", i_val=linres_control%max_iter)
     243         432 :       CALL section_vals_val_get(solver_section, "METHOD", i_val=solver_method)
     244         432 :       CALL section_vals_val_get(solver_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     245         432 :       CALL section_vals_val_get(solver_section, "RESTART", l_val=linres_control%linres_restart)
     246         432 :       CALL section_vals_val_get(solver_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     247         432 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     248             : 
     249             :       ! Write input section of response solver
     250         432 :       CALL response_solver_write_input(solver_section, linres_control, unit_nr)
     251             : 
     252             :       ! Allocate and initialize response density matrix Z,
     253             :       ! and the energy weighted response density matrix
     254             :       ! Template is the ground-state overlap matrix
     255         432 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_wz, nspins)
     256         432 :       CALL dbcsr_allocate_matrix_set(ec_env%matrix_z, nspins)
     257         864 :       DO ispin = 1, nspins
     258         432 :          ALLOCATE (ec_env%matrix_wz(ispin)%matrix)
     259         432 :          ALLOCATE (ec_env%matrix_z(ispin)%matrix)
     260             :          CALL dbcsr_create(ec_env%matrix_wz(ispin)%matrix, name="Wz MATRIX", &
     261         432 :                            template=matrix_s(1)%matrix)
     262             :          CALL dbcsr_create(ec_env%matrix_z(ispin)%matrix, name="Z MATRIX", &
     263         432 :                            template=matrix_s(1)%matrix)
     264         432 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_wz(ispin)%matrix, sab_orb)
     265         432 :          CALL cp_dbcsr_alloc_block_from_nbl(ec_env%matrix_z(ispin)%matrix, sab_orb)
     266         432 :          CALL dbcsr_set(ec_env%matrix_wz(ispin)%matrix, 0.0_dp)
     267         864 :          CALL dbcsr_set(ec_env%matrix_z(ispin)%matrix, 0.0_dp)
     268             :       END DO
     269             : 
     270             :       ! MO solver requires MO's of the ground-state calculation,
     271             :       ! The MOs environment is not allocated if LS-DFT has been used.
     272             :       ! Introduce MOs here
     273             :       ! Remark: MOS environment also required for creation of p_env
     274         432 :       IF (dft_control%qs_control%do_ls_scf) THEN
     275             : 
     276             :          ! Allocate and initialize MO environment
     277          10 :          CALL ec_mos_init(qs_env, matrix_s(1)%matrix)
     278          10 :          CALL get_qs_env(qs_env, mos=mos, rho=rho)
     279             : 
     280             :          ! Get ground-state density matrix
     281          10 :          CALL qs_rho_get(rho, rho_ao=rho_ao)
     282             : 
     283          20 :          DO ispin = 1, nspins
     284             :             CALL get_mo_set(mo_set=mos(ispin), &
     285             :                             mo_coeff=mo_coeff, &
     286          10 :                             nmo=nmo, nao=nao, homo=homo)
     287             : 
     288          10 :             CALL cp_fm_set_all(mo_coeff, 0.0_dp)
     289          10 :             CALL cp_fm_init_random(mo_coeff, nmo)
     290             : 
     291          10 :             CALL cp_fm_create(sv, mo_coeff%matrix_struct, "SV")
     292             :             ! multiply times PS
     293             :             ! PS*C(:,1:nomo)+C(:,nomo+1:nmo) (nomo=NINT(nelectron/maxocc))
     294          10 :             CALL cp_dbcsr_sm_fm_multiply(matrix_s(1)%matrix, mo_coeff, sv, nmo)
     295          10 :             CALL cp_dbcsr_sm_fm_multiply(rho_ao(ispin)%matrix, sv, mo_coeff, homo)
     296          10 :             CALL cp_fm_release(sv)
     297             :             ! and ortho the result
     298          10 :             CALL make_basis_sm(mo_coeff, nmo, matrix_s(1)%matrix)
     299             : 
     300             :             ! rebuilds fm_pools
     301             :             ! originally done in qs_env_setup, only when mos associated
     302          10 :             NULLIFY (blacs_env)
     303          10 :             CALL get_qs_env(qs_env, blacs_env=blacs_env)
     304             :             CALL mpools_rebuild_fm_pools(qs_env%mpools, mos=mos, &
     305          30 :                                          blacs_env=blacs_env, para_env=para_env)
     306             :          END DO
     307             :       END IF
     308             : 
     309             :       ! initialize p_env
     310             :       ! Remark: mos environment is needed for this
     311         432 :       IF (ASSOCIATED(ec_env%p_env)) THEN
     312         220 :          CALL p_env_release(ec_env%p_env)
     313         220 :          DEALLOCATE (ec_env%p_env)
     314         220 :          NULLIFY (ec_env%p_env)
     315             :       END IF
     316         432 :       ALLOCATE (ec_env%p_env)
     317             :       CALL p_env_create(ec_env%p_env, qs_env, orthogonal_orbitals=.TRUE., &
     318         432 :                         linres_control=linres_control)
     319         432 :       CALL p_env_psi0_changed(ec_env%p_env, qs_env)
     320             :       ! Total energy overwritten, replace with Etot from energy correction
     321         432 :       CALL get_qs_env(qs_env, energy=energy)
     322         432 :       energy%total = ec_env%etotal
     323             :       !
     324         432 :       p_env => ec_env%p_env
     325             :       !
     326         432 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     327         432 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     328         864 :       DO ispin = 1, nspins
     329         432 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     330         432 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     331         432 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     332         432 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     333         864 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     334             :       END DO
     335         432 :       IF (dft_control%do_admm) THEN
     336         104 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     337         104 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     338         208 :          DO ispin = 1, nspins
     339         104 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     340             :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     341         104 :                               template=matrix_s_aux(1)%matrix)
     342         104 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     343         208 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     344             :          END DO
     345             :       END IF
     346             : 
     347             :       ! Choose between MO-solver and AO-solver
     348         300 :       SELECT CASE (solver_method)
     349             :       CASE (ec_mo_solver)
     350             : 
     351             :          ! CPKS vector cpmos - RHS of response equation as Ax + b = 0 (sign of b)
     352             :          ! Sign is changed in linres_solver!
     353             :          ! Projector Q applied in linres_solver!
     354         300 :          CALL get_qs_env(qs_env, mos=mos)
     355        2100 :          ALLOCATE (cpmos(nspins), mo_occ(nspins))
     356         600 :          DO ispin = 1, nspins
     357         300 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     358         300 :             NULLIFY (fm_struct)
     359             :             CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     360         300 :                                      template_fmstruct=mo_coeff%matrix_struct)
     361         300 :             CALL cp_fm_create(cpmos(ispin), fm_struct)
     362         300 :             CALL cp_fm_set_all(cpmos(ispin), 0.0_dp)
     363         300 :             CALL cp_fm_create(mo_occ(ispin), fm_struct)
     364         300 :             CALL cp_fm_to_fm(mo_coeff, mo_occ(ispin), nocc)
     365         900 :             CALL cp_fm_struct_release(fm_struct)
     366             :          END DO
     367             : 
     368         300 :          focc = 2.0_dp
     369         300 :          IF (nspins == 1) focc = 4.0_dp
     370         600 :          DO ispin = 1, nspins
     371         300 :             CALL get_mo_set(mo_set=mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     372             :             CALL cp_dbcsr_sm_fm_multiply(ec_env%matrix_hz(ispin)%matrix, mo_occ(ispin), &
     373             :                                          cpmos(ispin), nocc, &
     374         600 :                                          alpha=focc, beta=0.0_dp)
     375             :          END DO
     376         300 :          CALL cp_fm_release(mo_occ)
     377             : 
     378         300 :          CALL response_equation_new(qs_env, p_env, cpmos, unit_nr)
     379             : 
     380             :          ! Get the response density matrix,
     381             :          ! and energy-weighted response density matrix
     382         600 :          DO ispin = 1, nspins
     383         300 :             CALL dbcsr_copy(ec_env%matrix_z(ispin)%matrix, p_env%p1(ispin)%matrix)
     384         600 :             CALL dbcsr_copy(ec_env%matrix_wz(ispin)%matrix, p_env%w1(ispin)%matrix)
     385             :          END DO
     386         300 :          CALL cp_fm_release(cpmos)
     387             : 
     388             :       CASE (ec_ls_solver)
     389             : 
     390             :          ! AO ortho solver
     391             :          CALL ec_response_ao(qs_env=qs_env, &
     392             :                              p_env=p_env, &
     393             :                              matrix_hz=ec_env%matrix_hz, &
     394             :                              matrix_pz=ec_env%matrix_z, &
     395             :                              matrix_wz=ec_env%matrix_wz, &
     396             :                              iounit=unit_nr, &
     397         132 :                              should_stop=should_stop)
     398             : 
     399         132 :          IF (dft_control%do_admm) THEN
     400          28 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     401          28 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     402          28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     403          28 :             CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     404          28 :             nao = admm_env%nao_orb
     405          28 :             nao_aux = admm_env%nao_aux_fit
     406          56 :             DO ispin = 1, nspins
     407          28 :                CALL copy_dbcsr_to_fm(ec_env%matrix_z(ispin)%matrix, admm_env%work_orb_orb)
     408             :                CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     409             :                                   1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     410          28 :                                   admm_env%work_aux_orb)
     411             :                CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     412             :                                   1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     413          28 :                                   admm_env%work_aux_aux)
     414             :                CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     415          56 :                                      keep_sparsity=.TRUE.)
     416             :             END DO
     417             :          END IF
     418             : 
     419             :       CASE DEFAULT
     420         432 :          CPABORT("Unknown solver for response equation requested")
     421             :       END SELECT
     422             : 
     423         432 :       IF (dft_control%do_admm) THEN
     424         104 :          CALL dbcsr_allocate_matrix_set(ec_env%z_admm, nspins)
     425         208 :          DO ispin = 1, nspins
     426         104 :             ALLOCATE (ec_env%z_admm(ispin)%matrix)
     427         104 :             CALL dbcsr_create(matrix=ec_env%z_admm(ispin)%matrix, template=matrix_s_aux(1)%matrix)
     428         104 :             CALL get_qs_env(qs_env, admm_env=admm_env)
     429         208 :             CALL dbcsr_copy(ec_env%z_admm(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
     430             :          END DO
     431             :       END IF
     432             : 
     433             :       ! Get rid of MO environment again
     434         432 :       IF (dft_control%qs_control%do_ls_scf) THEN
     435          20 :          DO ispin = 1, nspins
     436          20 :             CALL deallocate_mo_set(mos(ispin))
     437             :          END DO
     438          10 :          IF (ASSOCIATED(qs_env%mos)) THEN
     439          20 :             DO ispin = 1, SIZE(qs_env%mos)
     440          20 :                CALL deallocate_mo_set(qs_env%mos(ispin))
     441             :             END DO
     442          10 :             DEALLOCATE (qs_env%mos)
     443             :          END IF
     444             :       END IF
     445             : 
     446         432 :       CALL timestop(handle)
     447             : 
     448         864 :    END SUBROUTINE response_calculation
     449             : 
     450             : ! **************************************************************************************************
     451             : !> \brief Parse the input section of the response solver
     452             : !> \param input Input section which controls response solver parameters
     453             : !> \param linres_control Environment for general setting of linear response calculation
     454             : !> \param unit_nr ...
     455             : !> \par History
     456             : !>       2020.05 created [Fabian Belleflamme]
     457             : !> \author Fabian Belleflamme
     458             : ! **************************************************************************************************
     459         432 :    SUBROUTINE response_solver_write_input(input, linres_control, unit_nr)
     460             :       TYPE(section_vals_type), POINTER                   :: input
     461             :       TYPE(linres_control_type), POINTER                 :: linres_control
     462             :       INTEGER, INTENT(IN)                                :: unit_nr
     463             : 
     464             :       CHARACTER(len=*), PARAMETER :: routineN = 'response_solver_write_input'
     465             : 
     466             :       INTEGER                                            :: handle, max_iter_lanczos, s_sqrt_method, &
     467             :                                                             s_sqrt_order, solver_method
     468             :       REAL(KIND=dp)                                      :: eps_lanczos
     469             : 
     470         432 :       CALL timeset(routineN, handle)
     471             : 
     472         432 :       IF (unit_nr > 0) THEN
     473             : 
     474             :          ! linres_control
     475             :          WRITE (unit_nr, '(/,T2,A)') &
     476         216 :             REPEAT("-", 30)//" Linear Response Solver "//REPEAT("-", 25)
     477             : 
     478             :          ! Which type of solver is used
     479         216 :          CALL section_vals_val_get(input, "METHOD", i_val=solver_method)
     480             : 
     481          66 :          SELECT CASE (solver_method)
     482             :          CASE (ec_ls_solver)
     483          66 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "AO-based CG-solver"
     484             :          CASE (ec_mo_solver)
     485         216 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Solver: ", "MO-based CG-solver"
     486             :          END SELECT
     487             : 
     488         216 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps:", linres_control%eps
     489         216 :          WRITE (unit_nr, '(T2,A,T61,E20.3)') "eps_filter:", linres_control%eps_filter
     490         216 :          WRITE (unit_nr, '(T2,A,T61,I20)') "Max iter:", linres_control%max_iter
     491             : 
     492         217 :          SELECT CASE (linres_control%preconditioner_type)
     493             :          CASE (ot_precond_full_all)
     494           1 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_ALL"
     495             :          CASE (ot_precond_full_single_inverse)
     496         149 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE_INVERSE"
     497             :          CASE (ot_precond_full_single)
     498           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_SINGLE"
     499             :          CASE (ot_precond_full_kinetic)
     500           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_KINETIC"
     501             :          CASE (ot_precond_s_inverse)
     502           0 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "FULL_S_INVERSE"
     503             :          CASE (precond_mlp)
     504          65 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "MULTI_LEVEL"
     505             :          CASE (ot_precond_none)
     506         216 :             WRITE (unit_nr, '(T2,A,T61,A20)') "Preconditioner: ", "NONE"
     507             :          END SELECT
     508             : 
     509          66 :          SELECT CASE (solver_method)
     510             :          CASE (ec_ls_solver)
     511             : 
     512          66 :             CALL section_vals_val_get(input, "S_SQRT_METHOD", i_val=s_sqrt_method)
     513          66 :             CALL section_vals_val_get(input, "S_SQRT_ORDER", i_val=s_sqrt_order)
     514          66 :             CALL section_vals_val_get(input, "EPS_LANCZOS", r_val=eps_lanczos)
     515          66 :             CALL section_vals_val_get(input, "MAX_ITER_LANCZOS", i_val=max_iter_lanczos)
     516             : 
     517             :             ! Response solver transforms P and KS into orthonormal basis,
     518             :             ! reuires matrx S sqrt and its inverse
     519          66 :             SELECT CASE (s_sqrt_method)
     520             :             CASE (ls_s_sqrt_ns)
     521          66 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "NEWTONSCHULZ"
     522             :             CASE (ls_s_sqrt_proot)
     523           0 :                WRITE (unit_nr, '(T2,A,T61,A20)') "S sqrt method:", "PROOT"
     524             :             CASE DEFAULT
     525          66 :                CPABORT("Unknown sqrt method.")
     526             :             END SELECT
     527         282 :             WRITE (unit_nr, '(T2,A,T61,I20)') "S sqrt order:", s_sqrt_order
     528             : 
     529             :          CASE (ec_mo_solver)
     530             :          END SELECT
     531             : 
     532         216 :          WRITE (unit_nr, '(T2,A)') REPEAT("-", 79)
     533             : 
     534         216 :          CALL m_flush(unit_nr)
     535             :       END IF
     536             : 
     537         432 :       CALL timestop(handle)
     538             : 
     539         432 :    END SUBROUTINE response_solver_write_input
     540             : 
     541             : ! **************************************************************************************************
     542             : !> \brief Initializes vectors for MO-coefficient based linear response solver
     543             : !>        and calculates response density, and energy-weighted response density matrix
     544             : !>
     545             : !> \param qs_env ...
     546             : !> \param p_env ...
     547             : !> \param cpmos ...
     548             : !> \param iounit ...
     549             : ! **************************************************************************************************
     550         350 :    SUBROUTINE response_equation_new(qs_env, p_env, cpmos, iounit)
     551             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     552             :       TYPE(qs_p_env_type)                                :: p_env
     553             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(INOUT)      :: cpmos
     554             :       INTEGER, INTENT(IN)                                :: iounit
     555             : 
     556             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_equation_new'
     557             : 
     558             :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     559             :       LOGICAL                                            :: should_stop
     560             :       TYPE(admm_type), POINTER                           :: admm_env
     561             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     562         350 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     563             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     564         350 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s
     565             :       TYPE(dft_control_type), POINTER                    :: dft_control
     566         350 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     567             : 
     568         350 :       CALL timeset(routineN, handle)
     569             : 
     570         350 :       NULLIFY (dft_control, matrix_ks, mo_coeff, mos)
     571             : 
     572             :       CALL get_qs_env(qs_env, dft_control=dft_control, matrix_ks=matrix_ks, &
     573         350 :                       matrix_s=matrix_s, mos=mos)
     574         350 :       nspins = dft_control%nspins
     575             : 
     576             :       ! Initialize vectors:
     577             :       ! psi0 : The ground-state MO-coefficients
     578             :       ! psi1 : The "perturbed" linear response orbitals
     579        2474 :       ALLOCATE (psi0(nspins), psi1(nspins))
     580         712 :       DO ispin = 1, nspins
     581         362 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     582         362 :          NULLIFY (fm_struct)
     583             :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     584         362 :                                   template_fmstruct=mo_coeff%matrix_struct)
     585         362 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     586         362 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     587         362 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     588         362 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     589        1074 :          CALL cp_fm_struct_release(fm_struct)
     590             :       END DO
     591             : 
     592             :       should_stop = .FALSE.
