Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2026 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Methods for Resonant Inelastic XRAY Scattering (RIXS) calculations
10 : !> \author BSG (02.2025)
11 : ! **************************************************************************************************
12 : MODULE rixs_methods
13 : USE bibliography, ONLY: VazdaCruz2021,&
14 : cite_reference
15 : USE cp_blacs_env, ONLY: cp_blacs_env_type
16 : USE cp_control_types, ONLY: dft_control_type,&
17 : rixs_control_create,&
18 : rixs_control_release,&
19 : rixs_control_type
20 : USE cp_control_utils, ONLY: read_rixs_control
21 : USE cp_dbcsr_api, ONLY: dbcsr_p_type,&
22 : dbcsr_type
23 : USE cp_dbcsr_operations, ONLY: cp_dbcsr_sm_fm_multiply
24 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
25 : cp_fm_struct_release,&
26 : cp_fm_struct_type
27 : USE cp_fm_types, ONLY: cp_fm_create,&
28 : cp_fm_get_info,&
29 : cp_fm_get_submatrix,&
30 : cp_fm_release,&
31 : cp_fm_to_fm,&
32 : cp_fm_to_fm_submat,&
33 : cp_fm_type
34 : USE cp_log_handling, ONLY: cp_get_default_logger,&
35 : cp_logger_get_default_io_unit,&
36 : cp_logger_type
37 : USE cp_output_handling, ONLY: cp_print_key_finished_output,&
38 : cp_print_key_unit_nr
39 : USE header, ONLY: rixs_header
40 : USE input_section_types, ONLY: section_vals_get_subs_vals,&
41 : section_vals_type
42 : USE kinds, ONLY: dp
43 : USE message_passing, ONLY: mp_para_env_type
44 : USE parallel_gemm_api, ONLY: parallel_gemm
45 : USE physcon, ONLY: evolt
46 : USE qs_environment_types, ONLY: get_qs_env,&
47 : qs_environment_type
48 : USE qs_tddfpt2_methods, ONLY: tddfpt
49 : USE rixs_types, ONLY: rixs_env_create,&
50 : rixs_env_release,&
51 : rixs_env_type,&
52 : tddfpt2_valence_type
53 : USE xas_tdp_methods, ONLY: xas_tdp
54 : USE xas_tdp_types, ONLY: donor_state_type,&
55 : xas_tdp_env_type
56 : #include "./base/base_uses.f90"
57 :
58 : IMPLICIT NONE
59 : PRIVATE
60 :
61 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rixs_methods'
62 :
63 : PUBLIC :: rixs, rixs_core
64 :
65 : CONTAINS
66 :
67 : ! **************************************************************************************************
68 : !> \brief Driver for RIXS calculations.
69 : !> \param qs_env the inherited qs_environment
70 : !> \author BSG
71 : ! **************************************************************************************************
72 :
73 14 : SUBROUTINE rixs(qs_env)
74 :
75 : TYPE(qs_environment_type), POINTER :: qs_env
76 :
77 : CHARACTER(len=*), PARAMETER :: routineN = 'rixs'
78 :
79 : INTEGER :: handle, output_unit
80 : TYPE(dft_control_type), POINTER :: dft_control
81 : TYPE(section_vals_type), POINTER :: rixs_section, tddfp2_section, &
82 : xas_tdp_section
83 :
84 14 : CALL timeset(routineN, handle)
85 :
86 14 : NULLIFY (rixs_section)
87 14 : rixs_section => section_vals_get_subs_vals(qs_env%input, "PROPERTIES%RIXS")
88 14 : output_unit = cp_logger_get_default_io_unit()
89 :
90 14 : qs_env%do_rixs = .TRUE.
91 :
92 14 : CALL cite_reference(VazdaCruz2021)
93 :
94 14 : CALL get_qs_env(qs_env, dft_control=dft_control)
95 :
96 14 : xas_tdp_section => section_vals_get_subs_vals(rixs_section, "XAS_TDP")
97 14 : tddfp2_section => section_vals_get_subs_vals(rixs_section, "TDDFPT")
98 :
99 14 : CALL rixs_core(rixs_section, qs_env)
100 :
101 14 : IF (output_unit > 0) THEN
102 : WRITE (UNIT=output_unit, FMT="(/,(T2,A79))") &
103 7 : "*******************************************************************************", &
104 7 : "! Normal termination of Resonant Inelastic X-RAY Scattering calculation !", &
105 14 : "*******************************************************************************"
106 : END IF
107 :
108 14 : CALL timestop(handle)
109 :
110 14 : END SUBROUTINE rixs
111 :
112 : ! **************************************************************************************************
113 : !> \brief Perform RIXS calculation.
