LCOV - code coverage report
Current view: top level - src - rpa_gw.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:1f285aa) Lines: 2288 2443 93.7 %
Date: 2024-04-23 06:49:27 Functions: 50 50 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2024 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines for GW, continuous development [Jan Wilhelm]
      10             : !> \par History
      11             : !>      03.2019 created [Frederick Stein]
      12             : !>      12.2022 added periodic GW routines [Jan Wilhelm]
      13             : ! **************************************************************************************************
      14             : MODULE rpa_gw
      15             :    USE ai_overlap,                      ONLY: overlap
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      17             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      18             :                                               gto_basis_set_type
      19             :    USE cell_types,                      ONLY: cell_type,&
      20             :                                               get_cell
      21             :    USE core_ppnl,                       ONLY: build_core_ppnl
      22             :    USE cp_cfm_basic_linalg,             ONLY: cp_cfm_scale,&
      23             :                                               cp_cfm_scale_and_add,&
      24             :                                               cp_cfm_scale_and_add_fm,&
      25             :                                               cp_cfm_transpose
      26             :    USE cp_cfm_diag,                     ONLY: cp_cfm_geeig_canon
      27             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      28             :                                               cp_cfm_get_info,&
      29             :                                               cp_cfm_release,&
      30             :                                               cp_cfm_set_all,&
      31             :                                               cp_cfm_to_fm,&
      32             :                                               cp_cfm_type,&
      33             :                                               cp_fm_to_cfm
      34             :    USE cp_control_types,                ONLY: dft_control_type
      35             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      36             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      37             :                                               copy_fm_to_dbcsr,&
      38             :                                               dbcsr_allocate_matrix_set,&
      39             :                                               dbcsr_deallocate_matrix_set
      40             :    USE cp_files,                        ONLY: close_file,&
      41             :                                               open_file
      42             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_scale_and_add,&
      43             :                                               cp_fm_upper_to_full
      44             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      45             :                                               cp_fm_cholesky_invert
      46             :    USE cp_fm_diag,                      ONLY: cp_fm_syevd
      47             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      48             :                                               cp_fm_struct_release,&
      49             :                                               cp_fm_struct_type
      50             :    USE cp_fm_types,                     ONLY: &
      51             :         cp_fm_copy_general, cp_fm_create, cp_fm_get_diag, cp_fm_get_info, cp_fm_release, &
      52             :         cp_fm_set_all, cp_fm_to_fm, cp_fm_to_fm_submat, cp_fm_type
      53             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      54             :                                               cp_logger_get_default_unit_nr,&
      55             :                                               cp_logger_type
      56             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      57             :                                               cp_print_key_unit_nr
      58             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      59             :    USE dbcsr_api,                       ONLY: &
      60             :         dbcsr_add_on_diag, dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, dbcsr_filter, &
      61             :         dbcsr_get_info, dbcsr_init_p, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
      62             :         dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
      63             :         dbcsr_p_type, dbcsr_release, dbcsr_release_p, dbcsr_scale, dbcsr_set, dbcsr_type, &
      64             :         dbcsr_type_antisymmetric, dbcsr_type_no_symmetry
      65             :    USE dbt_api,                         ONLY: &
      66             :         dbt_batched_contract_finalize, dbt_batched_contract_init, dbt_clear, dbt_contract, &
      67             :         dbt_copy, dbt_copy_matrix_to_tensor, dbt_copy_tensor_to_matrix, dbt_create, dbt_destroy, &
      68             :         dbt_get_block, dbt_get_info, dbt_iterator_blocks_left, dbt_iterator_next_block, &
      69             :         dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, dbt_nblks_total, &
      70             :         dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
      71             :    USE hfx_types,                       ONLY: block_ind_type,&
      72             :                                               dealloc_containers,&
      73             :                                               hfx_compression_type
      74             :    USE input_constants,                 ONLY: gw_pade_approx,&
      75             :                                               gw_two_pole_model,&
      76             :                                               ri_rpa_g0w0_crossing_bisection,&
      77             :                                               ri_rpa_g0w0_crossing_newton,&
      78             :                                               ri_rpa_g0w0_crossing_z_shot,&
      79             :                                               soc_none