     593             :       ! The response solver
     594         350 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     595             : 
     596             :       ! Building the response density matrix
     597         712 :       DO ispin = 1, nspins
     598         712 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     599             :       END DO
     600         350 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     601         712 :       DO ispin = 1, nspins
     602         712 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     603             :       END DO
     604             : 
     605         350 :       IF (dft_control%do_admm) THEN
     606          92 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     607          92 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     608          92 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     609          92 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     610          92 :          nao = admm_env%nao_orb
     611          92 :          nao_aux = admm_env%nao_aux_fit
     612         188 :          DO ispin = 1, nspins
     613          96 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     614             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     615             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     616          96 :                                admm_env%work_aux_orb)
     617             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     618             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     619          96 :                                admm_env%work_aux_aux)
     620             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     621         188 :                                   keep_sparsity=.TRUE.)
     622             :          END DO
     623             :       END IF
     624             : 
     625             :       ! Calculate Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     626         712 :       DO ispin = 1, nspins
     627             :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     628         712 :                                   p_env%w1(ispin)%matrix)
     629             :       END DO
     630         712 :       DO ispin = 1, nspins
     631         712 :          CALL cp_fm_release(cpmos(ispin))
     632             :       END DO
     633         350 :       CALL cp_fm_release(psi1)
     634         350 :       CALL cp_fm_release(psi0)
     635             : 
     636         350 :       CALL timestop(handle)
     637             : 
     638         700 :    END SUBROUTINE response_equation_new
     639             : 
     640             : ! **************************************************************************************************
     641             : !> \brief Initializes vectors for MO-coefficient based linear response solver
     642             : !>        and calculates response density, and energy-weighted response density matrix
     643             : !>
     644             : !> \param qs_env ...
     645             : !> \param p_env ...
     646             : !> \param cpmos RHS of equation as Ax + b = 0 (sign of b)
     647             : !> \param iounit ...
     648             : !> \param lr_section ...
     649             : ! **************************************************************************************************
     650         566 :    SUBROUTINE response_equation(qs_env, p_env, cpmos, iounit, lr_section)
     651             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     652             :       TYPE(qs_p_env_type)                                :: p_env
     653             :       TYPE(cp_fm_type), DIMENSION(:), POINTER            :: cpmos
     654             :       INTEGER, INTENT(IN)                                :: iounit
     655             :       TYPE(section_vals_type), OPTIONAL, POINTER         :: lr_section
     656             : 
     657             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_equation'
     658             : 
     659             :       INTEGER                                            :: handle, ispin, nao, nao_aux, nocc, nspins
     660             :       LOGICAL                                            :: should_stop
     661             :       TYPE(admm_type), POINTER                           :: admm_env
     662             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct
     663         566 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: psi0, psi1
     664             :       TYPE(cp_fm_type), POINTER                          :: mo_coeff
     665         566 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ks, matrix_s, matrix_s_aux
     666             :       TYPE(dft_control_type), POINTER                    :: dft_control
     667             :       TYPE(linres_control_type), POINTER                 :: linres_control
     668         566 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     669             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     670         566 :          POINTER                                         :: sab_orb
     671             : 
     672         566 :       CALL timeset(routineN, handle)
     673             : 
     674             :       ! initialized linres_control
     675             :       NULLIFY (linres_control)
     676         566 :       ALLOCATE (linres_control)
     677         566 :       linres_control%do_kernel = .TRUE.
     678             :       linres_control%lr_triplet = .FALSE.
     679         566 :       IF (PRESENT(lr_section)) THEN
     680         566 :          CALL section_vals_val_get(lr_section, "RESTART", l_val=linres_control%linres_restart)
     681         566 :          CALL section_vals_val_get(lr_section, "MAX_ITER", i_val=linres_control%max_iter)
     682         566 :          CALL section_vals_val_get(lr_section, "EPS", r_val=linres_control%eps)
     683         566 :          CALL section_vals_val_get(lr_section, "EPS_FILTER", r_val=linres_control%eps_filter)
     684         566 :          CALL section_vals_val_get(lr_section, "RESTART_EVERY", i_val=linres_control%restart_every)
     685         566 :          CALL section_vals_val_get(lr_section, "PRECONDITIONER", i_val=linres_control%preconditioner_type)
     686         566 :          CALL section_vals_val_get(lr_section, "ENERGY_GAP", r_val=linres_control%energy_gap)
     687             :       ELSE
     688             :          linres_control%linres_restart = .FALSE.
     689           0 :          linres_control%max_iter = 100
     690           0 :          linres_control%eps = 1.0e-10_dp
     691           0 :          linres_control%eps_filter = 1.0e-15_dp
     692           0 :          linres_control%restart_every = 50
     693           0 :          linres_control%preconditioner_type = ot_precond_full_single_inverse
     694           0 :          linres_control%energy_gap = 0.02_dp
     695             :       END IF
     696             : 
     697             :       ! initialized p_env
     698             :       CALL p_env_create(p_env, qs_env, orthogonal_orbitals=.TRUE., &
     699         566 :                         linres_control=linres_control)
     700         566 :       CALL set_qs_env(qs_env, linres_control=linres_control)
     701         566 :       CALL p_env_psi0_changed(p_env, qs_env)
     702         566 :       p_env%new_preconditioner = .TRUE.
     703             : 
     704         566 :       CALL get_qs_env(qs_env, dft_control=dft_control, mos=mos)
     705             :       !
     706         566 :       nspins = dft_control%nspins
     707             : 
     708             :       ! Initialize vectors:
     709             :       ! psi0 : The ground-state MO-coefficients
     710             :       ! psi1 : The "perturbed" linear response orbitals
     711        4154 :       ALLOCATE (psi0(nspins), psi1(nspins))
     712        1228 :       DO ispin = 1, nspins
     713         662 :          CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff, homo=nocc)
     714         662 :          NULLIFY (fm_struct)
     715             :          CALL cp_fm_struct_create(fm_struct, ncol_global=nocc, &
     716         662 :                                   template_fmstruct=mo_coeff%matrix_struct)
     717         662 :          CALL cp_fm_create(psi0(ispin), fm_struct)
     718         662 :          CALL cp_fm_to_fm(mo_coeff, psi0(ispin), nocc)
     719         662 :          CALL cp_fm_create(psi1(ispin), fm_struct)
     720         662 :          CALL cp_fm_set_all(psi1(ispin), 0.0_dp)
     721        1890 :          CALL cp_fm_struct_release(fm_struct)
     722             :       END DO
     723             : 
     724         566 :       should_stop = .FALSE.
     725             :       ! The response solver
     726         566 :       CALL get_qs_env(qs_env, matrix_s=matrix_s, sab_orb=sab_orb)
     727         566 :       CALL dbcsr_allocate_matrix_set(p_env%p1, nspins)
     728         566 :       CALL dbcsr_allocate_matrix_set(p_env%w1, nspins)
     729        1228 :       DO ispin = 1, nspins
     730         662 :          ALLOCATE (p_env%p1(ispin)%matrix, p_env%w1(ispin)%matrix)
     731         662 :          CALL dbcsr_create(matrix=p_env%p1(ispin)%matrix, template=matrix_s(1)%matrix)
     732         662 :          CALL dbcsr_create(matrix=p_env%w1(ispin)%matrix, template=matrix_s(1)%matrix)
     733         662 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%p1(ispin)%matrix, sab_orb)
     734        1228 :          CALL cp_dbcsr_alloc_block_from_nbl(p_env%w1(ispin)%matrix, sab_orb)
     735             :       END DO
     736         566 :       IF (dft_control%do_admm) THEN
     737         128 :          CALL get_admm_env(qs_env%admm_env, matrix_s_aux_fit=matrix_s_aux)
     738         128 :          CALL dbcsr_allocate_matrix_set(p_env%p1_admm, nspins)
     739         276 :          DO ispin = 1, nspins
     740         148 :             ALLOCATE (p_env%p1_admm(ispin)%matrix)
     741             :             CALL dbcsr_create(p_env%p1_admm(ispin)%matrix, &
     742         148 :                               template=matrix_s_aux(1)%matrix)
     743         148 :             CALL dbcsr_copy(p_env%p1_admm(ispin)%matrix, matrix_s_aux(1)%matrix)
     744         276 :             CALL dbcsr_set(p_env%p1_admm(ispin)%matrix, 0.0_dp)
     745             :          END DO
     746             :       END IF
     747             : 
     748         566 :       CALL linres_solver(p_env, qs_env, psi1, cpmos, psi0, iounit, should_stop)
     749             : 
     750             :       ! Building the response density matrix
     751        1228 :       DO ispin = 1, nspins
     752        1228 :          CALL dbcsr_copy(p_env%p1(ispin)%matrix, matrix_s(1)%matrix)
     753             :       END DO
     754         566 :       CALL build_dm_response(psi0, psi1, p_env%p1)
     755        1228 :       DO ispin = 1, nspins
     756        1228 :          CALL dbcsr_scale(p_env%p1(ispin)%matrix, 0.5_dp)
     757             :       END DO
     758         566 :       IF (dft_control%do_admm) THEN
     759         128 :          CALL get_qs_env(qs_env, admm_env=admm_env)
     760         128 :          CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
     761         128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
     762         128 :          CPASSERT(ASSOCIATED(admm_env%work_aux_aux))
     763         128 :          nao = admm_env%nao_orb
     764         128 :          nao_aux = admm_env%nao_aux_fit
     765         276 :          DO ispin = 1, nspins
     766         148 :             CALL copy_dbcsr_to_fm(p_env%p1(ispin)%matrix, admm_env%work_orb_orb)
     767             :             CALL parallel_gemm('N', 'N', nao_aux, nao, nao, &
     768             :                                1.0_dp, admm_env%A, admm_env%work_orb_orb, 0.0_dp, &
     769         148 :                                admm_env%work_aux_orb)
     770             :             CALL parallel_gemm('N', 'T', nao_aux, nao_aux, nao, &
     771             :                                1.0_dp, admm_env%work_aux_orb, admm_env%A, 0.0_dp, &
     772         148 :                                admm_env%work_aux_aux)
     773             :             CALL copy_fm_to_dbcsr(admm_env%work_aux_aux, p_env%p1_admm(ispin)%matrix, &
     774         276 :                                   keep_sparsity=.TRUE.)
     775             :          END DO
     776             :       END IF
     777             : 
     778             :       ! Calculate Wz = 0.5*(psi1*eps*psi0^T + psi0*eps*psi1^T)
     779         566 :       CALL get_qs_env(qs_env, matrix_ks=matrix_ks)
     780        1228 :       DO ispin = 1, nspins
     781             :          CALL calculate_wz_matrix(mos(ispin), psi1(ispin), matrix_ks(ispin)%matrix, &
     782        1228 :                                   p_env%w1(ispin)%matrix)
     783             :       END DO
     784         566 :       CALL cp_fm_release(psi0)
     785         566 :       CALL cp_fm_release(psi1)
     786             : 
     787         566 :       CALL timestop(handle)
     788             : 
     789        1698 :    END SUBROUTINE response_equation
     790             : 
     791             : ! **************************************************************************************************
     792             : !> \brief ...
     793             : !> \param qs_env ...
     794             : !> \param vh_rspace ...
     795             : !> \param vxc_rspace ...
     796             : !> \param vtau_rspace ...
     797             : !> \param vadmm_rspace ...
     798             : !> \param matrix_hz Right-hand-side of linear response equation
     799             : !> \param matrix_pz Linear response density matrix
     800             : !> \param matrix_pz_admm Linear response density matrix in ADMM basis
     801             : !> \param matrix_wz Energy-weighted linear response density
     802             : !> \param zehartree Hartree volume response contribution to stress tensor
     803             : !> \param zexc XC volume response contribution to stress tensor
     804             : !> \param zexc_aux_fit ADMM XC volume response contribution to stress tensor
     805             : !> \param rhopz_r Response density on real space grid
     806             : !> \param p_env ...
     807             : !> \param ex_env ...
     808             : !> \param debug ...
     809             : ! **************************************************************************************************
     810         982 :    SUBROUTINE response_force(qs_env, vh_rspace, vxc_rspace, vtau_rspace, vadmm_rspace, &
     811             :                              matrix_hz, matrix_pz, matrix_pz_admm, matrix_wz, &
     812         982 :                              zehartree, zexc, zexc_aux_fit, rhopz_r, p_env, ex_env, debug)
     813             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     814             :       TYPE(pw_r3d_rs_type), INTENT(IN)                   :: vh_rspace
     815             :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: vxc_rspace, vtau_rspace, vadmm_rspace
     816             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz, matrix_pz, matrix_pz_admm, &
     817             :                                                             matrix_wz
     818             :       REAL(KIND=dp), OPTIONAL                            :: zehartree, zexc, zexc_aux_fit
     819             :       TYPE(pw_r3d_rs_type), DIMENSION(:), &
     820             :          INTENT(INOUT), OPTIONAL                         :: rhopz_r
     821             :       TYPE(qs_p_env_type), OPTIONAL                      :: p_env
     822             :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
     823             :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
     824             : 
     825             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'response_force'
     826             : 
     827             :       CHARACTER(LEN=default_string_length)               :: basis_type
     828             :       INTEGER                                            :: handle, iounit, ispin, mspin, myfun, &
     829             :                                                             n_rep_hf, nao, nao_aux, natom, nder, &
     830             :                                                             nimages, nocc, nspins
     831         982 :       INTEGER, DIMENSION(:, :, :), POINTER               :: cell_to_index
     832             :       LOGICAL :: debug_forces, debug_stress, distribute_fock_matrix, do_ex, do_hfx, gapw, gapw_xc, &
     833             :          hfx_treat_lsd_in_core, resp_only, s_mstruct_changed, use_virial
     834             :       REAL(KIND=dp)                                      :: eh1, ehartree, ekin_mol, eps_filter, &
     835             :                                                             eps_ppnl, exc, exc_aux_fit, fconv, &
     836             :                                                             focc, hartree_gs, hartree_t
     837         982 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: ftot1, ftot2, ftot3
     838             :       REAL(KIND=dp), DIMENSION(2)                        :: total_rho_gs, total_rho_t
     839             :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
     840             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_stress, pv_loc, stdeb, sttot, sttot2
     841             :       TYPE(admm_type), POINTER                           :: admm_env
     842         982 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
     843             :       TYPE(cell_type), POINTER                           :: cell
     844             :       TYPE(cp_logger_type), POINTER                      :: logger
     845             :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     846         982 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_ht, matrix_pd, matrix_pza, &
     847         982 :                                                             matrix_s, mpa, scrm
     848         982 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_h, matrix_p, mhd, mhx, mhy, mhz, &
     849         982 :                                                             mpd, mpz
     850             :       TYPE(dbcsr_type), POINTER                          :: dbwork
     851             :       TYPE(dft_control_type), POINTER                    :: dft_control
     852             :       TYPE(hartree_local_type), POINTER                  :: hartree_local_gs, hartree_local_t
     853         982 :       TYPE(hfx_type), DIMENSION(:, :), POINTER           :: x_data
     854             :       TYPE(kg_environment_type), POINTER                 :: kg_env
     855             :       TYPE(local_rho_type), POINTER                      :: local_rho_set_f, local_rho_set_gs, &
     856             :                                                             local_rho_set_t, local_rho_set_vxc, &
     857             :                                                             local_rhoz_set_admm
     858         982 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
     859             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     860             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     861         982 :          POINTER                                         :: sab_aux_fit, sab_orb, sac_ae, sac_ppl, &
     862         982 :                                                             sap_ppnl
     863             :       TYPE(oce_matrix_type), POINTER                     :: oce
     864         982 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     865             :       TYPE(pw_c1d_gs_type) :: rho_tot_gspace, rho_tot_gspace_gs, rho_tot_gspace_t, &
     866             :          rhoz_tot_gspace, v_hartree_gspace_gs, v_hartree_gspace_t, zv_hartree_gspace
     867         982 :       TYPE(pw_c1d_gs_type), DIMENSION(:), POINTER        :: rho_g_aux, rho_g_gs, rho_g_t, rhoz_g, &
     868         982 :                                                             rhoz_g_aux, rhoz_g_xc
     869             :       TYPE(pw_c1d_gs_type), POINTER                      :: rho_core
     870             :       TYPE(pw_env_type), POINTER                         :: pw_env
     871             :       TYPE(pw_poisson_type), POINTER                     :: poisson_env
     872             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
     873             :       TYPE(pw_r3d_rs_type)                               :: v_hartree_rspace_gs, v_hartree_rspace_t, &
     874             :                                                             vhxc_rspace, zv_hartree_rspace
     875         982 :       TYPE(pw_r3d_rs_type), DIMENSION(:), POINTER        :: rho_r_aux, rho_r_gs, rho_r_t, rhoz_r, &
     876         982 :                                                             rhoz_r_aux, rhoz_r_xc, tau_r_aux, &
     877         982 :                                                             tauz_r, tauz_r_xc, v_xc, v_xc_tau
     878         982 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
     879         982 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     880             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
     881             :       TYPE(qs_rho_type), POINTER                         :: rho, rho_aux_fit, rho_xc
     882             :       TYPE(section_vals_type), POINTER                   :: hfx_section, xc_fun_section, xc_section
     883             :       TYPE(task_list_type), POINTER                      :: task_list, task_list_aux_fit
     884             :       TYPE(virial_type), POINTER                         :: virial
     885             : 
     886         982 :       CALL timeset(routineN, handle)
     887             : 
     888         982 :       IF (PRESENT(debug)) THEN
     889         982 :          debug_forces = debug
     890         982 :          debug_stress = debug
     891             :       ELSE
     892             :          debug_forces = .FALSE.