114 : !> \param rixs_section ...
115 : !> \param qs_env ...
116 : ! **************************************************************************************************
117 14 : SUBROUTINE rixs_core(rixs_section, qs_env)
118 :
119 : TYPE(section_vals_type), POINTER :: rixs_section
120 : TYPE(qs_environment_type), POINTER :: qs_env
121 :
122 : CHARACTER(len=*), PARAMETER :: routineN = 'rixs_core'
123 :
124 : INTEGER :: ax, current_state_index, fstate, handle, iatom, ispin, istate, nactive_max, nao, &
125 : ncol, nex_atoms, nocc, nspins, nstates, nvirt, output_unit, td_state
126 14 : INTEGER, ALLOCATABLE, DIMENSION(:) :: nactive
127 : LOGICAL :: do_sc, do_sg, roks, uks
128 14 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: w_i0, w_if
129 14 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: dip_block, mu_i0
130 14 : REAL(dp), ALLOCATABLE, DIMENSION(:, :, :) :: mu_if
131 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
132 : TYPE(cp_fm_struct_type), POINTER :: core_evect_struct, dip_0_struct, &
133 : dip_f_struct, gs_coeff_struct, &
134 : i_dip_0_struct, i_dip_f_struct
135 : TYPE(cp_fm_type) :: dip_0
136 14 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: core_evects, dip_f, i_dip_0, i_dip_f, &
137 14 : state_gs_coeffs
138 14 : TYPE(cp_fm_type), DIMENSION(:), POINTER :: local_gs_coeffs, mo_coeffs
139 14 : TYPE(cp_fm_type), DIMENSION(:, :), POINTER :: valence_evects
140 : TYPE(cp_fm_type), POINTER :: target_ex_coeffs
141 14 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: dipmat, matrix_s
142 : TYPE(dft_control_type), POINTER :: dft_control
143 : TYPE(donor_state_type), POINTER :: current_state
144 : TYPE(mp_para_env_type), POINTER :: para_env
145 : TYPE(rixs_control_type), POINTER :: rixs_control
146 : TYPE(rixs_env_type), POINTER :: rixs_env
147 : TYPE(tddfpt2_valence_type), POINTER :: valence_state
148 : TYPE(xas_tdp_env_type), POINTER :: core_state
149 :
150 14 : NULLIFY (rixs_control, dft_control, rixs_env)
151 14 : NULLIFY (valence_state, core_state)
152 14 : NULLIFY (para_env, blacs_env)
153 14 : NULLIFY (local_gs_coeffs, mo_coeffs, valence_evects)
154 14 : NULLIFY (dipmat, dip_0_struct, i_dip_0_struct, dip_f_struct, i_dip_f_struct, &
155 14 : core_evect_struct, gs_coeff_struct)
156 :
157 28 : output_unit = cp_logger_get_default_io_unit()
158 :
159 : CALL get_qs_env(qs_env, &
160 : dft_control=dft_control, &
161 : matrix_s=matrix_s, &
162 : para_env=para_env, &
163 14 : blacs_env=blacs_env)
164 14 : CALL rixs_control_create(rixs_control)
165 14 : CALL read_rixs_control(rixs_control, rixs_section, dft_control%qs_control)
166 :
167 : ! create rixs_env
168 14 : CALL rixs_env_create(rixs_env)
169 :
170 : ! first, xas_tdp calculation
171 14 : CALL xas_tdp(qs_env, rixs_env)
172 :
173 14 : do_sg = rixs_control%xas_tdp_control%do_singlet
174 14 : do_sc = rixs_control%xas_tdp_control%do_spin_cons
175 :
176 14 : IF (rixs_control%xas_tdp_control%check_only) THEN
177 0 : CPWARN("CHECK_ONLY run for XAS_TDP requested, RIXS and TDDFPT will not be performed.")