      80             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      81             :                                               section_vals_type
      82             :    USE kinds,                           ONLY: default_path_length,&
      83             :                                               dp
      84             :    USE kpoint_methods,                  ONLY: kpoint_density_matrices,&
      85             :                                               kpoint_density_transform,&
      86             :                                               kpoint_init_cell_index
      87             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      88             :                                               kpoint_create,&
      89             :                                               kpoint_release,&
      90             :                                               kpoint_sym_create,&
      91             :                                               kpoint_type
      92             :    USE machine,                         ONLY: m_walltime
      93             :    USE mathconstants,                   ONLY: fourpi,&
      94             :                                               gaussi,&
      95             :                                               pi,&
      96             :                                               twopi,&
      97             :                                               z_one,&
      98             :                                               z_zero
      99             :    USE message_passing,                 ONLY: mp_para_env_type
     100             :    USE mp2_types,                       ONLY: mp2_type,&
     101             :                                               one_dim_real_array,&
     102             :                                               two_dim_int_array
     103             :    USE parallel_gemm_api,               ONLY: parallel_gemm
     104             :    USE particle_list_types,             ONLY: particle_list_type
     105             :    USE particle_types,                  ONLY: particle_type
     106             :    USE physcon,                         ONLY: evolt
     107             :    USE pw_env_types,                    ONLY: pw_env_get,&
     108             :                                               pw_env_type
     109             :    USE pw_methods,                      ONLY: pw_axpy,&
     110             :                                               pw_copy,&
     111             :                                               pw_scale,&
     112             :                                               pw_zero
     113             :    USE pw_pool_types,                   ONLY: pw_pool_type
     114             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
     115             :                                               pw_r3d_rs_type
     116             :    USE qs_band_structure,               ONLY: calculate_kp_orbitals
     117             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
     118             :    USE qs_environment_types,            ONLY: get_qs_env,&
     119             :                                               qs_env_release,&
     120             :                                               qs_environment_type
     121             :    USE qs_force_types,                  ONLY: qs_force_type
     122             :    USE qs_gamma2kp,                     ONLY: create_kp_from_gamma
     123             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
     124             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     125             :                                               qs_kind_type
     126             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     127             :    USE qs_mo_types,                     ONLY: get_mo_set
     128             :    USE qs_moments,                      ONLY: build_berry_moment_matrix
     129             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
     130             :                                               release_neighbor_list_sets
     131             :    USE qs_neighbor_lists,               ONLY: setup_neighbor_list
     132             :    USE qs_overlap,                      ONLY: build_overlap_matrix_simple
     133             :    USE qs_scf_types,                    ONLY: qs_scf_env_type
     134             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     135             :                                               qs_subsys_type
     136             :    USE qs_tensors,                      ONLY: decompress_tensor
     137             :    USE qs_tensors_types,                ONLY: create_2c_tensor
     138             :    USE rpa_gw_ic,                       ONLY: apply_ic_corr
     139             :    USE rpa_gw_im_time_util,             ONLY: get_tensor_3c_overl_int_gw
     140             :    USE rpa_gw_kpoints_util,             ONLY: get_mat_cell_T_from_mat_gamma,&
     141             :                                               mat_kp_from_mat_gamma,&
     142             :                                               real_space_to_kpoint_transform_rpa
     143             :    USE rpa_im_time,                     ONLY: compute_periodic_dm
     144             :    USE scf_control_types,               ONLY: scf_control_type
     145             :    USE util,                            ONLY: sort
     146             :    USE virial_types,                    ONLY: virial_type
     147             : #include "./base/base_uses.f90"
     148             : 
     149             :    IMPLICIT NONE
     150             : 
     151             :    PRIVATE
     152             : 
     153             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw'
     154             : 
     155             :    PUBLIC :: allocate_matrices_gw_im_time, allocate_matrices_gw, compute_GW_self_energy, compute_QP_energies, &
     156             :              deallocate_matrices_gw_im_time, deallocate_matrices_gw, compute_minus_vxc_kpoints, trafo_to_mo_and_kpoints, &
     157             :              get_fermi_level_offset, compute_W_cubic_GW, continuation_pade
     158             : 
     159             : CONTAINS
     160             : 
     161             : ! **************************************************************************************************
     162             : !> \brief ...