     893             :          debug_stress = .FALSE.
     894             :       END IF
     895             : 
     896         982 :       logger => cp_get_default_logger()
     897         982 :       logger => cp_get_default_logger()
     898         982 :       IF (logger%para_env%is_source()) THEN
     899         491 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
     900             :       ELSE
     901             :          iounit = -1
     902             :       END IF
     903             : 
     904         982 :       do_ex = .FALSE.
     905         982 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
     906             :       IF (do_ex) THEN
     907         550 :          CPASSERT(PRESENT(p_env))
     908             :       END IF
     909             : 
     910         982 :       NULLIFY (ks_env, sab_orb, sac_ae, sac_ppl, sap_ppnl, virial)
     911             :       CALL get_qs_env(qs_env=qs_env, &
     912             :                       cell=cell, &
     913             :                       force=force, &
     914             :                       ks_env=ks_env, &
     915             :                       dft_control=dft_control, &
     916             :                       para_env=para_env, &
     917             :                       sab_orb=sab_orb, &
     918             :                       sac_ae=sac_ae, &
     919             :                       sac_ppl=sac_ppl, &
     920             :                       sap_ppnl=sap_ppnl, &
     921         982 :                       virial=virial)
     922         982 :       nspins = dft_control%nspins
     923         982 :       gapw = dft_control%qs_control%gapw
     924         982 :       gapw_xc = dft_control%qs_control%gapw_xc
     925             : 
     926         982 :       IF (debug_forces) THEN
     927          56 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
     928         168 :          ALLOCATE (ftot1(3, natom))
     929          56 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
     930             :       END IF
     931             : 
     932             :       ! check for virial
     933         982 :       use_virial = virial%pv_availability .AND. (.NOT. virial%pv_numer)
     934             : 
     935         982 :       fconv = 1.0E-9_dp*pascal/cell%deth
     936         982 :       IF (debug_stress .AND. use_virial) THEN
     937           0 :          sttot = virial%pv_virial
     938             :       END IF
     939             : 
     940             :       !     *** If LSD, then combine alpha density and beta density to
     941             :       !     *** total density: alpha <- alpha + beta   and
     942         982 :       NULLIFY (mpa)
     943         982 :       NULLIFY (matrix_ht)
     944         982 :       IF (do_ex) THEN
     945         550 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
     946        1196 :          DO ispin = 1, nspins
     947         646 :             ALLOCATE (mpa(ispin)%matrix)
     948         646 :             CALL dbcsr_create(mpa(ispin)%matrix, template=p_env%p1(ispin)%matrix)
     949         646 :             CALL dbcsr_copy(mpa(ispin)%matrix, p_env%p1(ispin)%matrix)
     950         646 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
     951        1196 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
     952             :          END DO
     953             : 
     954         550 :          CALL dbcsr_allocate_matrix_set(matrix_ht, nspins)
     955        1196 :          DO ispin = 1, nspins
     956         646 :             ALLOCATE (matrix_ht(ispin)%matrix)
     957         646 :             CALL dbcsr_create(matrix_ht(ispin)%matrix, template=matrix_hz(ispin)%matrix)
     958         646 :             CALL dbcsr_copy(matrix_ht(ispin)%matrix, matrix_hz(ispin)%matrix)
     959        1196 :             CALL dbcsr_set(matrix_ht(ispin)%matrix, 0.0_dp)
     960             :          END DO
     961             :       ELSE
     962         432 :          mpa => matrix_pz
     963             :       END IF
     964             :       !
     965             :       ! START OF Tr(P+Z)Hcore
     966             :       !
     967         982 :       IF (nspins == 2) THEN
     968          96 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, 1.0_dp)
     969             :       END IF
     970         982 :       nimages = 1
     971             : 
     972             :       ! Kinetic energy matrix
     973         982 :       NULLIFY (scrm)
     974        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%kinetic(1:3, 1)
     975         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_ekinetic
     976             :       CALL build_kinetic_matrix(ks_env, matrix_t=scrm, &
     977             :                                 matrix_name="KINETIC ENERGY MATRIX", &
     978             :                                 basis_type="ORB", &
     979             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
     980         982 :                                 matrix_p=mpa(1)%matrix)
     981         982 :       IF (debug_forces) THEN
     982         224 :          fodeb(1:3) = force(1)%kinetic(1:3, 1) - fodeb(1:3)
     983          56 :          CALL para_env%sum(fodeb)
     984          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dT      ", fodeb
     985             :       END IF
     986         982 :       IF (debug_stress .AND. use_virial) THEN
     987           0 :          stdeb = fconv*(virial%pv_ekinetic - stdeb)
     988           0 :          CALL para_env%sum(stdeb)
     989           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
     990           0 :             'STRESS| Kinetic energy', one_third_sum_diag(stdeb), det_3x3(stdeb)
     991             :       END IF
     992             : 
     993         982 :       IF (nspins == 2) THEN
     994          96 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, -1.0_dp)
     995             :       END IF
     996         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
     997             : 
     998             :       ! Initialize a matrix scrm, later used for scratch purposes
     999         982 :       CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s)
    1000         982 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
    1001        2060 :       DO ispin = 1, nspins
    1002        1078 :          ALLOCATE (scrm(ispin)%matrix)
    1003        1078 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_s(1)%matrix)
    1004        1078 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_s(1)%matrix)
    1005        2060 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
    1006             :       END DO
    1007             : 
    1008             :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, particle_set=particle_set, &
    1009         982 :                       atomic_kind_set=atomic_kind_set)
    1010             : 
    1011         982 :       NULLIFY (cell_to_index)
    1012        9030 :       ALLOCATE (matrix_p(nspins, 1), matrix_h(nspins, 1))
    1013        2060 :       DO ispin = 1, nspins
    1014        1078 :          matrix_p(ispin, 1)%matrix => mpa(ispin)%matrix
    1015        2060 :          matrix_h(ispin, 1)%matrix => scrm(ispin)%matrix
    1016             :       END DO
    1017         982 :       matrix_h(1, 1)%matrix => scrm(1)%matrix
    1018             : 
    1019         982 :       IF (ASSOCIATED(sac_ae)) THEN
    1020           4 :          nder = 1
    1021          16 :          IF (debug_forces) fodeb(1:3) = force(1)%all_potential(1:3, 1)
    1022           4 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppl
    1023             :          CALL build_core_ae(matrix_h, matrix_p, force, virial, .TRUE., use_virial, nder, &
    1024             :                             qs_kind_set, atomic_kind_set, particle_set, sab_orb, sac_ae, &
    1025           4 :                             nimages, cell_to_index)
    1026           4 :          IF (debug_forces) THEN
    1027          16 :             fodeb(1:3) = force(1)%all_potential(1:3, 1) - fodeb(1:3)
    1028           4 :             CALL para_env%sum(fodeb)
    1029           4 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHae    ", fodeb
    1030             :          END IF
    1031           4 :          IF (debug_stress .AND. use_virial) THEN
    1032           0 :             stdeb = fconv*(virial%pv_ppl - stdeb)
    1033           0 :             CALL para_env%sum(stdeb)
    1034           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1035           0 :                'STRESS| Pz*dHae    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1036             :          END IF
    1037             :       END IF
    1038             : 
    1039         982 :       IF (ASSOCIATED(sac_ppl)) THEN
    1040         978 :          nder = 1
    1041        1134 :          IF (debug_forces) fodeb(1:3) = force(1)%gth_ppl(1:3, 1)
    1042         978 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppl
    1043             :          CALL build_core_ppl(matrix_h, matrix_p, force, &
    1044             :                              virial, .TRUE., use_virial, nder, &
    1045             :                              qs_kind_set, atomic_kind_set, particle_set, &
    1046         978 :                              sab_orb, sac_ppl, nimages, cell_to_index, "ORB")
    1047         978 :          IF (debug_forces) THEN
    1048         208 :             fodeb(1:3) = force(1)%gth_ppl(1:3, 1) - fodeb(1:3)
    1049          52 :             CALL para_env%sum(fodeb)
    1050          52 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHppl   ", fodeb
    1051             :          END IF
    1052         978 :          IF (debug_stress .AND. use_virial) THEN
    1053           0 :             stdeb = fconv*(virial%pv_ppl - stdeb)
    1054           0 :             CALL para_env%sum(stdeb)
    1055           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1056           0 :                'STRESS| Pz*dHppl   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1057             :          END IF
    1058             :       END IF
    1059         982 :       eps_ppnl = dft_control%qs_control%eps_ppnl
    1060         982 :       IF (ASSOCIATED(sap_ppnl)) THEN
    1061         978 :          nder = 1
    1062        1134 :          IF (debug_forces) fodeb(1:3) = force(1)%gth_ppnl(1:3, 1)
    1063         978 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_ppnl
    1064             :          CALL build_core_ppnl(matrix_h, matrix_p, force, &
    1065             :                               virial, .TRUE., use_virial, nder, &
    1066             :                               qs_kind_set, atomic_kind_set, particle_set, &
    1067         978 :                               sab_orb, sap_ppnl, eps_ppnl, nimages, cell_to_index, "ORB")
    1068         978 :          IF (debug_forces) THEN
    1069         208 :             fodeb(1:3) = force(1)%gth_ppnl(1:3, 1) - fodeb(1:3)
    1070          52 :             CALL para_env%sum(fodeb)
    1071          52 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHppnl  ", fodeb
    1072             :          END IF
    1073         978 :          IF (debug_stress .AND. use_virial) THEN
    1074           0 :             stdeb = fconv*(virial%pv_ppnl - stdeb)
    1075           0 :             CALL para_env%sum(stdeb)
    1076           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1077           0 :                'STRESS| Pz*dHppnl   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1078             :          END IF
    1079             : 
    1080             :       END IF
    1081             :       ! Kim-Gordon subsystem DFT
    1082             :       ! Atomic potential for nonadditive kinetic energy contribution
    1083         982 :       IF (dft_control%qs_control%do_kg) THEN
    1084          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_atomic) THEN
    1085          12 :             CALL get_qs_env(qs_env=qs_env, kg_env=kg_env, dbcsr_dist=dbcsr_dist)
    1086             : 
    1087          12 :             IF (use_virial) THEN
    1088         130 :                pv_loc = virial%pv_virial
    1089             :             END IF
    1090             : 
    1091          12 :             IF (debug_forces) fodeb(1:3) = force(1)%kinetic(1:3, 1)
    1092          12 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1093             :             CALL build_tnadd_mat(kg_env=kg_env, matrix_p=matrix_p, force=force, virial=virial, &
    1094             :                                  calculate_forces=.TRUE., use_virial=use_virial, &
    1095             :                                  qs_kind_set=qs_kind_set, atomic_kind_set=atomic_kind_set, &
    1096          12 :                                  particle_set=particle_set, sab_orb=sab_orb, dbcsr_dist=dbcsr_dist)
    1097          12 :             IF (debug_forces) THEN
    1098           0 :                fodeb(1:3) = force(1)%kinetic(1:3, 1) - fodeb(1:3)
    1099           0 :                CALL para_env%sum(fodeb)
    1100           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dTnadd  ", fodeb
    1101             :             END IF
    1102          12 :             IF (debug_stress .AND. use_virial) THEN
    1103           0 :                stdeb = fconv*(virial%pv_virial - stdeb)
    1104           0 :                CALL para_env%sum(stdeb)
    1105           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1106           0 :                   'STRESS| Pz*dTnadd   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1107             :             END IF
    1108             : 
    1109             :             ! Stress-tensor update components
    1110          12 :             IF (use_virial) THEN
    1111         130 :                virial%pv_ekinetic = virial%pv_ekinetic + (virial%pv_virial - pv_loc)
    1112             :             END IF
    1113             : 
    1114             :          END IF
    1115             :       END IF
    1116             : 
    1117         982 :       DEALLOCATE (matrix_h)
    1118         982 :       DEALLOCATE (matrix_p)
    1119         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1120             : 
    1121             :       ! initialize src matrix
    1122             :       ! Necessary as build_kinetic_matrix will only allocate scrm(1)
    1123             :       ! and not scrm(2) in open-shell case
    1124         982 :       NULLIFY (scrm)
    1125         982 :       CALL dbcsr_allocate_matrix_set(scrm, nspins)
    1126        2060 :       DO ispin = 1, nspins
    1127        1078 :          ALLOCATE (scrm(ispin)%matrix)
    1128        1078 :          CALL dbcsr_create(scrm(ispin)%matrix, template=matrix_pz(1)%matrix)
    1129        1078 :          CALL dbcsr_copy(scrm(ispin)%matrix, matrix_pz(ispin)%matrix)
    1130        2060 :          CALL dbcsr_set(scrm(ispin)%matrix, 0.0_dp)
    1131             :       END DO
    1132             : 
    1133         982 :       IF (debug_forces) THEN
    1134         168 :          ALLOCATE (ftot2(3, natom))
    1135          56 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    1136         224 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    1137          56 :          CALL para_env%sum(fodeb)
    1138          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHcore", fodeb
    1139             :       END IF
    1140         982 :       IF (debug_stress .AND. use_virial) THEN
    1141           0 :          stdeb = fconv*(virial%pv_virial - sttot)
    1142           0 :          CALL para_env%sum(stdeb)
    1143           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1144           0 :             'STRESS| Stress Pz*dHcore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1145             :          ! save current total viral, does not contain volume terms yet
    1146           0 :          sttot2 = virial%pv_virial
    1147             :       END IF
    1148             :       !
    1149             :       ! END OF Tr(P+Z)Hcore
    1150             :       !
    1151             :       !
    1152             :       ! Vhxc (KS potentials calculated externally)
    1153         982 :       CALL get_qs_env(qs_env, pw_env=pw_env)
    1154         982 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool, poisson_env=poisson_env)
    1155             :       !
    1156         982 :       IF (dft_control%do_admm) THEN
    1157         232 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1158         232 :          xc_section => admm_env%xc_section_primary
    1159             :       ELSE
    1160         750 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1161             :       END IF
    1162         982 :       xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
    1163         982 :       CALL section_vals_val_get(xc_fun_section, "_SECTION_PARAMETERS_", i_val=myfun)
    1164             :       !
    1165         982 :       IF (gapw .OR. gapw_xc) THEN
    1166          76 :          NULLIFY (oce, sab_orb)
    1167          76 :          CALL get_qs_env(qs_env=qs_env, oce=oce, sab_orb=sab_orb)
    1168             :          ! set up local_rho_set for GS density
    1169          76 :          NULLIFY (local_rho_set_gs)
    1170          76 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1171          76 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1172          76 :          CALL local_rho_set_create(local_rho_set_gs)
    1173             :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1174          76 :                                           qs_kind_set, dft_control, para_env)
    1175          76 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1176          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1177             :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1178          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1179          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1180             :          ! set up local_rho_set for response density
    1181          76 :          NULLIFY (local_rho_set_t)
    1182          76 :          CALL local_rho_set_create(local_rho_set_t)
    1183             :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1184          76 :                                           qs_kind_set, dft_control, para_env)
    1185             :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1186          76 :                         zcore=0.0_dp)
    1187          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1188             :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1189          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1190          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1191             : 
    1192             :          ! compute soft GS potential
    1193         532 :          ALLOCATE (rho_r_gs(nspins), rho_g_gs(nspins))
    1194         152 :          DO ispin = 1, nspins
    1195          76 :             CALL auxbas_pw_pool%create_pw(rho_r_gs(ispin))
    1196         152 :             CALL auxbas_pw_pool%create_pw(rho_g_gs(ispin))
    1197             :          END DO
    1198          76 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_gs)
    1199             :          ! compute soft GS density
    1200          76 :          total_rho_gs = 0.0_dp
    1201          76 :          CALL pw_zero(rho_tot_gspace_gs)
    1202         152 :          DO ispin = 1, nspins
    1203             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=matrix_p(ispin, 1)%matrix, &
    1204             :                                     rho=rho_r_gs(ispin), &
    1205             :                                     rho_gspace=rho_g_gs(ispin), &
    1206             :                                     soft_valid=(gapw .OR. gapw_xc), &
    1207          76 :                                     total_rho=total_rho_gs(ispin))
    1208         152 :             CALL pw_axpy(rho_g_gs(ispin), rho_tot_gspace_gs)
    1209             :          END DO
    1210          76 :          IF (gapw) THEN
    1211          62 :             CALL get_qs_env(qs_env, natom=natom)
    1212             :             ! add rho0 contributions to GS density (only for Coulomb) only for gapw
    1213          62 :             CALL pw_axpy(local_rho_set_gs%rho0_mpole%rho0_s_gs, rho_tot_gspace_gs)
    1214          62 :             IF (dft_control%qs_control%gapw_control%nopaw_as_gpw) THEN
    1215           4 :                CALL get_qs_env(qs_env=qs_env, rho_core=rho_core)
    1216           4 :                CALL pw_axpy(rho_core, rho_tot_gspace_gs)
    1217             :             END IF
    1218             :             ! compute GS potential
    1219          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_gs)
    1220          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_gs)
    1221          62 :             NULLIFY (hartree_local_gs)
    1222          62 :             CALL hartree_local_create(hartree_local_gs)
    1223          62 :             CALL init_coulomb_local(hartree_local_gs, natom)
    1224          62 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_gs, hartree_gs, v_hartree_gspace_gs)
    1225          62 :             CALL pw_transfer(v_hartree_gspace_gs, v_hartree_rspace_gs)
    1226          62 :             CALL pw_scale(v_hartree_rspace_gs, v_hartree_rspace_gs%pw_grid%dvol)
    1227             :          END IF
    1228             :       END IF
    1229             : 
    1230         982 :       IF (gapw) THEN
    1231             :          ! Hartree grid PAW term
    1232          62 :          CPASSERT(do_ex)
    1233          62 :          CPASSERT(.NOT. use_virial)
    1234         212 :          IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1235             :          CALL Vh_1c_gg_integrals(qs_env, hartree_gs, hartree_local_gs%ecoul_1c, local_rho_set_t, para_env, tddft=.TRUE., &
    1236          62 :                                  local_rho_set_2nd=local_rho_set_gs, core_2nd=.FALSE.) ! n^core for GS potential
    1237             :          ! 1st to define integral space, 2nd for potential, integral contributions stored on local_rho_set_gs
    1238             :          CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_gs, para_env, calculate_forces=.TRUE., &
    1239          62 :                                     local_rho_set=local_rho_set_t, local_rho_set_2nd=local_rho_set_gs)
    1240          62 :          IF (debug_forces) THEN
    1241         200 :             fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1242          50 :             CALL para_env%sum(fodeb)
    1243          50 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVh[D^GS]PAWg0", fodeb
    1244             :          END IF
    1245             :       END IF
    1246         982 :       IF (gapw .OR. gapw_xc) THEN
    1247          76 :          IF (myfun /= xc_none) THEN
    1248             :             ! add 1c hard and soft XC contributions
    1249          74 :             NULLIFY (local_rho_set_vxc)
    1250          74 :             CALL local_rho_set_create(local_rho_set_vxc)
    1251             :             CALL allocate_rho_atom_internals(local_rho_set_vxc%rho_atom_set, atomic_kind_set, &
    1252          74 :                                              qs_kind_set, dft_control, para_env)
    1253             :             CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_vxc%rho_atom_set, &
    1254          74 :                                           qs_kind_set, oce, sab_orb, para_env)
    1255          74 :             CALL prepare_gapw_den(qs_env, local_rho_set_vxc, do_rho0=.FALSE.)