178 : ELSE
179 :
180 : ! then, tddfpt calculation
181 14 : CALL tddfpt(qs_env, calc_forces=.FALSE., rixs_env=rixs_env)
182 :
183 14 : IF (output_unit > 0) THEN
184 7 : CALL rixs_header(output_unit)
185 : END IF
186 :
187 : ! timings for rixs only, excluding xas_tdp and tddft calls
188 14 : CALL timeset(routineN, handle)
189 :
190 14 : IF (do_sg) THEN ! singlet
191 : nspins = 1
192 4 : ELSE IF (do_sc) THEN ! spin-conserving
193 : nspins = 2
194 : ELSE
195 0 : CPABORT("RIXS only implemented for singlet and spin-conserving excitations")
196 : END IF
197 :
198 14 : IF (output_unit > 0) THEN
199 7 : IF (dft_control%uks) THEN
200 1 : uks = .TRUE.
201 1 : WRITE (UNIT=output_unit, FMT="(T2,A)") "RIXS| Unrestricted Open-Shell Kohn-Sham"
202 6 : ELSE IF (dft_control%roks) THEN
203 1 : roks = .TRUE.
204 1 : WRITE (UNIT=output_unit, FMT="(T2,A)") "RIXS| Restricted Open-Shell Kohn-Sham"
205 : END IF
206 : END IF
207 :
208 14 : core_state => rixs_env%core_state
209 14 : valence_state => rixs_env%valence_state
210 :
211 : ! gs coefficients from tddfpt
212 14 : mo_coeffs => valence_state%mos_active
213 : ! localised gs coefficients from xas_tdp
214 14 : local_gs_coeffs => core_state%mo_coeff
215 14 : valence_evects => valence_state%evects
216 :
217 : ! res tddft
218 : IF (.NOT. roks) THEN
219 : CALL cp_fm_get_info(matrix=local_gs_coeffs(1), ncol_global=nocc)
220 : CALL cp_fm_get_info(matrix=mo_coeffs(1), ncol_global=ncol)
221 : IF (ncol /= nocc) THEN
222 : CPABORT("RIXS with restricted space excitations NYI")
223 : END IF
224 : END IF
225 :
226 14 : IF (rixs_control%xas_tdp_control%do_loc) THEN
227 2 : IF (output_unit > 0) THEN
228 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
229 1 : "RIXS| Found localised XAS_TDP orbitals"
230 : WRITE (UNIT=output_unit, FMT="(T2,A)") &
231 1 : "RIXS| Rotating TDDFPT vectors..."
232 : END IF
233 2 : CALL rotate_vectors(valence_state%evects, local_gs_coeffs, mo_coeffs, matrix_s(1)%matrix, output_unit)
234 : END IF
235 :
236 : ! find max nactive for open-shell cases
237 28 : ALLOCATE (nactive(nspins))
238 32 : DO ispin = 1, nspins
239 32 : CALL cp_fm_get_info(matrix=valence_state%mos_active(ispin), nrow_global=nao, ncol_global=nactive(ispin))
240 : END DO
241 32 : nactive_max = MAXVAL(nactive)
242 :
243 14 : nex_atoms = core_state%nex_atoms
244 14 : nstates = valence_state%nstates
245 14 : nvirt = core_state%nvirt
246 :
247 14 : IF (rixs_control%core_states > 0) THEN
248 4 : rixs_control%core_states = MIN(rixs_control%core_states, nvirt)
249 : ELSE
250 10 : rixs_control%core_states = nvirt
251 : END IF
252 :
253 14 : IF (rixs_control%valence_states > 0) THEN
254 2 : rixs_control%valence_states = MIN(rixs_control%valence_states, nstates)
255 : ELSE
256 12 : rixs_control%valence_states = nstates
257 : END IF
258 :
259 14 : IF (output_unit > 0) THEN
260 : WRITE (UNIT=output_unit, FMT="(T2,A,I5,A,I5)") &
261 7 : "RIXS| Using ", rixs_control%core_states, " core states out of ", core_state%nvirt
262 : WRITE (UNIT=output_unit, FMT="(T2,A,I5,A,I5,/)") &
263 7 : "RIXS| Using ", rixs_control%valence_states, " valence states out of ", valence_state%nstates
264 : END IF
265 :
266 14 : dipmat => core_state%dipmat
267 :
268 78 : ALLOCATE (core_evects(nspins), state_gs_coeffs(nspins))
269 154 : ALLOCATE (dip_block(1, nspins), mu_i0(4, nvirt), mu_if(4, nvirt, nstates), w_i0(nvirt), w_if(nstates))
270 62 : w_if(:) = valence_state%evals(:)*evolt