     163             : !> \param gw_corr_lev_occ ...
     164             : !> \param gw_corr_lev_virt ...
     165             : !> \param homo ...
     166             : !> \param nmo ...
     167             : !> \param num_integ_points ...
     168             : !> \param unit_nr ...
     169             : !> \param RI_blk_sizes ...
     170             : !> \param do_ic_model ...
     171             : !> \param para_env ...
     172             : !> \param fm_mat_W ...
     173             : !> \param fm_mat_Q ...
     174             : !> \param mo_coeff ...
     175             : !> \param t_3c_overl_int_ao_mo ...
     176             : !> \param t_3c_O_mo_compressed ...
     177             : !> \param t_3c_O_mo_ind ...
     178             : !> \param t_3c_overl_int_gw_RI ...
     179             : !> \param t_3c_overl_int_gw_AO ...
     180             : !> \param starts_array_mc ...
     181             : !> \param ends_array_mc ...
     182             : !> \param t_3c_overl_nnP_ic ...
     183             : !> \param t_3c_overl_nnP_ic_reflected ...
     184             : !> \param matrix_s ...
     185             : !> \param mat_W ...
     186             : !> \param t_3c_overl_int ...
     187             : !> \param t_3c_O_compressed ...
     188             : !> \param t_3c_O_ind ...
     189             : !> \param qs_env ...
     190             : ! **************************************************************************************************
     191          92 :    SUBROUTINE allocate_matrices_gw_im_time(gw_corr_lev_occ, gw_corr_lev_virt, homo, nmo, &
     192             :                                            num_integ_points, unit_nr, &
     193             :                                            RI_blk_sizes, do_ic_model, &
     194             :                                            para_env, fm_mat_W, fm_mat_Q, &
     195          46 :                                            mo_coeff, &
     196             :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     197             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     198          46 :                                            starts_array_mc, ends_array_mc, &
     199             :                                            t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, &
     200          46 :                                            matrix_s, mat_W, t_3c_overl_int, &
     201          46 :                                            t_3c_O_compressed, t_3c_O_ind, &
     202             :                                            qs_env)
     203             : 
     204             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     205             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_points, unit_nr
     206             :       INTEGER, DIMENSION(:), POINTER                     :: RI_blk_sizes
     207             :       LOGICAL, INTENT(IN)                                :: do_ic_model
     208             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     209             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     210             :          INTENT(OUT)                                     :: fm_mat_W
     211             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q
     212             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
     213             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
     214             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     215             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     216             :       TYPE(two_dim_int_array), ALLOCATABLE, &
     217             :          DIMENSION(:), INTENT(OUT)                       :: t_3c_O_mo_ind
     218             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     219             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     220             :                                                             t_3c_overl_int_gw_AO
     221             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
     222             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     223             :          INTENT(INOUT)                                   :: t_3c_overl_nnP_ic, &
     224             :                                                             t_3c_overl_nnP_ic_reflected
     225             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
     226             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     227             :       TYPE(dbt_type), DIMENSION(:, :)                    :: t_3c_overl_int
     228             :       TYPE(hfx_compression_type), DIMENSION(:, :, :)     :: t_3c_O_compressed
     229             :       TYPE(block_ind_type), DIMENSION(:, :, :)           :: t_3c_O_ind
     230             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     231             : 