    1256             :             ! compute hard and soft atomic contributions
    1257             :             CALL calculate_vxc_atom(qs_env, .FALSE., exc1=hartree_gs, xc_section_external=xc_section, &
    1258          74 :                                     rho_atom_set_external=local_rho_set_vxc%rho_atom_set)
    1259             :          END IF ! myfun
    1260             :       END IF ! gapw
    1261             : 
    1262         982 :       CALL auxbas_pw_pool%create_pw(vhxc_rspace)
    1263             :       !
    1264             :       ! Stress-tensor: integration contribution direct term
    1265             :       ! int v_Hxc[n^in]*n^z
    1266         982 :       IF (use_virial) THEN
    1267        2184 :          pv_loc = virial%pv_virial
    1268             :       END IF
    1269             : 
    1270        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1271         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1272         982 :       IF (gapw .OR. gapw_xc) THEN
    1273             :          ! vtot = v_xc + v_hartree
    1274         152 :          DO ispin = 1, nspins
    1275          76 :             CALL pw_zero(vhxc_rspace)
    1276          76 :             IF (gapw) THEN
    1277          62 :                CALL pw_transfer(v_hartree_rspace_gs, vhxc_rspace)
    1278          14 :             ELSEIF (gapw_xc) THEN
    1279          14 :                CALL pw_transfer(vh_rspace, vhxc_rspace)
    1280             :             END IF
    1281             :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1282             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1283             :                                     qs_env=qs_env, gapw=gapw, &
    1284         152 :                                     calculate_forces=.TRUE.)
    1285             :          END DO
    1286          76 :          IF (myfun /= xc_none) THEN
    1287         148 :             DO ispin = 1, nspins
    1288          74 :                CALL pw_zero(vhxc_rspace)
    1289          74 :                CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1290             :                CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1291             :                                        hmat=scrm(ispin), pmat=mpa(ispin), &
    1292             :                                        qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1293         148 :                                        calculate_forces=.TRUE.)
    1294             :             END DO
    1295             :          END IF
    1296             :       ELSE ! original GPW with Standard Hartree as Potential
    1297        1908 :          DO ispin = 1, nspins
    1298        1002 :             CALL pw_transfer(vh_rspace, vhxc_rspace)
    1299        1002 :             CALL pw_axpy(vxc_rspace(ispin), vhxc_rspace)
    1300             :             CALL integrate_v_rspace(v_rspace=vhxc_rspace, &
    1301             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1302        1908 :                                     qs_env=qs_env, gapw=gapw, calculate_forces=.TRUE.)
    1303             :          END DO
    1304             :       END IF
    1305             : 
    1306         982 :       IF (debug_forces) THEN
    1307         224 :          fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1308          56 :          CALL para_env%sum(fodeb)
    1309          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]   ", fodeb
    1310             :       END IF
    1311         982 :       IF (debug_stress .AND. use_virial) THEN
    1312           0 :          stdeb = fconv*(virial%pv_virial - pv_loc)
    1313           0 :          CALL para_env%sum(stdeb)
    1314           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1315           0 :             'STRESS| INT Pz*dVhxc   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1316             :       END IF
    1317             : 
    1318         982 :       IF (gapw .OR. gapw_xc) THEN
    1319          76 :          CPASSERT(do_ex)
    1320             :          ! HXC term
    1321         244 :          IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1322          76 :          IF (gapw) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1323          62 :                                        rho_atom_external=local_rho_set_gs%rho_atom_set)
    1324          76 :          IF (myfun /= xc_none) CALL update_ks_atom(qs_env, scrm, mpa, forces=.TRUE., tddft=.FALSE., &
    1325          74 :                                                    rho_atom_external=local_rho_set_vxc%rho_atom_set)
    1326          76 :          IF (debug_forces) THEN
    1327         224 :             fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1328          56 :             CALL para_env%sum(fodeb)
    1329          56 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: (T+Dz)*dVhxc[D^GS]PAW ", fodeb
    1330             :          END IF
    1331             :          ! release local environments for GAPW
    1332          76 :          IF (myfun /= xc_none) THEN
    1333          74 :             IF (ASSOCIATED(local_rho_set_vxc)) CALL local_rho_set_release(local_rho_set_vxc)
    1334             :          END IF
    1335          76 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1336          76 :          IF (gapw) THEN
    1337          62 :             IF (ASSOCIATED(hartree_local_gs)) CALL hartree_local_release(hartree_local_gs)
    1338          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_gs)
    1339          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_gs)
    1340             :          END IF
    1341          76 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_gs)
    1342          76 :          IF (ASSOCIATED(rho_r_gs)) THEN
    1343         152 :          DO ispin = 1, nspins
    1344         152 :             CALL auxbas_pw_pool%give_back_pw(rho_r_gs(ispin))
    1345             :          END DO
    1346          76 :          DEALLOCATE (rho_r_gs)
    1347             :          END IF
    1348          76 :          IF (ASSOCIATED(rho_g_gs)) THEN
    1349         152 :          DO ispin = 1, nspins
    1350         152 :             CALL auxbas_pw_pool%give_back_pw(rho_g_gs(ispin))
    1351             :          END DO
    1352          76 :          DEALLOCATE (rho_g_gs)
    1353             :          END IF
    1354             :       END IF !gapw
    1355             : 
    1356         982 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1357          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1358          32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1359          32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1360          64 :          DO ispin = 1, nspins
    1361             :             CALL integrate_v_rspace(v_rspace=vtau_rspace(ispin), &
    1362             :                                     hmat=scrm(ispin), pmat=mpa(ispin), &
    1363             :                                     qs_env=qs_env, gapw=(gapw .OR. gapw_xc), &
    1364          96 :                                     calculate_forces=.TRUE., compute_tau=.TRUE.)
    1365             :          END DO
    1366          32 :          IF (debug_forces) THEN
    1367           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1368           0 :             CALL para_env%sum(fodeb)
    1369           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVxc_tau   ", fodeb
    1370             :          END IF
    1371          32 :          IF (debug_stress .AND. use_virial) THEN
    1372           0 :             stdeb = fconv*(virial%pv_virial - pv_loc)
    1373           0 :             CALL para_env%sum(stdeb)
    1374           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1375           0 :                'STRESS| INT Pz*dVxc_tau   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1376             :          END IF
    1377             :       END IF
    1378         982 :       CALL auxbas_pw_pool%give_back_pw(vhxc_rspace)
    1379             : 
    1380             :       ! Stress-tensor Pz*v_Hxc[Pin]
    1381         982 :       IF (use_virial) THEN
    1382        2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1383             :       END IF
    1384             : 
    1385             :       ! KG Embedding
    1386             :       ! calculate kinetic energy potential and integrate with response density
    1387         982 :       IF (dft_control%qs_control%do_kg) THEN
    1388          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1389             :              qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1390             : 
    1391          12 :             ekin_mol = 0.0_dp
    1392          12 :             IF (use_virial) THEN
    1393         104 :                pv_loc = virial%pv_virial
    1394             :             END IF
    1395             : 
    1396          12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1397             :             CALL kg_ekin_subset(qs_env=qs_env, &
    1398             :                                 ks_matrix=scrm, &
    1399             :                                 ekin_mol=ekin_mol, &
    1400             :                                 calc_force=.TRUE., &
    1401             :                                 do_kernel=.FALSE., &
    1402          12 :                                 pmat_ext=mpa)
    1403          12 :             IF (debug_forces) THEN
    1404           0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1405           0 :                CALL para_env%sum(fodeb)
    1406           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dVkg   ", fodeb
    1407             :             END IF
    1408          12 :             IF (debug_stress .AND. use_virial) THEN
    1409             :                !IF (iounit > 0) WRITE(iounit, *) &
    1410             :                !   "response_force | VOL 1st KG - v_KG[n_in]*n_z: ", ekin_mol
    1411           0 :                stdeb = 1.0_dp*fconv*ekin_mol
    1412           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1413           0 :                   'STRESS| VOL KG Pz*dVKG ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1414             : 
    1415           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1416           0 :                CALL para_env%sum(stdeb)
    1417           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1418           0 :                   'STRESS| INT KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1419             : 
    1420           0 :                stdeb = fconv*virial%pv_xc
    1421           0 :                CALL para_env%sum(stdeb)
    1422           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1423           0 :                   'STRESS| GGA KG Pz*dVKG  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1424             :             END IF
    1425          12 :             IF (use_virial) THEN
    1426             :                ! Direct integral contribution
    1427         104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1428             :             END IF
    1429             : 
    1430             :          END IF ! tnadd_method
    1431             :       END IF ! do_kg
    1432             : 
    1433         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1434             : 
    1435             :       !
    1436             :       ! Hartree potential of response density
    1437             :       !
    1438        7066 :       ALLOCATE (rhoz_r(nspins), rhoz_g(nspins))
    1439        2060 :       DO ispin = 1, nspins
    1440        1078 :          CALL auxbas_pw_pool%create_pw(rhoz_r(ispin))
    1441        2060 :          CALL auxbas_pw_pool%create_pw(rhoz_g(ispin))
    1442             :       END DO
    1443         982 :       CALL auxbas_pw_pool%create_pw(rhoz_tot_gspace)
    1444         982 :       CALL auxbas_pw_pool%create_pw(zv_hartree_rspace)
    1445         982 :       CALL auxbas_pw_pool%create_pw(zv_hartree_gspace)
    1446             : 
    1447         982 :       CALL pw_zero(rhoz_tot_gspace)
    1448        2060 :       DO ispin = 1, nspins
    1449             :          CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1450             :                                  rho=rhoz_r(ispin), rho_gspace=rhoz_g(ispin), &
    1451        1078 :                                  soft_valid=gapw)
    1452        2060 :          CALL pw_axpy(rhoz_g(ispin), rhoz_tot_gspace)
    1453             :       END DO
    1454         982 :       IF (gapw_xc) THEN
    1455          14 :          NULLIFY (tauz_r_xc)
    1456          98 :          ALLOCATE (rhoz_r_xc(nspins), rhoz_g_xc(nspins))
    1457          28 :          DO ispin = 1, nspins
    1458          14 :             CALL auxbas_pw_pool%create_pw(rhoz_r_xc(ispin))
    1459          28 :             CALL auxbas_pw_pool%create_pw(rhoz_g_xc(ispin))
    1460             :          END DO
    1461          28 :          DO ispin = 1, nspins
    1462             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1463             :                                     rho=rhoz_r_xc(ispin), rho_gspace=rhoz_g_xc(ispin), &
    1464          28 :                                     soft_valid=gapw_xc)
    1465             :          END DO
    1466             :       END IF
    1467             : 
    1468         982 :       IF (ASSOCIATED(vtau_rspace)) THEN
    1469          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1470             :          BLOCK
    1471             :             TYPE(pw_c1d_gs_type) :: work_g
    1472         128 :             ALLOCATE (tauz_r(nspins))
    1473          32 :             CALL auxbas_pw_pool%create_pw(work_g)
    1474          64 :             DO ispin = 1, nspins
    1475          32 :                CALL auxbas_pw_pool%create_pw(tauz_r(ispin))
    1476             :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1477             :                                        rho=tauz_r(ispin), rho_gspace=work_g, &
    1478          64 :                                        compute_tau=.TRUE.)
    1479             :             END DO
    1480          64 :             CALL auxbas_pw_pool%give_back_pw(work_g)
    1481             :          END BLOCK
    1482             :       END IF
    1483             : 
    1484             :       !
    1485         982 :       IF (PRESENT(rhopz_r)) THEN
    1486         864 :          DO ispin = 1, nspins
    1487         864 :             CALL pw_copy(rhoz_r(ispin), rhopz_r(ispin))
    1488             :          END DO
    1489             :       END IF
    1490             : 
    1491             :       ! Stress-tensor contribution second derivative
    1492             :       ! Volume : int v_H[n^z]*n_in
    1493             :       ! Volume : int epsilon_xc*n_z
    1494         982 :       IF (use_virial) THEN
    1495             : 
    1496         168 :          CALL get_qs_env(qs_env, rho=rho)
    1497         168 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace)
    1498             : 
    1499             :          ! Get the total input density in g-space [ions + electrons]
    1500         168 :          CALL calc_rho_tot_gspace(rho_tot_gspace, qs_env, rho)
    1501             : 
    1502         168 :          h_stress(:, :) = 0.0_dp
    1503             :          ! calculate associated hartree potential
    1504             :          ! This term appears twice in the derivation of the equations
    1505             :          ! v_H[n_in]*n_z and v_H[n_z]*n_in
    1506             :          ! due to symmetry we only need to call this routine once,
    1507             :          ! and count the Volume and Green function contribution
    1508             :          ! which is stored in h_stress twice
    1509             :          CALL pw_poisson_solve(poisson_env, &
    1510             :                                density=rhoz_tot_gspace, &     ! n_z
    1511             :                                ehartree=ehartree, &
    1512             :                                vhartree=zv_hartree_gspace, &  ! v_H[n_z]
    1513             :                                h_stress=h_stress, &
    1514         168 :                                aux_density=rho_tot_gspace)  ! n_in
    1515             : 
    1516         168 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace)
    1517             : 
    1518             :          ! Stress tensor Green function contribution
    1519        2184 :          virial%pv_ehartree = virial%pv_ehartree + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1520        2184 :          virial%pv_virial = virial%pv_virial + 2.0_dp*h_stress/REAL(para_env%num_pe, dp)
    1521             : 
    1522         168 :          IF (debug_stress) THEN
    1523           0 :             stdeb = -1.0_dp*fconv*ehartree
    1524           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1525           0 :                'STRESS| VOL 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1526           0 :             stdeb = -1.0_dp*fconv*ehartree
    1527           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1528           0 :                'STRESS| VOL 2nd v_H[n_in]*n_z  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1529           0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1530           0 :             CALL para_env%sum(stdeb)
    1531           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1532           0 :                'STRESS| GREEN 1st v_H[n_z]*n_in  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1533           0 :             stdeb = fconv*(h_stress/REAL(para_env%num_pe, dp))
    1534           0 :             CALL para_env%sum(stdeb)
    1535           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1536           0 :                'STRESS| GREEN 2nd v_H[n_in]*n_z   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1537             :          END IF
    1538             : 
    1539             :          ! Stress tensor volume term: \int v_xc[n_in]*n_z
    1540             :          ! vxc_rspace already scaled, we need to unscale it!