271 46 : ALLOCATE (i_dip_0(nspins))
272 78 : ALLOCATE (dip_f(nspins), i_dip_f(nspins))
273 :
274 : CALL cp_fm_struct_create(core_evect_struct, para_env=para_env, context=blacs_env, &
275 14 : nrow_global=nao, ncol_global=nvirt)
276 : CALL cp_fm_struct_create(gs_coeff_struct, para_env=para_env, context=blacs_env, &
277 14 : nrow_global=nao, ncol_global=1)
278 :
279 : ! looping over ex_atoms and ex_kinds is enough as excited atoms have to be unique
280 14 : current_state_index = 1
281 30 : DO iatom = 1, nex_atoms
282 16 : current_state => core_state%donor_states(current_state_index)
283 16 : IF (output_unit > 0) THEN
284 : WRITE (UNIT=output_unit, FMT="(T2,A,A,A,I3,A,A)") &
285 8 : "RIXS| Calculating dipole moment from core-excited state ", &
286 8 : core_state%state_type_char(current_state%state_type), " for atom ", &
287 16 : current_state%at_index, " of kind ", TRIM(current_state%at_symbol)
288 : END IF
289 :
290 1096 : mu_i0 = 0.0_dp
291 3660 : mu_if = 0.0_dp
292 :
293 16 : IF (do_sg) THEN ! singlet
294 12 : target_ex_coeffs => current_state%sg_coeffs
295 180 : w_i0(:) = current_state%sg_evals(:)*evolt
296 4 : ELSE IF (do_sc) THEN ! spin-conserving
297 4 : target_ex_coeffs => current_state%sc_coeffs
298 52 : w_i0(:) = current_state%sc_evals(:)*evolt
299 : END IF
300 :
301 : ! reshape sc and sg coeffs (separate spins to columns)
302 36 : DO ispin = 1, nspins
303 20 : CALL cp_fm_create(core_evects(ispin), core_evect_struct)
304 : CALL cp_fm_to_fm_submat(msource=target_ex_coeffs, mtarget=core_evects(ispin), s_firstrow=1, &
305 36 : s_firstcol=(nvirt*(ispin - 1) + 1), t_firstrow=1, t_firstcol=1, nrow=nao, ncol=nvirt)
306 : END DO
307 36 : DO ispin = 1, nspins
308 20 : CALL cp_fm_create(state_gs_coeffs(ispin), gs_coeff_struct)
309 16 : IF (roks) THEN
310 : ! store same coeffs for both spins, easier later on
311 : CALL cp_fm_to_fm_submat(msource=current_state%gs_coeffs, mtarget=state_gs_coeffs(ispin), s_firstrow=1, &
312 20 : s_firstcol=1, t_firstrow=1, t_firstcol=1, nrow=nao, ncol=1)
313 : ELSE
314 : CALL cp_fm_to_fm_submat(msource=current_state%gs_coeffs, mtarget=state_gs_coeffs(ispin), s_firstrow=1, &
315 : s_firstcol=ispin, t_firstrow=1, t_firstcol=1, nrow=nao, ncol=1)
316 : END IF
317 : END DO
318 :
319 : ! initialise matrices for i->0
320 : CALL cp_fm_struct_create(dip_0_struct, para_env=para_env, context=blacs_env, &
321 16 : nrow_global=nao, ncol_global=1)
322 16 : CALL cp_fm_create(dip_0, dip_0_struct)
323 : CALL cp_fm_struct_create(i_dip_0_struct, para_env=para_env, context=blacs_env, &
324 16 : nrow_global=nvirt, ncol_global=1)
325 36 : DO ispin = 1, nspins
326 36 : CALL cp_fm_create(i_dip_0(ispin), i_dip_0_struct)
327 : END DO
328 :
329 : ! initialise matrices for i->f
330 36 : DO ispin = 1, nspins
331 : CALL cp_fm_struct_create(dip_f_struct, para_env=para_env, context=blacs_env, &
332 20 : nrow_global=nao, ncol_global=nactive(ispin))
333 : CALL cp_fm_struct_create(i_dip_f_struct, para_env=para_env, context=blacs_env, &
334 20 : nrow_global=nvirt, ncol_global=nactive(ispin))
335 20 : CALL cp_fm_create(dip_f(ispin), dip_f_struct)
336 20 : CALL cp_fm_create(i_dip_f(ispin), i_dip_f_struct)
337 20 : CALL cp_fm_struct_release(i_dip_f_struct)
338 36 : CALL cp_fm_struct_release(dip_f_struct)
339 : END DO
340 :
341 : ! 0 -> i
342 64 : DO ax = 1, 3
343 :
344 : ! i*R*0
345 108 : DO ispin = 1, nspins