     232             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw_im_time'
     233             : 
     234             :       INTEGER                                            :: handle, jquad, nspins
     235             :       LOGICAL                                            :: my_open_shell
     236         414 :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo_beta
     237             : 
     238          46 :       CALL timeset(routineN, handle)
     239             : 
     240          46 :       nspins = SIZE(homo)
     241          46 :       my_open_shell = (nspins == 2)
     242             : 
     243           0 :       ALLOCATE (t_3c_O_mo_ind(nspins), t_3c_overl_int_gw_AO(nspins), t_3c_overl_int_gw_RI(nspins), &
     244       99604 :                 t_3c_overl_nnP_ic(nspins), t_3c_overl_nnP_ic_reflected(nspins), t_3c_O_mo_compressed(nspins))
     245             :       CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     246             :                                       t_3c_O_compressed, t_3c_O_ind, &
     247             :                                       t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(1), t_3c_O_mo_ind(1)%array, &
     248             :                                       t_3c_overl_int_gw_RI(1), t_3c_overl_int_gw_AO(1), &
     249             :                                       starts_array_mc, ends_array_mc, &
     250             :                                       mo_coeff(1), matrix_s, &
     251             :                                       gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), nmo, &
     252             :                                       para_env, &
     253             :                                       do_ic_model, &
     254             :                                       t_3c_overl_nnP_ic(1), t_3c_overl_nnP_ic_reflected(1), &
     255          46 :                                       qs_env, unit_nr, do_alpha=.TRUE.)
     256             : 
     257          46 :       IF (my_open_shell) THEN
     258             : 
     259             :          CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     260             :                                          t_3c_O_compressed, t_3c_O_ind, &
     261             :                                          t_3c_overl_int_ao_mo_beta, t_3c_O_mo_compressed(2), t_3c_O_mo_ind(2)%array, &
     262             :                                          t_3c_overl_int_gw_RI(2), t_3c_overl_int_gw_AO(2), &
     263             :                                          starts_array_mc, ends_array_mc, &
     264             :                                          mo_coeff(2), matrix_s, &
     265             :                                          gw_corr_lev_occ(2), gw_corr_lev_virt(2), homo(2), nmo, &
     266             :                                          para_env, &
     267             :                                          do_ic_model, &
     268             :                                          t_3c_overl_nnP_ic(2), t_3c_overl_nnP_ic_reflected(2), &
     269          10 :                                          qs_env, unit_nr, do_alpha=.FALSE.)
     270             : 
     271          10 :          IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     272           6 :             CALL dbt_destroy(t_3c_overl_int_ao_mo_beta)
     273             :          END IF
     274             : 
     275             :       END IF
     276             : 
     277         616 :       ALLOCATE (fm_mat_W(num_integ_points))
     278             : 
     279         524 :       DO jquad = 1, num_integ_points
     280             : 
     281         478 :          CALL cp_fm_create(fm_mat_W(jquad), fm_mat_Q%matrix_struct)
     282         478 :          CALL cp_fm_to_fm(fm_mat_Q, fm_mat_W(jquad))
     283         524 :          CALL cp_fm_set_all(fm_mat_W(jquad), 0.0_dp)
     284             : 
     285             :       END DO
     286             : 
     287          46 :       NULLIFY (mat_W)
     288          46 :       CALL dbcsr_init_p(mat_W)
     289             :       CALL dbcsr_create(matrix=mat_W, &
     290             :                         template=matrix_s(1)%matrix, &
     291             :                         matrix_type=dbcsr_type_no_symmetry, &
     292             :                         row_blk_size=RI_blk_sizes, &
     293          46 :                         col_blk_size=RI_blk_sizes)
     294             : 
     295          46 :       CALL timestop(handle)
     296             : 
     297          92 :    END SUBROUTINE allocate_matrices_gw_im_time
     298             : 
     299             : ! **************************************************************************************************
     300             : !> \brief ...