    1541         168 :          exc = 0.0_dp
    1542         336 :          DO ispin = 1, nspins
    1543             :             exc = exc + pw_integral_ab(rhoz_r(ispin), vxc_rspace(ispin))/ &
    1544         336 :                   vxc_rspace(ispin)%pw_grid%dvol
    1545             :          END DO
    1546         168 :          IF (ASSOCIATED(vtau_rspace)) THEN
    1547          32 :             DO ispin = 1, nspins
    1548             :                exc = exc + pw_integral_ab(tauz_r(ispin), vtau_rspace(ispin))/ &
    1549          32 :                      vtau_rspace(ispin)%pw_grid%dvol
    1550             :             END DO
    1551             :          END IF
    1552             : 
    1553             :          ! Add KG embedding correction
    1554         168 :          IF (dft_control%qs_control%do_kg) THEN
    1555          18 :             IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed .OR. &
    1556             :                 qs_env%kg_env%tnadd_method == kg_tnadd_embed_ri) THEN
    1557           8 :                exc = exc - ekin_mol
    1558             :             END IF
    1559             :          END IF
    1560             : 
    1561         168 :          IF (debug_stress) THEN
    1562           0 :             stdeb = -1.0_dp*fconv*exc
    1563           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1564           0 :                'STRESS| VOL 1st eps_XC[n_in]*n_z', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1565             :          END IF
    1566             : 
    1567             :       ELSE ! use_virial
    1568             : 
    1569             :          ! calculate associated hartree potential
    1570             :          ! contribution for both T and D^Z
    1571         814 :          IF (gapw) THEN
    1572          62 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rhoz_tot_gspace)
    1573             :          END IF
    1574         814 :          CALL pw_poisson_solve(poisson_env, rhoz_tot_gspace, ehartree, zv_hartree_gspace)
    1575             : 
    1576             :       END IF ! use virial
    1577         982 :       IF (gapw .OR. gapw_xc) THEN
    1578          76 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1579             :       END IF
    1580             : 
    1581        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%rho_core(1:3, 1)
    1582         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_ehartree
    1583         982 :       CALL pw_transfer(zv_hartree_gspace, zv_hartree_rspace)
    1584         982 :       CALL pw_scale(zv_hartree_rspace, zv_hartree_rspace%pw_grid%dvol)
    1585             :       ! Getting nuclear force contribution from the core charge density (not for GAPW)
    1586         982 :       CALL integrate_v_core_rspace(zv_hartree_rspace, qs_env)
    1587         982 :       IF (debug_forces) THEN
    1588         224 :          fodeb(1:3) = force(1)%rho_core(1:3, 1) - fodeb(1:3)
    1589          56 :          CALL para_env%sum(fodeb)
    1590          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(rhoz)*dncore ", fodeb
    1591             :       END IF
    1592         982 :       IF (debug_stress .AND. use_virial) THEN
    1593           0 :          stdeb = fconv*(virial%pv_ehartree - stdeb)
    1594           0 :          CALL para_env%sum(stdeb)
    1595           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1596           0 :             'STRESS| INT Vh(rhoz)*dncore   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1597             :       END IF
    1598             : 
    1599             :       !
    1600         982 :       IF (gapw_xc) THEN
    1601          14 :          CALL get_qs_env(qs_env=qs_env, rho_xc=rho_xc)
    1602             :       ELSE
    1603         968 :          CALL get_qs_env(qs_env=qs_env, rho=rho)
    1604             :       END IF
    1605         982 :       IF (dft_control%do_admm) THEN
    1606         232 :          CALL get_qs_env(qs_env, admm_env=admm_env)
    1607         232 :          xc_section => admm_env%xc_section_primary
    1608             :       ELSE
    1609         750 :          xc_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC")
    1610             :       END IF
    1611             : 
    1612         982 :       IF (use_virial) THEN
    1613        2184 :          virial%pv_xc = 0.0_dp
    1614             :       END IF
    1615             :       !
    1616         982 :       NULLIFY (v_xc, v_xc_tau)
    1617         982 :       IF (gapw_xc) THEN
    1618             :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1619             :                             rho=rho_xc, rho1_r=rhoz_r_xc, rho1_g=rhoz_g_xc, tau1_r=tauz_r_xc, &
    1620          14 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1621             :       ELSE
    1622             :          CALL create_kernel(qs_env, vxc=v_xc, vxc_tau=v_xc_tau, &
    1623             :                             rho=rho, rho1_r=rhoz_r, rho1_g=rhoz_g, tau1_r=tauz_r, &
    1624         968 :                             xc_section=xc_section, compute_virial=use_virial, virial_xc=virial%pv_xc)
    1625             :       END IF
    1626             : 
    1627         982 :       IF (gapw .OR. gapw_xc) THEN
    1628             :          !get local_rho_set for GS density and response potential / density
    1629          76 :          NULLIFY (local_rho_set_t)
    1630          76 :          CALL local_rho_set_create(local_rho_set_t)
    1631             :          CALL allocate_rho_atom_internals(local_rho_set_t%rho_atom_set, atomic_kind_set, &
    1632          76 :                                           qs_kind_set, dft_control, para_env)
    1633             :          CALL init_rho0(local_rho_set_t, qs_env, dft_control%qs_control%gapw_control, &
    1634          76 :                         zcore=0.0_dp)
    1635          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_t%rho0_mpole)
    1636             :          CALL calculate_rho_atom_coeff(qs_env, mpa(:), local_rho_set_t%rho_atom_set, &
    1637          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1638          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_t, do_rho0=gapw)
    1639          76 :          NULLIFY (local_rho_set_gs)
    1640          76 :          CALL local_rho_set_create(local_rho_set_gs)
    1641             :          CALL allocate_rho_atom_internals(local_rho_set_gs%rho_atom_set, atomic_kind_set, &
    1642          76 :                                           qs_kind_set, dft_control, para_env)
    1643          76 :          CALL init_rho0(local_rho_set_gs, qs_env, dft_control%qs_control%gapw_control)
    1644          76 :          CALL rho0_s_grid_create(pw_env, local_rho_set_gs%rho0_mpole)
    1645             :          CALL calculate_rho_atom_coeff(qs_env, matrix_p(:, 1), local_rho_set_gs%rho_atom_set, &
    1646          76 :                                        qs_kind_set, oce, sab_orb, para_env)
    1647          76 :          CALL prepare_gapw_den(qs_env, local_rho_set_gs, do_rho0=gapw)
    1648             :          ! compute response potential
    1649         532 :          ALLOCATE (rho_r_t(nspins), rho_g_t(nspins))
    1650         152 :          DO ispin = 1, nspins
    1651          76 :             CALL auxbas_pw_pool%create_pw(rho_r_t(ispin))
    1652         152 :             CALL auxbas_pw_pool%create_pw(rho_g_t(ispin))
    1653             :          END DO
    1654          76 :          CALL auxbas_pw_pool%create_pw(rho_tot_gspace_t)
    1655          76 :          total_rho_t = 0.0_dp
    1656          76 :          CALL pw_zero(rho_tot_gspace_t)
    1657         152 :          DO ispin = 1, nspins
    1658             :             CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpa(ispin)%matrix, &
    1659             :                                     rho=rho_r_t(ispin), &
    1660             :                                     rho_gspace=rho_g_t(ispin), &
    1661             :                                     soft_valid=gapw, &
    1662          76 :                                     total_rho=total_rho_t(ispin))
    1663         152 :             CALL pw_axpy(rho_g_t(ispin), rho_tot_gspace_t)
    1664             :          END DO
    1665             :          ! add rho0 contributions to response density (only for Coulomb) only for gapw
    1666          76 :          IF (gapw) THEN
    1667          62 :             CALL pw_axpy(local_rho_set_t%rho0_mpole%rho0_s_gs, rho_tot_gspace_t)
    1668             :             ! compute response Coulomb potential
    1669          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_gspace_t)
    1670          62 :             CALL auxbas_pw_pool%create_pw(v_hartree_rspace_t)
    1671          62 :             NULLIFY (hartree_local_t)
    1672          62 :             CALL hartree_local_create(hartree_local_t)
    1673          62 :             CALL init_coulomb_local(hartree_local_t, natom)
    1674          62 :             CALL pw_poisson_solve(poisson_env, rho_tot_gspace_t, hartree_t, v_hartree_gspace_t)
    1675          62 :             CALL pw_transfer(v_hartree_gspace_t, v_hartree_rspace_t)
    1676          62 :             CALL pw_scale(v_hartree_rspace_t, v_hartree_rspace_t%pw_grid%dvol)
    1677             :             !
    1678         212 :             IF (debug_forces) fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1)
    1679             :             CALL Vh_1c_gg_integrals(qs_env, hartree_t, hartree_local_t%ecoul_1c, local_rho_set_gs, para_env, tddft=.FALSE., &
    1680          62 :                                     local_rho_set_2nd=local_rho_set_t, core_2nd=.TRUE.) ! n^core for GS potential
    1681             :             CALL integrate_vhg0_rspace(qs_env, v_hartree_rspace_t, para_env, calculate_forces=.TRUE., &
    1682          62 :                                        local_rho_set=local_rho_set_gs, local_rho_set_2nd=local_rho_set_t)
    1683          62 :             IF (debug_forces) THEN
    1684         200 :                fodeb(1:3) = force(1)%g0s_Vh_elec(1:3, 1) - fodeb(1:3)
    1685          50 :                CALL para_env%sum(fodeb)
    1686          50 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Vh(T)*dncore PAWg0", fodeb
    1687             :             END IF
    1688             :          END IF !gapw
    1689             :       END IF !gapw
    1690             : 
    1691         982 :       IF (gapw .OR. gapw_xc) THEN
    1692             :          !GAPW compute atomic fxc contributions
    1693          76 :          IF (myfun /= xc_none) THEN
    1694             :             ! local_rho_set_f
    1695          74 :             NULLIFY (local_rho_set_f)
    1696          74 :             CALL local_rho_set_create(local_rho_set_f)
    1697             :             CALL allocate_rho_atom_internals(local_rho_set_f%rho_atom_set, atomic_kind_set, &
    1698          74 :                                              qs_kind_set, dft_control, para_env)
    1699             :             CALL calculate_rho_atom_coeff(qs_env, mpa, local_rho_set_f%rho_atom_set, &
    1700          74 :                                           qs_kind_set, oce, sab_orb, para_env)
    1701          74 :             CALL prepare_gapw_den(qs_env, local_rho_set_f, do_rho0=.FALSE.)
    1702             :             ! add hard and soft atomic contributions
    1703             :             CALL calculate_xc_2nd_deriv_atom(local_rho_set_gs%rho_atom_set, &
    1704             :                                              local_rho_set_f%rho_atom_set, &
    1705             :                                              qs_env, xc_section, para_env, &
    1706          74 :                                              do_tddft=.FALSE., do_triplet=.FALSE.)
    1707             :          END IF ! myfun
    1708             :       END IF
    1709             : 
    1710             :       ! Stress-tensor XC-kernel GGA contribution
    1711         982 :       IF (use_virial) THEN
    1712        2184 :          virial%pv_exc = virial%pv_exc + virial%pv_xc
    1713        2184 :          virial%pv_virial = virial%pv_virial + virial%pv_xc
    1714             :       END IF
    1715             : 
    1716         982 :       IF (debug_stress .AND. use_virial) THEN
    1717           0 :          stdeb = 1.0_dp*fconv*virial%pv_xc
    1718           0 :          CALL para_env%sum(stdeb)
    1719           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1720           0 :             'STRESS| GGA 2nd Pin*dK*rhoz', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1721             :       END IF
    1722             : 
    1723             :       ! Stress-tensor integral contribution of 2nd derivative terms
    1724         982 :       IF (use_virial) THEN
    1725        2184 :          pv_loc = virial%pv_virial
    1726             :       END IF
    1727             : 
    1728         982 :       CALL get_qs_env(qs_env=qs_env, rho=rho)
    1729         982 :       CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    1730         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1731             : 
    1732        2060 :       DO ispin = 1, nspins
    1733        2060 :          CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    1734             :       END DO
    1735         982 :       IF ((.NOT. (gapw)) .AND. (.NOT. gapw_xc)) THEN
    1736         906 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1737        1908 :          DO ispin = 1, nspins
    1738        1002 :             CALL pw_axpy(zv_hartree_rspace, v_xc(ispin)) ! Hartree potential of response density
    1739             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1740             :                                     v_rspace=v_xc(ispin), &
    1741             :                                     hmat=matrix_hz(ispin), &
    1742             :                                     pmat=matrix_p(ispin, 1), &
    1743             :                                     gapw=.FALSE., &
    1744        1908 :                                     calculate_forces=.TRUE.)
    1745             :          END DO
    1746         906 :          IF (debug_forces) THEN
    1747           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1748           0 :             CALL para_env%sum(fodeb)
    1749           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1750             :          END IF
    1751             :       ELSE
    1752         244 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1753          76 :          IF (myfun /= xc_none) THEN
    1754         148 :             DO ispin = 1, nspins
    1755             :                CALL integrate_v_rspace(qs_env=qs_env, &
    1756             :                                        v_rspace=v_xc(ispin), &
    1757             :                                        hmat=matrix_hz(ispin), &
    1758             :                                        pmat=matrix_p(ispin, 1), &
    1759             :                                        gapw=.TRUE., &
    1760         148 :                                        calculate_forces=.TRUE.)
    1761             :             END DO
    1762             :          END IF ! my_fun
    1763             :          ! Coulomb T+Dz
    1764         152 :          DO ispin = 1, nspins
    1765          76 :             CALL pw_zero(v_xc(ispin))
    1766          76 :             IF (gapw) THEN ! Hartree potential of response density
    1767          62 :                CALL pw_axpy(v_hartree_rspace_t, v_xc(ispin))
    1768          14 :             ELSEIF (gapw_xc) THEN
    1769          14 :                CALL pw_axpy(zv_hartree_rspace, v_xc(ispin))
    1770             :             END IF
    1771             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1772             :                                     v_rspace=v_xc(ispin), &
    1773             :                                     hmat=matrix_ht(ispin), &
    1774             :                                     pmat=matrix_p(ispin, 1), &
    1775             :                                     gapw=gapw, &
    1776         152 :                                     calculate_forces=.TRUE.)
    1777             :          END DO
    1778          76 :          IF (debug_forces) THEN
    1779         224 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1780          56 :             CALL para_env%sum(fodeb)
    1781          56 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKhxc*rhoz ", fodeb
    1782             :          END IF
    1783             :       END IF
    1784             : 
    1785         982 :       IF (gapw .OR. gapw_xc) THEN
    1786             :          ! compute hard and soft atomic contributions
    1787          76 :          IF (myfun /= xc_none) THEN
    1788         236 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1789             :             CALL update_ks_atom(qs_env, matrix_hz, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1790          74 :                                 rho_atom_external=local_rho_set_f%rho_atom_set)
    1791          74 :             IF (debug_forces) THEN
    1792         216 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1793          54 :                CALL para_env%sum(fodeb)
    1794          54 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKxc*(Dz+T) PAW", fodeb
    1795             :             END IF
    1796             :          END IF !myfun
    1797             :          ! Coulomb contributions
    1798          76 :          IF (gapw) THEN
    1799         212 :             IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    1800             :             CALL update_ks_atom(qs_env, matrix_ht, matrix_p, forces=.TRUE., tddft=.FALSE., &
    1801          62 :                                 rho_atom_external=local_rho_set_t%rho_atom_set)
    1802          62 :             IF (debug_forces) THEN
    1803         200 :                fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    1804          50 :                CALL para_env%sum(fodeb)
    1805          50 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: P^GS*dKh*(Dz+T) PAW", fodeb
    1806             :             END IF
    1807             :          END IF
    1808             :          ! add Coulomb and XC
    1809         152 :          DO ispin = 1, nspins
    1810         152 :             CALL dbcsr_add(matrix_hz(ispin)%matrix, matrix_ht(ispin)%matrix, 1.0_dp, 1.0_dp)
    1811             :          END DO
    1812             : 
    1813             :          ! release
    1814          76 :          IF (myfun /= xc_none) THEN
    1815          74 :             IF (ASSOCIATED(local_rho_set_f)) CALL local_rho_set_release(local_rho_set_f)
    1816             :          END IF
    1817          76 :          IF (ASSOCIATED(local_rho_set_t)) CALL local_rho_set_release(local_rho_set_t)
    1818          76 :          IF (ASSOCIATED(local_rho_set_gs)) CALL local_rho_set_release(local_rho_set_gs)
    1819          76 :          IF (gapw) THEN
    1820          62 :             IF (ASSOCIATED(hartree_local_t)) CALL hartree_local_release(hartree_local_t)
    1821          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_gspace_t)
    1822          62 :             CALL auxbas_pw_pool%give_back_pw(v_hartree_rspace_t)
    1823             :          END IF
    1824          76 :          CALL auxbas_pw_pool%give_back_pw(rho_tot_gspace_t)
    1825         152 :          DO ispin = 1, nspins
    1826          76 :             CALL auxbas_pw_pool%give_back_pw(rho_r_t(ispin))
    1827         152 :             CALL auxbas_pw_pool%give_back_pw(rho_g_t(ispin))
    1828             :          END DO
    1829          76 :          DEALLOCATE (rho_r_t, rho_g_t)
    1830             :       END IF ! gapw
    1831             : 
    1832         982 :       IF (debug_stress .AND. use_virial) THEN
    1833           0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1834           0 :          CALL para_env%sum(stdeb)
    1835           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1836           0 :             'STRESS| INT 2nd f_Hxc[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1837             :       END IF
    1838             :       !
    1839         982 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1840          32 :          CPASSERT(.NOT. (gapw .OR. gapw_xc))
    1841          32 :          IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1842          32 :          IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    1843          64 :          DO ispin = 1, nspins
    1844          32 :             CALL pw_scale(v_xc_tau(ispin), v_xc_tau(ispin)%pw_grid%dvol)
    1845             :             CALL integrate_v_rspace(qs_env=qs_env, &
    1846             :                                     v_rspace=v_xc_tau(ispin), &
    1847             :                                     hmat=matrix_hz(ispin), &
    1848             :                                     pmat=matrix_p(ispin, 1), &
    1849             :                                     compute_tau=.TRUE., &
    1850             :                                     gapw=(gapw .OR. gapw_xc), &
    1851          96 :                                     calculate_forces=.TRUE.)