346 60 : CALL cp_dbcsr_sm_fm_multiply(dipmat(ax)%matrix, state_gs_coeffs(ispin), dip_0, ncol=1)
347 108 : CALL parallel_gemm('T', 'N', nvirt, 1, nao, 1.0_dp, core_evects(ispin), dip_0, 0.0_dp, i_dip_0(ispin))
348 : END DO
349 :
350 562 : DO istate = 1, rixs_control%core_states
351 1782 : dip_block = 0.0_dp
352 1140 : DO ispin = 1, nspins
353 : CALL cp_fm_get_submatrix(fm=i_dip_0(ispin), target_m=dip_block, start_row=istate, &
354 642 : start_col=1, n_rows=1, n_cols=1)
355 1140 : mu_i0(ax, istate) = mu_i0(ax, istate) + dip_block(1, 1)
356 : END DO ! ispin
357 546 : mu_i0(4, istate) = mu_i0(4, istate) + mu_i0(ax, istate)**2
358 : END DO ! istate
359 :
360 : END DO ! ax
361 :
362 : ! i -> f
363 66 : DO td_state = 1, rixs_control%valence_states
364 :
365 50 : IF (output_unit > 0) THEN
366 : WRITE (UNIT=output_unit, FMT="(T9,A,I3,A,F10.4)") &
367 25 : "to valence-excited state ", td_state, " with energy ", w_if(td_state)
368 : END IF
369 :
370 216 : DO ax = 1, 3
371 :
372 : ! core_evects x dipmat x valence_evects (per spin)
373 360 : DO ispin = 1, nspins
374 : CALL cp_dbcsr_sm_fm_multiply(dipmat(ax)%matrix, valence_evects(ispin, td_state), dip_f(ispin), &
375 210 : ncol=nactive(ispin))
376 : CALL parallel_gemm('T', 'N', nvirt, nactive(ispin), nao, 1.0_dp, core_evects(ispin), &
377 360 : dip_f(ispin), 0.0_dp, i_dip_f(ispin))
378 : END DO
379 :
380 1832 : DO istate = 1, rixs_control%core_states
381 9696 : DO fstate = 1, nactive_max
382 31392 : dip_block = 0.0_dp
383 21360 : DO ispin = 1, nspins
384 19728 : IF (fstate <= nactive(ispin)) THEN
385 : CALL cp_fm_get_submatrix(fm=i_dip_f(ispin), target_m=dip_block, start_row=istate, &
386 10944 : start_col=fstate, n_rows=1, n_cols=1)
387 10944 : mu_if(ax, istate, td_state) = mu_if(ax, istate, td_state) + dip_block(1, 1)
388 : END IF
389 : END DO ! ispin
390 : END DO ! fstate (tddft)
391 1782 : mu_if(4, istate, td_state) = mu_if(4, istate, td_state) + mu_if(ax, istate, td_state)**2
392 : END DO ! istate (core)
393 :
394 : END DO ! ax
395 :
396 : END DO ! td_state
397 :
398 16 : IF (output_unit > 0) THEN
399 8 : WRITE (UNIT=output_unit, FMT="(/,T2,A,/)") "RIXS| Printing spectrum to file"
400 : END IF
401 16 : CALL print_rixs_to_file(current_state, mu_i0, mu_if, w_i0, w_if, rixs_env, rixs_section, rixs_control)
402 :
403 16 : current_state_index = current_state_index + 1
404 :
405 : ! cleanup
406 36 : DO ispin = 1, nspins
407 20 : CALL cp_fm_release(core_evects(ispin))
408 20 : CALL cp_fm_release(state_gs_coeffs(ispin))
409 20 : CALL cp_fm_release(i_dip_0(ispin))
410 20 : CALL cp_fm_release(i_dip_f(ispin))
411 36 : CALL cp_fm_release(dip_f(ispin))
412 : END DO
413 16 : CALL cp_fm_struct_release(i_dip_0_struct)
414 16 : CALL cp_fm_struct_release(dip_0_struct)
415 46 : CALL cp_fm_release(dip_0)
416 :
417 : END DO ! iatom
418 :
419 : NULLIFY (current_state)
420 :
421 : ! cleanup
422 14 : CALL cp_fm_struct_release(core_evect_struct)
423 28 : CALL cp_fm_struct_release(gs_coeff_struct)
424 :
425 : END IF
426 :
427 : ! more cleanup
428 14 : CALL rixs_control_release(rixs_control)
429 14 : CALL rixs_env_release(rixs_env)
430 14 : NULLIFY (valence_state, core_state)
431 :
432 14 : CALL timestop(handle)
433 :
434 28 : END SUBROUTINE rixs_core
435 :
436 : ! **************************************************************************************************
437 : !> \brief Rotate vectors. Returns rotated mo_occ and evects.
438 : !> \param evects ...
439 : !> \param mo_ref ...
440 : !> \param mo_occ ...
441 : !> \param overlap_matrix ...
442 : !> \param unit_nr ...
443 : ! **************************************************************************************************
444 :
445 2 : SUBROUTINE rotate_vectors(evects, mo_ref, mo_occ, overlap_matrix, unit_nr)
446 : TYPE(cp_fm_type), DIMENSION(:, :) :: evects
447 : TYPE(cp_fm_type), DIMENSION(:) :: mo_ref, mo_occ
448 : TYPE(dbcsr_type), POINTER :: overlap_matrix
449 : INTEGER :: unit_nr
450 :
451 : INTEGER :: ispin, istate, ncol, nrow, nspins, &
452 : nstates
453 : REAL(kind=dp) :: diff
454 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
455 : TYPE(cp_fm_struct_type), POINTER :: emat_struct
456 : TYPE(cp_fm_type) :: emat, rotated_mo_coeffs, smo
457 : TYPE(cp_fm_type), POINTER :: current_evect
458 : TYPE(mp_para_env_type), POINTER :: para_env
459 :
460 2 : NULLIFY (emat_struct, para_env, blacs_env, current_evect)
461 :
462 2 : nspins = SIZE(evects, DIM=1)
463 4 : DO ispin = 1, nspins
464 :
465 : CALL cp_fm_get_info(matrix=mo_occ(ispin), nrow_global=nrow, ncol_global=ncol, &
466 2 : para_env=para_env, context=blacs_env)
467 2 : CALL cp_fm_create(smo, mo_occ(ispin)%matrix_struct)
468 :
469 : ! rotate mo_occ
470 : ! smo = matrix_s x mo_occ
471 2 : CALL cp_dbcsr_sm_fm_multiply(overlap_matrix, mo_occ(ispin), smo, ncol, alpha=1.0_dp, beta=0.0_dp)
472 : CALL cp_fm_struct_create(emat_struct, nrow_global=ncol, ncol_global=ncol, &
473 2 : para_env=para_env, context=blacs_env)
474 2 : CALL cp_fm_create(emat, emat_struct)
475 : ! emat = mo_ref^T x smo
476 2 : CALL parallel_gemm('T', 'N', ncol, ncol, nrow, 1.0_dp, mo_ref(ispin), smo, 0.0_dp, emat)
477 2 : CALL cp_fm_create(rotated_mo_coeffs, mo_occ(ispin)%matrix_struct)
478 : ! rotated_mo_coeffs = cpmos x emat
479 2 : CALL parallel_gemm('N', 'N', nrow, ncol, ncol, 1.0_dp, mo_occ(ispin), emat, 0.0_dp, rotated_mo_coeffs)
480 :
481 77 : diff = MAXVAL(ABS(rotated_mo_coeffs%local_data - mo_occ(ispin)%local_data))
482 2 : IF (unit_nr > 0) THEN
483 1 : WRITE (unit_nr, FMT="(T9,A,I2,A,F10.6,/)") "For spin ", ispin, ": Max difference between orbitals = ", diff
484 : END IF
485 :
486 2 : CALL cp_fm_to_fm(rotated_mo_coeffs, mo_occ(ispin))
487 :
488 2 : nstates = SIZE(evects, DIM=2)
489 8 : DO istate = 1, nstates
490 2 : ASSOCIATE (current_evect => evects(ispin, istate))
491 6 : CALL parallel_gemm('N', 'N', nrow, ncol, ncol, 1.0_dp, current_evect, emat, 0.0_dp, smo)
492 6 : CALL cp_fm_to_fm(smo, current_evect)
493 : END ASSOCIATE
494 : END DO
495 :
496 2 : CALL cp_fm_struct_release(emat_struct)
497 2 : CALL cp_fm_release(smo)
498 2 : CALL cp_fm_release(emat)
499 10 : CALL cp_fm_release(rotated_mo_coeffs)
500 :
501 : END DO ! ispin
502 :
503 2 : END SUBROUTINE rotate_vectors
504 :
505 : !**************************************************************************************************
506 : !> \brief Print RIXS spectrum.