    1852             :          END DO
    1853          32 :          IF (debug_forces) THEN
    1854           0 :             fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1855           0 :             CALL para_env%sum(fodeb)
    1856           0 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dKtau*tauz ", fodeb
    1857             :          END IF
    1858             :       END IF
    1859         982 :       IF (debug_stress .AND. use_virial) THEN
    1860           0 :          stdeb = fconv*(virial%pv_virial - stdeb)
    1861           0 :          CALL para_env%sum(stdeb)
    1862           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1863           0 :             'STRESS| INT 2nd f_xctau[Pz]*Pin', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1864             :       END IF
    1865             :       ! Stress-tensor integral contribution of 2nd derivative terms
    1866         982 :       IF (use_virial) THEN
    1867        2184 :          virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1868             :       END IF
    1869             : 
    1870             :       ! KG Embedding
    1871             :       ! calculate kinetic energy kernel, folded with response density for partial integration
    1872         982 :       IF (dft_control%qs_control%do_kg) THEN
    1873          24 :          IF (qs_env%kg_env%tnadd_method == kg_tnadd_embed) THEN
    1874          12 :             ekin_mol = 0.0_dp
    1875          12 :             IF (use_virial) THEN
    1876         104 :                pv_loc = virial%pv_virial
    1877             :             END IF
    1878             : 
    1879          12 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    1880         108 :             IF (use_virial) virial%pv_xc = 0.0_dp
    1881             :             CALL kg_ekin_subset(qs_env=qs_env, &
    1882             :                                 ks_matrix=matrix_hz, &
    1883             :                                 ekin_mol=ekin_mol, &
    1884             :                                 calc_force=.TRUE., &
    1885             :                                 do_kernel=.TRUE., &
    1886          12 :                                 pmat_ext=matrix_pz)
    1887             : 
    1888          12 :             IF (debug_forces) THEN
    1889           0 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    1890           0 :                CALL para_env%sum(fodeb)
    1891           0 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*d(Kkg)*rhoz ", fodeb
    1892             :             END IF
    1893          12 :             IF (debug_stress .AND. use_virial) THEN
    1894           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    1895           0 :                CALL para_env%sum(stdeb)
    1896           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1897           0 :                   'STRESS| INT KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1898             : 
    1899           0 :                stdeb = fconv*(virial%pv_xc)
    1900           0 :                CALL para_env%sum(stdeb)
    1901           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    1902           0 :                   'STRESS| GGA KG Pin*d(KKG)*rhoz    ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    1903             :             END IF
    1904             : 
    1905             :             ! Stress tensor
    1906          12 :             IF (use_virial) THEN
    1907             :                ! XC-kernel Integral contribution
    1908         104 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    1909             : 
    1910             :                ! XC-kernel GGA contribution
    1911         104 :                virial%pv_exc = virial%pv_exc - virial%pv_xc
    1912         104 :                virial%pv_virial = virial%pv_virial - virial%pv_xc
    1913         104 :                virial%pv_xc = 0.0_dp
    1914             :             END IF
    1915             :          END IF
    1916             :       END IF
    1917         982 :       CALL auxbas_pw_pool%give_back_pw(rhoz_tot_gspace)
    1918         982 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_gspace)
    1919         982 :       CALL auxbas_pw_pool%give_back_pw(zv_hartree_rspace)
    1920        2060 :       DO ispin = 1, nspins
    1921        1078 :          CALL auxbas_pw_pool%give_back_pw(rhoz_r(ispin))
    1922        1078 :          CALL auxbas_pw_pool%give_back_pw(rhoz_g(ispin))
    1923        2060 :          CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    1924             :       END DO
    1925         982 :       DEALLOCATE (rhoz_r, rhoz_g, v_xc)
    1926         982 :       IF (gapw_xc) THEN
    1927          28 :          DO ispin = 1, nspins
    1928          14 :             CALL auxbas_pw_pool%give_back_pw(rhoz_r_xc(ispin))
    1929          28 :             CALL auxbas_pw_pool%give_back_pw(rhoz_g_xc(ispin))
    1930             :          END DO
    1931          14 :          DEALLOCATE (rhoz_r_xc, rhoz_g_xc)
    1932             :       END IF
    1933         982 :       IF (ASSOCIATED(v_xc_tau)) THEN
    1934          64 :       DO ispin = 1, nspins
    1935          32 :          CALL auxbas_pw_pool%give_back_pw(tauz_r(ispin))
    1936          64 :          CALL auxbas_pw_pool%give_back_pw(v_xc_tau(ispin))
    1937             :       END DO
    1938          32 :       DEALLOCATE (tauz_r, v_xc_tau)
    1939             :       END IF
    1940         982 :       IF (debug_forces) THEN
    1941         168 :          ALLOCATE (ftot3(3, natom))
    1942          56 :          CALL total_qs_force(ftot3, force, atomic_kind_set)
    1943         224 :          fodeb(1:3) = ftot3(1:3, 1) - ftot2(1:3, 1)
    1944          56 :          CALL para_env%sum(fodeb)
    1945          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*V(rhoz)", fodeb
    1946             :       END IF
    1947         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    1948         982 :       CALL dbcsr_deallocate_matrix_set(matrix_ht)
    1949             : 
    1950             :       ! -----------------------------------------
    1951             :       ! Apply ADMM exchange correction
    1952             :       ! -----------------------------------------
    1953             : 
    1954         982 :       IF (dft_control%do_admm) THEN
    1955             :          ! volume term
    1956         232 :          exc_aux_fit = 0.0_dp
    1957             : 
    1958         232 :          IF (qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none) THEN
    1959             :             ! nothing to do
    1960          98 :             NULLIFY (mpz, mhz, mhx, mhy)
    1961             :          ELSE
    1962             :             ! add ADMM xc_section_aux terms: Pz*Vxc + P0*K0[rhoz]
    1963         134 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    1964             :             CALL get_admm_env(admm_env, rho_aux_fit=rho_aux_fit, matrix_s_aux_fit=scrm, &
    1965         134 :                               task_list_aux_fit=task_list_aux_fit)
    1966             :             !
    1967         134 :             NULLIFY (mpz, mhz, mhx, mhy)
    1968         134 :             CALL dbcsr_allocate_matrix_set(mhx, nspins, 1)
    1969         134 :             CALL dbcsr_allocate_matrix_set(mhy, nspins, 1)
    1970         134 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    1971         276 :             DO ispin = 1, nspins
    1972         142 :                ALLOCATE (mhx(ispin, 1)%matrix)
    1973         142 :                CALL dbcsr_create(mhx(ispin, 1)%matrix, template=scrm(1)%matrix)
    1974         142 :                CALL dbcsr_copy(mhx(ispin, 1)%matrix, scrm(1)%matrix)
    1975         142 :                CALL dbcsr_set(mhx(ispin, 1)%matrix, 0.0_dp)
    1976         142 :                ALLOCATE (mhy(ispin, 1)%matrix)
    1977         142 :                CALL dbcsr_create(mhy(ispin, 1)%matrix, template=scrm(1)%matrix)
    1978         142 :                CALL dbcsr_copy(mhy(ispin, 1)%matrix, scrm(1)%matrix)
    1979         142 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    1980         142 :                ALLOCATE (mpz(ispin, 1)%matrix)
    1981         276 :                IF (do_ex) THEN
    1982          86 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=p_env%p1_admm(ispin)%matrix)
    1983          86 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    1984             :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    1985          86 :                                  1.0_dp, 1.0_dp)
    1986             :                ELSE
    1987          56 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=matrix_pz_admm(ispin)%matrix)
    1988          56 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    1989             :                END IF
    1990             :             END DO
    1991             :             !
    1992         134 :             xc_section => admm_env%xc_section_aux
    1993             :             ! Stress-tensor: integration contribution direct term
    1994             :             ! int Pz*v_xc[rho_admm]
    1995         134 :             IF (use_virial) THEN
    1996         260 :                pv_loc = virial%pv_virial
    1997             :             END IF
    1998             : 
    1999         134 :             basis_type = "AUX_FIT"
    2000         134 :             task_list => task_list_aux_fit
    2001         134 :             IF (admm_env%do_gapw) THEN
    2002           4 :                basis_type = "AUX_FIT_SOFT"
    2003           4 :                task_list => admm_env%admm_gapw_env%task_list
    2004             :             END IF
    2005             :             !
    2006         146 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    2007         134 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    2008         276 :             DO ispin = 1, nspins
    2009             :                CALL integrate_v_rspace(v_rspace=vadmm_rspace(ispin), &
    2010             :                                        hmat=mhx(ispin, 1), pmat=mpz(ispin, 1), &
    2011             :                                        qs_env=qs_env, calculate_forces=.TRUE., &
    2012         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2013             :             END DO
    2014         134 :             IF (debug_forces) THEN
    2015          16 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    2016           4 :                CALL para_env%sum(fodeb)
    2017           4 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)", fodeb
    2018             :             END IF
    2019         134 :             IF (debug_stress .AND. use_virial) THEN
    2020           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    2021           0 :                CALL para_env%sum(stdeb)
    2022           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2023           0 :                   'STRESS| INT 1st Pz*dVxc(rho_admm)   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2024             :             END IF
    2025             :             ! Stress-tensor Pz_admm*v_xc[rho_admm]
    2026         134 :             IF (use_virial) THEN
    2027         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2028             :             END IF
    2029             :             !
    2030         134 :             IF (admm_env%do_gapw) THEN
    2031           4 :                CALL get_admm_env(admm_env, sab_aux_fit=sab_aux_fit)
    2032          16 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    2033             :                CALL update_ks_atom(qs_env, mhx(:, 1), mpz(:, 1), forces=.TRUE., tddft=.FALSE., &
    2034             :                                    rho_atom_external=admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    2035             :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    2036             :                                    oce_external=admm_env%admm_gapw_env%oce, &
    2037           4 :                                    sab_external=sab_aux_fit)
    2038           4 :                IF (debug_forces) THEN
    2039          16 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    2040           4 :                   CALL para_env%sum(fodeb)
    2041           4 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*Vxc(rho_admm)PAW", fodeb
    2042             :                END IF
    2043             :             END IF
    2044             :             !
    2045         134 :             NULLIFY (rho_g_aux, rho_r_aux, tau_r_aux)
    2046         134 :             CALL qs_rho_get(rho_aux_fit, rho_r=rho_r_aux, rho_g=rho_g_aux, tau_r=tau_r_aux)
    2047             :             ! rhoz_aux
    2048         134 :             NULLIFY (rhoz_g_aux, rhoz_r_aux)
    2049         954 :             ALLOCATE (rhoz_r_aux(nspins), rhoz_g_aux(nspins))
    2050         276 :             DO ispin = 1, nspins
    2051         142 :                CALL auxbas_pw_pool%create_pw(rhoz_r_aux(ispin))
    2052         276 :                CALL auxbas_pw_pool%create_pw(rhoz_g_aux(ispin))
    2053             :             END DO
    2054         276 :             DO ispin = 1, nspins
    2055             :                CALL calculate_rho_elec(ks_env=ks_env, matrix_p=mpz(ispin, 1)%matrix, &
    2056             :                                        rho=rhoz_r_aux(ispin), rho_gspace=rhoz_g_aux(ispin), &
    2057         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2058             :             END DO
    2059             :             !
    2060             :             ! Add ADMM volume contribution to stress tensor
    2061         134 :             IF (use_virial) THEN
    2062             : 
    2063             :                ! Stress tensor volume term: \int v_xc[n_in_admm]*n_z_admm
    2064             :                ! vadmm_rspace already scaled, we need to unscale it!
    2065          40 :                DO ispin = 1, nspins
    2066             :                   exc_aux_fit = exc_aux_fit + pw_integral_ab(rhoz_r_aux(ispin), vadmm_rspace(ispin))/ &
    2067          40 :                                 vadmm_rspace(ispin)%pw_grid%dvol
    2068             :                END DO
    2069             : 
    2070          20 :                IF (debug_stress) THEN
    2071           0 :                   stdeb = -1.0_dp*fconv*exc_aux_fit
    2072           0 :                   IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T43,2(1X,ES19.11))") &
    2073           0 :                      'STRESS| VOL 1st eps_XC[n_in_admm]*n_z_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2074             :                END IF
    2075             : 
    2076             :             END IF
    2077             :             !
    2078         134 :             NULLIFY (v_xc)
    2079             : 
    2080         374 :             IF (use_virial) virial%pv_xc = 0.0_dp
    2081             : 
    2082             :             CALL create_kernel(qs_env=qs_env, &
    2083             :                                vxc=v_xc, &
    2084             :                                vxc_tau=v_xc_tau, &
    2085             :                                rho=rho_aux_fit, &
    2086             :                                rho1_r=rhoz_r_aux, &
    2087             :                                rho1_g=rhoz_g_aux, &
    2088             :                                tau1_r=tau_r_aux, &
    2089             :                                xc_section=xc_section, &
    2090             :                                compute_virial=use_virial, &
    2091         134 :                                virial_xc=virial%pv_xc)
    2092             : 
    2093             :             ! Stress-tensor ADMM-kernel GGA contribution
    2094         134 :             IF (use_virial) THEN
    2095         260 :                virial%pv_exc = virial%pv_exc + virial%pv_xc
    2096         260 :                virial%pv_virial = virial%pv_virial + virial%pv_xc
    2097             :             END IF
    2098             : 
    2099         134 :             IF (debug_stress .AND. use_virial) THEN
    2100           0 :                stdeb = 1.0_dp*fconv*virial%pv_xc
    2101           0 :                CALL para_env%sum(stdeb)
    2102           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2103           0 :                   'STRESS| GGA 2nd Pin_admm*dK*rhoz_admm', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2104             :             END IF
    2105             :             !
    2106         134 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2107             :             ! Stress-tensor Pin*dK*rhoz_admm
    2108         134 :             IF (use_virial) THEN
    2109         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2110             :             END IF
    2111         146 :             IF (debug_forces) fodeb(1:3) = force(1)%rho_elec(1:3, 1)
    2112         134 :             IF (debug_stress .AND. use_virial) stdeb = virial%pv_virial
    2113         276 :             DO ispin = 1, nspins
    2114         142 :                CALL dbcsr_set(mhy(ispin, 1)%matrix, 0.0_dp)
    2115         142 :                CALL pw_scale(v_xc(ispin), v_xc(ispin)%pw_grid%dvol)
    2116             :                CALL integrate_v_rspace(qs_env=qs_env, v_rspace=v_xc(ispin), &
    2117             :                                        hmat=mhy(ispin, 1), pmat=matrix_p(ispin, 1), &
    2118             :                                        calculate_forces=.TRUE., &
    2119         276 :                                        basis_type=basis_type, task_list_external=task_list)
    2120             :             END DO
    2121         134 :             IF (debug_forces) THEN
    2122          16 :                fodeb(1:3) = force(1)%rho_elec(1:3, 1) - fodeb(1:3)
    2123           4 :                CALL para_env%sum(fodeb)
    2124           4 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm ", fodeb
    2125             :             END IF
    2126         134 :             IF (debug_stress .AND. use_virial) THEN
    2127           0 :                stdeb = fconv*(virial%pv_virial - pv_loc)
    2128           0 :                CALL para_env%sum(stdeb)
    2129           0 :                IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2130           0 :                   'STRESS| INT 2nd Pin*dK*rhoz_admm   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2131             :             END IF
    2132             :             ! Stress-tensor Pin*dK*rhoz_admm
    2133         134 :             IF (use_virial) THEN
    2134         260 :                virial%pv_ehartree = virial%pv_ehartree + (virial%pv_virial - pv_loc)
    2135             :             END IF
    2136         276 :             DO ispin = 1, nspins
    2137         142 :                CALL auxbas_pw_pool%give_back_pw(v_xc(ispin))
    2138         142 :                CALL auxbas_pw_pool%give_back_pw(rhoz_r_aux(ispin))
    2139         276 :                CALL auxbas_pw_pool%give_back_pw(rhoz_g_aux(ispin))
    2140             :             END DO
    2141         134 :             DEALLOCATE (v_xc, rhoz_r_aux, rhoz_g_aux)
    2142             :             !
    2143         134 :             IF (admm_env%do_gapw) THEN
    2144           4 :                CALL local_rho_set_create(local_rhoz_set_admm)
    2145             :                CALL allocate_rho_atom_internals(local_rhoz_set_admm%rho_atom_set, atomic_kind_set, &
    2146           4 :                                                 admm_env%admm_gapw_env%admm_kind_set, dft_control, para_env)
    2147             :                CALL calculate_rho_atom_coeff(qs_env, mpz(:, 1), local_rhoz_set_admm%rho_atom_set, &
    2148             :                                              admm_env%admm_gapw_env%admm_kind_set, &
    2149           4 :                                              admm_env%admm_gapw_env%oce, sab_aux_fit, para_env)
    2150             :                CALL prepare_gapw_den(qs_env, local_rho_set=local_rhoz_set_admm, &
    2151           4 :                                      do_rho0=.FALSE., kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2152             :                !compute the potential due to atomic densities
    2153             :                CALL calculate_xc_2nd_deriv_atom(admm_env%admm_gapw_env%local_rho_set%rho_atom_set, &
    2154             :                                                 local_rhoz_set_admm%rho_atom_set, &
    2155             :                                                 qs_env, xc_section, para_env, do_tddft=.FALSE., do_triplet=.FALSE., &
    2156           4 :                                                 kind_set_external=admm_env%admm_gapw_env%admm_kind_set)
    2157             :                !
    2158          16 :                IF (debug_forces) fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1)
    2159             :                CALL update_ks_atom(qs_env, mhy(:, 1), matrix_p(:, 1), forces=.TRUE., tddft=.FALSE., &
    2160             :                                    rho_atom_external=local_rhoz_set_admm%rho_atom_set, &
    2161             :                                    kind_set_external=admm_env%admm_gapw_env%admm_kind_set, &
    2162             :                                    oce_external=admm_env%admm_gapw_env%oce, &
    2163           4 :                                    sab_external=sab_aux_fit)
    2164           4 :                IF (debug_forces) THEN
    2165          16 :                   fodeb(1:3) = force(1)%Vhxc_atom(1:3, 1) - fodeb(1:3)
    2166           4 :                   CALL para_env%sum(fodeb)
    2167           4 :                   IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pin*dK*rhoz_admm[PAW] ", fodeb
    2168             :                END IF
    2169           4 :                CALL local_rho_set_release(local_rhoz_set_admm)
    2170             :             END IF
    2171             :             !