507 : !> \param donor_state ...
508 : !> \param mu_i0 ...
509 : !> \param mu_if ...
510 : !> \param w_i0 ...
511 : !> \param w_if ...
512 : !> \param rixs_env ...
513 : !> \param rixs_section ...
514 : !> \param rixs_control ...
515 : ! **************************************************************************************************
516 16 : SUBROUTINE print_rixs_to_file(donor_state, mu_i0, mu_if, w_i0, w_if, &
517 : rixs_env, rixs_section, rixs_control)
518 :
519 : TYPE(donor_state_type), POINTER :: donor_state
520 : REAL(dp), DIMENSION(:, :) :: mu_i0
521 : REAL(dp), DIMENSION(:, :, :) :: mu_if
522 : REAL(dp), DIMENSION(:) :: w_i0, w_if
523 : TYPE(rixs_env_type), POINTER :: rixs_env
524 : TYPE(section_vals_type), POINTER :: rixs_section
525 : TYPE(rixs_control_type), POINTER :: rixs_control
526 :
527 : INTEGER :: f, i, output_unit, rixs_unit
528 : TYPE(cp_logger_type), POINTER :: logger
529 :
530 16 : NULLIFY (logger)
531 16 : logger => cp_get_default_logger()
532 :
533 : rixs_unit = cp_print_key_unit_nr(logger, rixs_section, "PRINT%SPECTRUM", &
534 : extension=".rixs", file_position="APPEND", &
535 16 : file_action="WRITE", file_form="FORMATTED")
536 :
537 16 : output_unit = cp_logger_get_default_io_unit()
538 :
539 16 : IF (rixs_unit > 0) THEN
540 :
541 : WRITE (rixs_unit, FMT="(A,/,T2,A,A,A,I3,A,A,A/,A)") &
542 8 : "=====================================================================================", &
543 8 : "Excitation from ground-state (", &
544 8 : rixs_env%core_state%state_type_char(donor_state%state_type), " for atom ", &
545 8 : donor_state%at_index, " of kind ", TRIM(donor_state%at_symbol), &
546 8 : ") to core-excited state i ", &
547 16 : "====================================================================================="
548 :
549 : WRITE (rixs_unit, FMT="(T3,A)") &
550 8 : "w_0i (eV) mu^x_0i (a.u.) mu^y_0i (a.u.) mu^z_0i (a.u.) mu^2_0i (a.u.)"
551 91 : DO i = 1, rixs_control%core_states
552 : WRITE (rixs_unit, FMT="(T2,F10.4,T26,E12.5,T42,E12.5,T58,E12.5,T74,E12.5)") &
553 91 : w_i0(i), mu_i0(1, i), mu_i0(2, i), mu_i0(3, i), mu_i0(4, i)
554 : END DO
555 :
556 : WRITE (rixs_unit, FMT="(A,/,T2,A,/,A)") &
557 8 : "=====================================================================================", &
558 8 : "Emission from core-excited state i to valence-excited state f ", &
559 16 : "====================================================================================="
560 :
561 : WRITE (rixs_unit, FMT="(T3,A)") &
562 8 : "w_0i (eV) w_if (eV) mu^x_if (a.u.) mu^y_if (a.u.) mu^z_if (a.u.) mu^2_if (a.u.)"
563 :
564 91 : DO i = 1, rixs_control%core_states
565 363 : DO f = 1, rixs_control%valence_states
566 : WRITE (rixs_unit, FMT="(T2,F10.4,T14,F8.4,T26,E12.5,T42,E12.5,T58,E12.5,T74,E12.5)") &
567 355 : w_i0(i), w_if(f), mu_if(1, i, f), mu_if(2, i, f), mu_if(3, i, f), mu_if(4, i, f)
568 : END DO
569 : END DO
570 :
571 : END IF
572 :
573 16 : CALL cp_print_key_finished_output(rixs_unit, logger, rixs_section, "PRINT%SPECTRUM")
574 :
575 16 : END SUBROUTINE print_rixs_to_file
576 :
577 : END MODULE rixs_methods
|