    2172         134 :             nao = admm_env%nao_orb
    2173         134 :             nao_aux = admm_env%nao_aux_fit
    2174         134 :             ALLOCATE (dbwork)
    2175         134 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2176         276 :             DO ispin = 1, nspins
    2177             :                CALL cp_dbcsr_sm_fm_multiply(mhy(ispin, 1)%matrix, admm_env%A, &
    2178         142 :                                             admm_env%work_aux_orb, nao)
    2179             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2180             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2181         142 :                                   admm_env%work_orb_orb)
    2182         142 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2183         142 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2184         142 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2185         276 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2186             :             END DO
    2187         134 :             CALL dbcsr_release(dbwork)
    2188         134 :             DEALLOCATE (dbwork)
    2189         134 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2190             :          END IF ! qs_env%admm_env%aux_exch_func == do_admm_aux_exch_func_none
    2191             :       END IF ! do_admm
    2192             : 
    2193             :       ! -----------------------------------------
    2194             :       !  HFX
    2195             :       ! -----------------------------------------
    2196             : 
    2197             :       ! HFX
    2198         982 :       hfx_section => section_vals_get_subs_vals(xc_section, "HF")
    2199         982 :       CALL section_vals_get(hfx_section, explicit=do_hfx)
    2200         982 :       IF (do_hfx) THEN
    2201         436 :          CALL section_vals_get(hfx_section, n_repetition=n_rep_hf)
    2202         436 :          CPASSERT(n_rep_hf == 1)
    2203             :          CALL section_vals_val_get(hfx_section, "TREAT_LSD_IN_CORE", l_val=hfx_treat_lsd_in_core, &
    2204         436 :                                    i_rep_section=1)
    2205         436 :          mspin = 1
    2206         436 :          IF (hfx_treat_lsd_in_core) mspin = nspins
    2207        1252 :          IF (use_virial) virial%pv_fock_4c = 0.0_dp
    2208             :          !
    2209             :          CALL get_qs_env(qs_env=qs_env, rho=rho, x_data=x_data, &
    2210         436 :                          s_mstruct_changed=s_mstruct_changed)
    2211         436 :          distribute_fock_matrix = .TRUE.
    2212             : 
    2213             :          ! -----------------------------------------
    2214             :          !  HFX-ADMM
    2215             :          ! -----------------------------------------
    2216         436 :          IF (dft_control%do_admm) THEN
    2217         232 :             CALL get_qs_env(qs_env=qs_env, admm_env=admm_env)
    2218         232 :             CALL get_admm_env(admm_env, matrix_s_aux_fit=scrm, rho_aux_fit=rho_aux_fit)
    2219         232 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2220         232 :             NULLIFY (mpz, mhz, mpd, mhd)
    2221         232 :             CALL dbcsr_allocate_matrix_set(mpz, nspins, 1)
    2222         232 :             CALL dbcsr_allocate_matrix_set(mhz, nspins, 1)
    2223         232 :             CALL dbcsr_allocate_matrix_set(mpd, nspins, 1)
    2224         232 :             CALL dbcsr_allocate_matrix_set(mhd, nspins, 1)
    2225         484 :             DO ispin = 1, nspins
    2226         252 :                ALLOCATE (mhz(ispin, 1)%matrix, mhd(ispin, 1)%matrix)
    2227         252 :                CALL dbcsr_create(mhz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2228         252 :                CALL dbcsr_create(mhd(ispin, 1)%matrix, template=scrm(1)%matrix)
    2229         252 :                CALL dbcsr_copy(mhz(ispin, 1)%matrix, scrm(1)%matrix)
    2230         252 :                CALL dbcsr_copy(mhd(ispin, 1)%matrix, scrm(1)%matrix)
    2231         252 :                CALL dbcsr_set(mhz(ispin, 1)%matrix, 0.0_dp)
    2232         252 :                CALL dbcsr_set(mhd(ispin, 1)%matrix, 0.0_dp)
    2233         252 :                ALLOCATE (mpz(ispin, 1)%matrix)
    2234         252 :                IF (do_ex) THEN
    2235         148 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2236         148 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, p_env%p1_admm(ispin)%matrix)
    2237             :                   CALL dbcsr_add(mpz(ispin, 1)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2238         148 :                                  1.0_dp, 1.0_dp)
    2239             :                ELSE
    2240         104 :                   CALL dbcsr_create(mpz(ispin, 1)%matrix, template=scrm(1)%matrix)
    2241         104 :                   CALL dbcsr_copy(mpz(ispin, 1)%matrix, matrix_pz_admm(ispin)%matrix)
    2242             :                END IF
    2243         484 :                mpd(ispin, 1)%matrix => matrix_p(ispin, 1)%matrix
    2244             :             END DO
    2245             :             !
    2246         232 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2247             : 
    2248             :                eh1 = 0.0_dp
    2249             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2250             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2251           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2252             : 
    2253             :                eh1 = 0.0_dp
    2254             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhd, eh1, rho_ao=mpd, &
    2255             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2256           6 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2257             : 
    2258             :             ELSE
    2259         452 :                DO ispin = 1, mspin
    2260             :                   eh1 = 0.0
    2261             :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2262             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2263         452 :                                              ispin=ispin)
    2264             :                END DO
    2265         452 :                DO ispin = 1, mspin
    2266             :                   eh1 = 0.0
    2267             :                   CALL integrate_four_center(qs_env, x_data, mhd, eh1, mpd, hfx_section, &
    2268             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2269         452 :                                              ispin=ispin)
    2270             :                END DO
    2271             :             END IF
    2272             :             !
    2273         232 :             CALL get_qs_env(qs_env, admm_env=admm_env)
    2274         232 :             CPASSERT(ASSOCIATED(admm_env%work_aux_orb))
    2275         232 :             CPASSERT(ASSOCIATED(admm_env%work_orb_orb))
    2276         232 :             nao = admm_env%nao_orb
    2277         232 :             nao_aux = admm_env%nao_aux_fit
    2278         232 :             ALLOCATE (dbwork)
    2279         232 :             CALL dbcsr_create(dbwork, template=matrix_hz(1)%matrix)
    2280         484 :             DO ispin = 1, nspins
    2281             :                CALL cp_dbcsr_sm_fm_multiply(mhz(ispin, 1)%matrix, admm_env%A, &
    2282         252 :                                             admm_env%work_aux_orb, nao)
    2283             :                CALL parallel_gemm('T', 'N', nao, nao, nao_aux, &
    2284             :                                   1.0_dp, admm_env%A, admm_env%work_aux_orb, 0.0_dp, &
    2285         252 :                                   admm_env%work_orb_orb)
    2286         252 :                CALL dbcsr_copy(dbwork, matrix_hz(ispin)%matrix)
    2287         252 :                CALL dbcsr_set(dbwork, 0.0_dp)
    2288         252 :                CALL copy_fm_to_dbcsr(admm_env%work_orb_orb, dbwork, keep_sparsity=.TRUE.)
    2289         484 :                CALL dbcsr_add(matrix_hz(ispin)%matrix, dbwork, 1.0_dp, 1.0_dp)
    2290             :             END DO
    2291         232 :             CALL dbcsr_release(dbwork)
    2292         232 :             DEALLOCATE (dbwork)
    2293             :             ! derivatives Tr (Pz [A(T)H dA/dR])
    2294         250 :             IF (debug_forces) fodeb(1:3) = force(1)%overlap_admm(1:3, 1)
    2295         232 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2296         276 :                DO ispin = 1, nspins
    2297         142 :                   CALL dbcsr_add(mhd(ispin, 1)%matrix, mhx(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2298         276 :                   CALL dbcsr_add(mhz(ispin, 1)%matrix, mhy(ispin, 1)%matrix, 1.0_dp, 1.0_dp)
    2299             :                END DO
    2300             :             END IF
    2301         232 :             CALL qs_rho_get(rho, rho_ao=matrix_pd)
    2302         232 :             CALL admm_projection_derivative(qs_env, mhd(:, 1), mpa)
    2303         232 :             CALL admm_projection_derivative(qs_env, mhz(:, 1), matrix_pd)
    2304         232 :             IF (debug_forces) THEN
    2305          24 :                fodeb(1:3) = force(1)%overlap_admm(1:3, 1) - fodeb(1:3)
    2306           6 :                CALL para_env%sum(fodeb)
    2307           6 :                IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx*S' ", fodeb
    2308             :             END IF
    2309         232 :             CALL dbcsr_deallocate_matrix_set(mpz)
    2310         232 :             CALL dbcsr_deallocate_matrix_set(mhz)
    2311         232 :             CALL dbcsr_deallocate_matrix_set(mhd)
    2312         232 :             IF (ASSOCIATED(mhx) .AND. ASSOCIATED(mhy)) THEN
    2313         134 :                CALL dbcsr_deallocate_matrix_set(mhx)
    2314         134 :                CALL dbcsr_deallocate_matrix_set(mhy)
    2315             :             END IF
    2316         232 :             DEALLOCATE (mpd)
    2317             :          ELSE
    2318             :             ! -----------------------------------------
    2319             :             !  conventional HFX
    2320             :             ! -----------------------------------------
    2321        1876 :             ALLOCATE (mpz(nspins, 1), mhz(nspins, 1))
    2322         428 :             DO ispin = 1, nspins
    2323         224 :                mhz(ispin, 1)%matrix => matrix_hz(ispin)%matrix
    2324         428 :                mpz(ispin, 1)%matrix => mpa(ispin)%matrix
    2325             :             END DO
    2326             : 
    2327         204 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2328             : 
    2329             :                eh1 = 0.0_dp
    2330             :                CALL hfx_ri_update_ks(qs_env, x_data(1, 1)%ri_data, mhz, eh1, rho_ao=mpz, &
    2331             :                                      geometry_did_change=s_mstruct_changed, nspins=nspins, &
    2332          18 :                                      hf_fraction=x_data(1, 1)%general_parameter%fraction)
    2333             :             ELSE
    2334         372 :                DO ispin = 1, mspin
    2335             :                   eh1 = 0.0
    2336             :                   CALL integrate_four_center(qs_env, x_data, mhz, eh1, mpz, hfx_section, &
    2337             :                                              para_env, s_mstruct_changed, 1, distribute_fock_matrix, &
    2338         372 :                                              ispin=ispin)
    2339             :                END DO
    2340             :             END IF
    2341         204 :             DEALLOCATE (mhz, mpz)
    2342             :          END IF
    2343             : 
    2344             :          ! -----------------------------------------
    2345             :          !  HFX FORCES
    2346             :          ! -----------------------------------------
    2347             : 
    2348         436 :          resp_only = .TRUE.
    2349         490 :          IF (debug_forces) fodeb(1:3) = force(1)%fock_4c(1:3, 1)
    2350         436 :          IF (dft_control%do_admm) THEN
    2351             :             ! -----------------------------------------
    2352             :             !  HFX-ADMM FORCES
    2353             :             ! -----------------------------------------
    2354         232 :             CALL qs_rho_get(rho_aux_fit, rho_ao_kp=matrix_p)
    2355         232 :             NULLIFY (matrix_pza)
    2356         232 :             CALL dbcsr_allocate_matrix_set(matrix_pza, nspins)
    2357         484 :             DO ispin = 1, nspins
    2358         252 :                ALLOCATE (matrix_pza(ispin)%matrix)
    2359         484 :                IF (do_ex) THEN
    2360         148 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=p_env%p1_admm(ispin)%matrix)
    2361         148 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, p_env%p1_admm(ispin)%matrix)
    2362             :                   CALL dbcsr_add(matrix_pza(ispin)%matrix, ex_env%matrix_pe_admm(ispin)%matrix, &
    2363         148 :                                  1.0_dp, 1.0_dp)
    2364             :                ELSE
    2365         104 :                   CALL dbcsr_create(matrix_pza(ispin)%matrix, template=matrix_pz_admm(ispin)%matrix)
    2366         104 :                   CALL dbcsr_copy(matrix_pza(ispin)%matrix, matrix_pz_admm(ispin)%matrix)
    2367             :                END IF
    2368             :             END DO
    2369         232 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2370             : 
    2371             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2372             :                                          x_data(1, 1)%general_parameter%fraction, &
    2373             :                                          rho_ao=matrix_p, rho_ao_resp=matrix_pza, &
    2374           6 :                                          use_virial=use_virial, resp_only=resp_only)
    2375             :             ELSE
    2376             :                CALL derivatives_four_center(qs_env, matrix_p, matrix_pza, hfx_section, para_env, &
    2377         226 :                                             1, use_virial, resp_only=resp_only)
    2378             :             END IF
    2379         232 :             CALL dbcsr_deallocate_matrix_set(matrix_pza)
    2380             :          ELSE
    2381             :             ! -----------------------------------------
    2382             :             !  conventional HFX FORCES
    2383             :             ! -----------------------------------------
    2384         204 :             CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2385         204 :             IF (x_data(1, 1)%do_hfx_ri) THEN
    2386             : 
    2387             :                CALL hfx_ri_update_forces(qs_env, x_data(1, 1)%ri_data, nspins, &
    2388             :                                          x_data(1, 1)%general_parameter%fraction, &
    2389             :                                          rho_ao=matrix_p, rho_ao_resp=mpa, &
    2390          18 :                                          use_virial=use_virial, resp_only=resp_only)
    2391             :             ELSE
    2392             :                CALL derivatives_four_center(qs_env, matrix_p, mpa, hfx_section, para_env, &
    2393         186 :                                             1, use_virial, resp_only=resp_only)
    2394             :             END IF
    2395             :          END IF ! do_admm
    2396             : 
    2397         436 :          IF (use_virial) THEN
    2398         884 :             virial%pv_exx = virial%pv_exx - virial%pv_fock_4c
    2399         884 :             virial%pv_virial = virial%pv_virial - virial%pv_fock_4c
    2400          68 :             virial%pv_calculate = .FALSE.
    2401             :          END IF
    2402             : 
    2403         436 :          IF (debug_forces) THEN
    2404          72 :             fodeb(1:3) = force(1)%fock_4c(1:3, 1) - fodeb(1:3)
    2405          18 :             CALL para_env%sum(fodeb)
    2406          18 :             IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*hfx ", fodeb
    2407             :          END IF
    2408         436 :          IF (debug_stress .AND. use_virial) THEN
    2409           0 :             stdeb = -1.0_dp*fconv*virial%pv_fock_4c
    2410           0 :             CALL para_env%sum(stdeb)
    2411           0 :             IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2412           0 :                'STRESS| Pz*hfx  ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2413             :          END IF
    2414             :       END IF ! do_hfx
    2415             : 
    2416             :       ! Stress-tensor volume contributions
    2417             :       ! These need to be applied at the end of qs_force
    2418         982 :       IF (use_virial) THEN
    2419             :          ! Adding mixed Hartree energy twice, due to symmetry
    2420         168 :          zehartree = zehartree + 2.0_dp*ehartree
    2421         168 :          zexc = zexc + exc
    2422             :          ! ADMM contribution handled differently in qs_force
    2423         168 :          IF (dft_control%do_admm) THEN
    2424          38 :             zexc_aux_fit = zexc_aux_fit + exc_aux_fit
    2425             :          END IF
    2426             :       END IF
    2427             : 
    2428             :       ! Overlap matrix
    2429             :       ! H(drho+dz) + Wz
    2430             :       ! If ground-state density matrix solved by diagonalization, then use this
    2431         982 :       IF (dft_control%qs_control%do_ls_scf) THEN
    2432             :          ! Ground-state density has been calculated by LS
    2433          10 :          eps_filter = dft_control%qs_control%eps_filter_matrix
    2434          10 :          CALL calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_wz, eps_filter)
    2435             :       ELSE
    2436         972 :          IF (do_ex) THEN
    2437         550 :             matrix_wz => p_env%w1
    2438             :          END IF
    2439         972 :          focc = 1.0_dp
    2440         972 :          IF (nspins == 1) focc = 2.0_dp
    2441         972 :          CALL get_qs_env(qs_env, mos=mos)
    2442        2040 :          DO ispin = 1, nspins
    2443        1068 :             CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2444             :             CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2445        2040 :                                       matrix_wz(ispin)%matrix, focc, nocc)
    2446             :          END DO
    2447             :       END IF
    2448         982 :       IF (nspins == 2) THEN
    2449             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2450          96 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2451             :       END IF
    2452             : 
    2453        1150 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2454         982 :       IF (debug_stress .AND. use_virial) stdeb = virial%pv_overlap
    2455         982 :       NULLIFY (scrm)
    2456             :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2457             :                                 matrix_name="OVERLAP MATRIX", &
    2458             :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2459             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2460         982 :                                 matrix_p=matrix_wz(1)%matrix)
    2461             : 
    2462         982 :       IF (SIZE(matrix_wz, 1) == 2) THEN
    2463             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2464          96 :                         alpha_scalar=1.0_dp, beta_scalar=-1.0_dp)
    2465             :       END IF
    2466             : 
    2467         982 :       IF (debug_forces) THEN
    2468         224 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2469          56 :          CALL para_env%sum(fodeb)
    2470          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2471             :       END IF
    2472         982 :       IF (debug_stress .AND. use_virial) THEN
    2473           0 :          stdeb = fconv*(virial%pv_overlap - stdeb)
    2474           0 :          CALL para_env%sum(stdeb)
    2475           0 :          IF (iounit > 0) WRITE (UNIT=iounit, FMT="(T2,A,T41,2(1X,ES19.11))") &
    2476           0 :             'STRESS| WHz   ', one_third_sum_diag(stdeb), det_3x3(stdeb)
    2477             :       END IF
    2478         982 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2479             : 
    2480         982 :       IF (debug_forces) THEN
    2481          56 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2482         224 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2483          56 :          CALL para_env%sum(fodeb)
    2484          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Response Force", fodeb
    2485         224 :          fodeb(1:3) = ftot2(1:3, 1)
    2486          56 :          CALL para_env%sum(fodeb)
    2487          56 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Total Force ", fodeb
    2488          56 :          DEALLOCATE (ftot1, ftot2, ftot3)
    2489             :       END IF
    2490             : 
    2491         982 :       IF (do_ex) THEN
    2492         550 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2493         550 :          CALL dbcsr_deallocate_matrix_set(matrix_hz)
    2494             :       END IF
    2495             : 
    2496         982 :       CALL timestop(handle)
    2497             : 
    2498        3928 :    END SUBROUTINE response_force
    2499             : 
    2500             : ! **************************************************************************************************
    2501             : !> \brief ...
    2502             : !> \param qs_env ...
    2503             : !> \param p_env ...
    2504             : !> \param matrix_hz ...
    2505             : !> \param ex_env ...
    2506             : !> \param debug ...
    2507             : ! **************************************************************************************************
    2508          16 :    SUBROUTINE response_force_xtb(qs_env, p_env, matrix_hz, ex_env, debug)
    2509             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2510             :       TYPE(qs_p_env_type)                                :: p_env
    2511             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_hz
    2512             :       TYPE(excited_energy_type), OPTIONAL, POINTER       :: ex_env
    2513             :       LOGICAL, INTENT(IN), OPTIONAL                      :: debug
    2514             : 
    2515             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'response_force_xtb'
    2516             : 
    2517             :       INTEGER                                            :: atom_a, handle, iatom, ikind, iounit, &
    2518             :                                                             is, ispin, na, natom, natorb, nimages, &
    2519             :                                                             nkind, nocc, ns, nsgf, nspins
    2520             :       INTEGER, DIMENSION(25)                             :: lao
    2521             :       INTEGER, DIMENSION(5)                              :: occ
    2522             :       LOGICAL                                            :: debug_forces, do_ex, use_virial
    2523             :       REAL(KIND=dp)                                      :: focc
    2524          16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: mcharge, mcharge1
    2525          16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: aocg, aocg1, charges, charges1, ftot1, &
    2526          16 :                                                             ftot2
    2527             :       REAL(KIND=dp), DIMENSION(3)                        :: fodeb
    2528          16 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    2529             :       TYPE(cp_logger_type), POINTER                      :: logger
    2530          16 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_pz, matrix_wz, mpa, p_matrix, scrm
    2531          16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: matrix_p, matrix_s
    2532             :       TYPE(dbcsr_type), POINTER                          :: s_matrix
    2533             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2534          16 :       TYPE(mo_set_type), DIMENSION(:), POINTER           :: mos
    2535             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2536             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2537          16 :          POINTER                                         :: sab_orb
    2538          16 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    2539          16 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    2540          16 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2541             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2542             :       TYPE(qs_rho_type), POINTER                         :: rho
    2543             :       TYPE(xtb_atom_type), POINTER                       :: xtb_kind
    2544             : 
    2545          16 :       CALL timeset(routineN, handle)
    2546             : 
    2547          16 :       IF (PRESENT(debug)) THEN
    2548          16 :          debug_forces = debug
    2549             :       ELSE
    2550           0 :          debug_forces = .FALSE.
    2551             :       END IF
    2552             : 
    2553          16 :       logger => cp_get_default_logger()
    2554          16 :       IF (logger%para_env%is_source()) THEN
    2555           8 :          iounit = cp_logger_get_default_unit_nr(logger, local=.TRUE.)
    2556             :       ELSE
    2557             :          iounit = -1
    2558             :       END IF
    2559             : 
    2560          16 :       do_ex = .FALSE.
    2561          16 :       IF (PRESENT(ex_env)) do_ex = .TRUE.
    2562             : 
    2563          16 :       NULLIFY (ks_env, sab_orb)
    2564             :       CALL get_qs_env(qs_env=qs_env, ks_env=ks_env, dft_control=dft_control, &
    2565          16 :                       sab_orb=sab_orb)
    2566          16 :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, force=force)
    2567          16 :       nspins = dft_control%nspins
    2568             : 
    2569          16 :       IF (debug_forces) THEN
    2570           0 :          CALL get_qs_env(qs_env, natom=natom, atomic_kind_set=atomic_kind_set)
    2571           0 :          ALLOCATE (ftot1(3, natom))
    2572           0 :          ALLOCATE (ftot2(3, natom))
    2573           0 :          CALL total_qs_force(ftot1, force, atomic_kind_set)
    2574             :       END IF
    2575             : 
    2576          16 :       matrix_pz => p_env%p1
    2577          16 :       NULLIFY (mpa)
    2578          16 :       IF (do_ex) THEN
    2579          16 :          CALL dbcsr_allocate_matrix_set(mpa, nspins)
    2580          32 :          DO ispin = 1, nspins
    2581          16 :             ALLOCATE (mpa(ispin)%matrix)
    2582          16 :             CALL dbcsr_create(mpa(ispin)%matrix, template=matrix_pz(ispin)%matrix)
    2583          16 :             CALL dbcsr_copy(mpa(ispin)%matrix, matrix_pz(ispin)%matrix)
    2584          16 :             CALL dbcsr_add(mpa(ispin)%matrix, ex_env%matrix_pe(ispin)%matrix, 1.0_dp, 1.0_dp)
    2585          32 :             CALL dbcsr_set(matrix_hz(ispin)%matrix, 0.0_dp)
    2586             :          END DO
    2587             :       ELSE
    2588           0 :          mpa => p_env%p1
    2589             :       END IF
    2590             :       !
    2591             :       ! START OF Tr(P+Z)Hcore
    2592             :       !
    2593          16 :       IF (nspins == 2) THEN
    2594           0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, 1.0_dp)
    2595             :       END IF
    2596             :       ! Hcore  matrix
    2597          16 :       IF (debug_forces) fodeb(1:3) = force(1)%all_potential(1:3, 1)
    2598          16 :       CALL xtb_hab_force(qs_env, mpa(1)%matrix)
    2599          16 :       IF (debug_forces) THEN
    2600           0 :          fodeb(1:3) = force(1)%all_potential(1:3, 1) - fodeb(1:3)
    2601           0 :          CALL para_env%sum(fodeb)
    2602           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Pz*dHcore  ", fodeb
    2603             :       END IF
    2604          16 :       IF (nspins == 2) THEN
    2605           0 :          CALL dbcsr_add(mpa(1)%matrix, mpa(2)%matrix, 1.0_dp, -1.0_dp)
    2606             :       END IF
    2607             :       !
    2608             :       ! END OF Tr(P+Z)Hcore
    2609             :       !
    2610          16 :       use_virial = .FALSE.
    2611          16 :       nimages = 1
    2612             :       !
    2613             :       ! Hartree potential of response density
    2614             :       !
    2615          16 :       IF (dft_control%qs_control%xtb_control%coulomb_interaction) THEN
    2616             :          ! Mulliken charges
    2617          14 :          CALL get_qs_env(qs_env, rho=rho, particle_set=particle_set, matrix_s_kp=matrix_s)
    2618          14 :          natom = SIZE(particle_set)
    2619          14 :          CALL qs_rho_get(rho, rho_ao_kp=matrix_p)
    2620          70 :          ALLOCATE (mcharge(natom), charges(natom, 5))
    2621          70 :          ALLOCATE (mcharge1(natom), charges1(natom, 5))
    2622        1254 :          charges = 0.0_dp
    2623        1254 :          charges1 = 0.0_dp
    2624          14 :          CALL get_qs_env(qs_env, atomic_kind_set=atomic_kind_set, qs_kind_set=qs_kind_set)
    2625          14 :          nkind = SIZE(atomic_kind_set)
    2626          14 :          CALL get_qs_kind_set(qs_kind_set, maxsgf=nsgf)
    2627          56 :          ALLOCATE (aocg(nsgf, natom))
    2628        1184 :          aocg = 0.0_dp
    2629          56 :          ALLOCATE (aocg1(nsgf, natom))
    2630        1184 :          aocg1 = 0.0_dp
    2631          14 :          p_matrix => matrix_p(:, 1)
    2632          14 :          s_matrix => matrix_s(1, 1)%matrix
    2633          14 :          CALL ao_charges(p_matrix, s_matrix, aocg, para_env)
    2634          14 :          CALL ao_charges(mpa, s_matrix, aocg1, para_env)
    2635          48 :          DO ikind = 1, nkind
    2636          34 :             CALL get_atomic_kind(atomic_kind_set(ikind), natom=na)
    2637          34 :             CALL get_qs_kind(qs_kind_set(ikind), xtb_parameter=xtb_kind)
    2638          34 :             CALL get_xtb_atom_param(xtb_kind, natorb=natorb, lao=lao, occupation=occ)
    2639         316 :             DO iatom = 1, na
    2640         234 :                atom_a = atomic_kind_set(ikind)%atom_list(iatom)
    2641        1404 :                charges(atom_a, :) = REAL(occ(:), KIND=dp)
    2642         900 :                DO is = 1, natorb
    2643         632 :                   ns = lao(is) + 1
    2644         632 :                   charges(atom_a, ns) = charges(atom_a, ns) - aocg(is, atom_a)
    2645         866 :                   charges1(atom_a, ns) = charges1(atom_a, ns) - aocg1(is, atom_a)
    2646             :                END DO
    2647             :             END DO
    2648             :          END DO
    2649          14 :          DEALLOCATE (aocg, aocg1)
    2650         248 :          DO iatom = 1, natom
    2651        1404 :             mcharge(iatom) = SUM(charges(iatom, :))
    2652        1418 :             mcharge1(iatom) = SUM(charges1(iatom, :))
    2653             :          END DO
    2654             :          ! Coulomb Kernel
    2655          14 :          CALL xtb_coulomb_hessian(qs_env, matrix_hz, charges1, mcharge1, mcharge)
    2656             :          CALL calc_xtb_ehess_force(qs_env, p_matrix, mpa, charges, mcharge, charges1, &
    2657          14 :                                    mcharge1, debug_forces)
    2658             :          !
    2659          28 :          DEALLOCATE (charges, mcharge, charges1, mcharge1)
    2660             :       END IF
    2661             :       ! Overlap matrix
    2662             :       ! H(drho+dz) + Wz
    2663          16 :       matrix_wz => p_env%w1
    2664          16 :       focc = 0.5_dp
    2665          16 :       IF (nspins == 1) focc = 1.0_dp
    2666          16 :       CALL get_qs_env(qs_env, mos=mos)
    2667          32 :       DO ispin = 1, nspins
    2668          16 :          CALL get_mo_set(mo_set=mos(ispin), homo=nocc)
    2669             :          CALL calculate_whz_matrix(mos(ispin)%mo_coeff, matrix_hz(ispin)%matrix, &
    2670          32 :                                    matrix_wz(ispin)%matrix, focc, nocc)
    2671             :       END DO
    2672          16 :       IF (nspins == 2) THEN
    2673             :          CALL dbcsr_add(matrix_wz(1)%matrix, matrix_wz(2)%matrix, &
    2674           0 :                         alpha_scalar=1.0_dp, beta_scalar=1.0_dp)
    2675             :       END IF
    2676          16 :       IF (debug_forces) fodeb(1:3) = force(1)%overlap(1:3, 1)
    2677          16 :       NULLIFY (scrm)
    2678             :       CALL build_overlap_matrix(ks_env, matrix_s=scrm, &
    2679             :                                 matrix_name="OVERLAP MATRIX", &
    2680             :                                 basis_type_a="ORB", basis_type_b="ORB", &
    2681             :                                 sab_nl=sab_orb, calculate_forces=.TRUE., &
    2682          16 :                                 matrix_p=matrix_wz(1)%matrix)
    2683          16 :       IF (debug_forces) THEN
    2684           0 :          fodeb(1:3) = force(1)%overlap(1:3, 1) - fodeb(1:3)
    2685           0 :          CALL para_env%sum(fodeb)
    2686           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T33,3F16.8)") "DEBUG:: Wz*dS ", fodeb
    2687             :       END IF
    2688          16 :       CALL dbcsr_deallocate_matrix_set(scrm)
    2689             : 
    2690          16 :       IF (debug_forces) THEN
    2691           0 :          CALL total_qs_force(ftot2, force, atomic_kind_set)
    2692           0 :          fodeb(1:3) = ftot2(1:3, 1) - ftot1(1:3, 1)
    2693           0 :          CALL para_env%sum(fodeb)
    2694           0 :          IF (iounit > 0) WRITE (iounit, "(T3,A,T30,3F16.8)") "DEBUG:: Response Force", fodeb
    2695           0 :          DEALLOCATE (ftot1, ftot2)
    2696             :       END IF
    2697             : 
    2698          16 :       IF (do_ex) THEN
    2699          16 :          CALL dbcsr_deallocate_matrix_set(mpa)
    2700             :       END IF
    2701             : 
    2702          16 :       CALL timestop(handle)
    2703             : 
    2704          32 :    END SUBROUTINE response_force_xtb
    2705             : 
    2706             : ! **************************************************************************************************
    2707             : !> \brief Win = focc*(P*(H[P_out - P_in] + H[Z] )*P)
    2708             : !>        Langrange multiplier matrix with response and perturbation (Harris) kernel matrices
    2709             : !>
    2710             : !> \param qs_env ...
    2711             : !> \param matrix_hz ...
    2712             : !> \param matrix_whz ...
    2713             : !> \param eps_filter ...
    2714             : !> \param
    2715             : !> \par History
    2716             : !>       2020.2 created [Fabian Belleflamme]
    2717             : !> \author Fabian Belleflamme
    2718             : ! **************************************************************************************************
    2719          10 :    SUBROUTINE calculate_whz_ao_matrix(qs_env, matrix_hz, matrix_whz, eps_filter)
    2720             : 
    2721             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2722             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN), &
    2723             :          POINTER                                         :: matrix_hz
    2724             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT), &
    2725             :          POINTER                                         :: matrix_whz
    2726             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    2727             : 
    2728             :       CHARACTER(len=*), PARAMETER :: routineN = 'calculate_whz_ao_matrix'
    2729             : 
    2730             :       INTEGER                                            :: handle, ispin, nspins
    2731             :       REAL(KIND=dp)                                      :: scaling
    2732          10 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: rho_ao
    2733             :       TYPE(dbcsr_type)                                   :: matrix_tmp
    2734             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2735             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2736             :       TYPE(qs_rho_type), POINTER                         :: rho
    2737             : 
    2738          10 :       CALL timeset(routineN, handle)
    2739             : 
    2740          10 :       CPASSERT(ASSOCIATED(qs_env))
    2741          10 :       CPASSERT(ASSOCIATED(matrix_hz))
    2742          10 :       CPASSERT(ASSOCIATED(matrix_whz))
    2743             : 
    2744             :       CALL get_qs_env(qs_env=qs_env, &
    2745             :                       dft_control=dft_control, &
    2746             :                       rho=rho, &
    2747          10 :                       para_env=para_env)
    2748          10 :       nspins = dft_control%nspins
    2749          10 :       CALL qs_rho_get(rho, rho_ao=rho_ao)
    2750             : 
    2751             :       ! init temp matrix
    2752             :       CALL dbcsr_create(matrix_tmp, template=matrix_hz(1)%matrix, &
    2753          10 :                         matrix_type=dbcsr_type_no_symmetry)
    2754             : 
    2755             :       !Spin factors simplify to
    2756             :       scaling = 1.0_dp
    2757             :       IF (nspins == 1) scaling = 0.5_dp
    2758             : 
    2759             :       ! Operation in MO-solver :
    2760             :       ! Whz = focc*(CC^T*Hz*CC^T)
    2761             :       ! focc = 2.0_dp Closed-shell
    2762             :       ! focc = 1.0_dp Open-shell
    2763             : 
    2764             :       ! Operation in AO-solver :
    2765             :       ! Whz = (scaling*P)*(focc*Hz)*(scaling*P)
    2766             :       ! focc see above
    2767             :       ! scaling = 0.5_dp Closed-shell (P = 2*CC^T), WHz = (0.5*P)*(2*Hz)*(0.5*P)
    2768             :       ! scaling = 1.0_dp Open-shell, WHz = P*Hz*P
    2769             : 
    2770             :       ! Spin factors from Hz and P simplify to
    2771          10 :       scaling = 1.0_dp
    2772          10 :       IF (nspins == 1) scaling = 0.5_dp
    2773             : 
    2774          20 :       DO ispin = 1, nspins
    2775             : 
    2776             :          ! tmp = H*CC^T
    2777             :          CALL dbcsr_multiply("N", "N", scaling, matrix_hz(ispin)%matrix, rho_ao(ispin)%matrix, &
    2778          10 :                              0.0_dp, matrix_tmp, filter_eps=eps_filter)
    2779             :          ! WHz = CC^T*tmp
    2780             :          ! WHz = Wz + (scaling*P)*(focc*Hz)*(scaling*P)
    2781             :          ! WHz = Wz + scaling*(P*Hz*P)
    2782             :          CALL dbcsr_multiply("N", "N", 1.0_dp, rho_ao(ispin)%matrix, matrix_tmp, &
    2783             :                              1.0_dp, matrix_whz(ispin)%matrix, filter_eps=eps_filter, &
    2784          20 :                              retain_sparsity=.TRUE.)
    2785             : 
    2786             :       END DO
    2787             : 
    2788          10 :       CALL dbcsr_release(matrix_tmp)
    2789             : 
    2790          10 :       CALL timestop(handle)
    2791             : 
    2792          10 :    END SUBROUTINE
    2793             : 
    2794             : ! **************************************************************************************************
    2795             : 
    2796             : END MODULE response_solver

Generated by: LCOV version 1.15