     301             : !> \param vec_Sigma_c_gw ...
     302             : !> \param color_rpa_group ...
     303             : !> \param dimen_nm_gw ...
     304             : !> \param gw_corr_lev_occ ...
     305             : !> \param gw_corr_lev_virt ...
     306             : !> \param homo ...
     307             : !> \param nmo ...
     308             : !> \param num_integ_group ...
     309             : !> \param num_integ_points ...
     310             : !> \param unit_nr ...
     311             : !> \param gw_corr_lev_tot ...
     312             : !> \param num_fit_points ...
     313             : !> \param omega_max_fit ...
     314             : !> \param do_minimax_quad ...
     315             : !> \param do_periodic ...
     316             : !> \param do_ri_Sigma_x ...
     317             : !> \param my_do_gw ...
     318             : !> \param first_cycle_periodic_correction ...
     319             : !> \param a_scaling ...
     320             : !> \param Eigenval ...
     321             : !> \param tj ...
     322             : !> \param vec_omega_fit_gw ...
     323             : !> \param vec_Sigma_x_gw ...
     324             : !> \param delta_corr ...
     325             : !> \param Eigenval_last ...
     326             : !> \param Eigenval_scf ...
     327             : !> \param vec_W_gw ...
     328             : !> \param fm_mat_S_gw ...
     329             : !> \param fm_mat_S_gw_work ...
     330             : !> \param para_env ...
     331             : !> \param mp2_env ...
     332             : !> \param kpoints ...
     333             : !> \param nkp ...
     334             : !> \param nkp_self_energy ...
     335             : !> \param do_kpoints_cubic_RPA ...
     336             : !> \param do_kpoints_from_Gamma ...
     337             : ! **************************************************************************************************
     338          72 :    SUBROUTINE allocate_matrices_gw(vec_Sigma_c_gw, color_rpa_group, dimen_nm_gw, &
     339          72 :                                    gw_corr_lev_occ, gw_corr_lev_virt, homo, &
     340             :                                    nmo, num_integ_group, num_integ_points, unit_nr, &
     341             :                                    gw_corr_lev_tot, num_fit_points, omega_max_fit, &
     342             :                                    do_minimax_quad, do_periodic, do_ri_Sigma_x, my_do_gw, &
     343             :                                    first_cycle_periodic_correction, &
     344             :                                    a_scaling, Eigenval, tj, vec_omega_fit_gw, vec_Sigma_x_gw, &
     345             :                                    delta_corr, Eigenval_last, Eigenval_scf, vec_W_gw, &
     346          72 :                                    fm_mat_S_gw, fm_mat_S_gw_work, &
     347             :                                    para_env, mp2_env, kpoints, nkp, nkp_self_energy, &
     348             :                                    do_kpoints_cubic_RPA, do_kpoints_from_Gamma)
     349             : 
     350             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     351             :          DIMENSION(:, :, :, :), INTENT(OUT)              :: vec_Sigma_c_gw
     352             :       INTEGER, INTENT(IN)                                :: color_rpa_group, dimen_nm_gw
     353             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     354             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_group, num_integ_points, &
     355             :                                                             unit_nr
     356             :       INTEGER, INTENT(INOUT)                             :: gw_corr_lev_tot, num_fit_points
     357             :       REAL(KIND=dp)                                      :: omega_max_fit
     358             :       LOGICAL, INTENT(IN)                                :: do_minimax_quad, do_periodic, &
     359             :                                                             do_ri_Sigma_x, my_do_gw
     360             :       LOGICAL, INTENT(OUT) :: first_cycle_periodic_correction
     361             :       REAL(KIND=dp), INTENT(IN)                          :: a_scaling
     362             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     363             :          INTENT(INOUT)                                   :: Eigenval
     364             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     365             :          INTENT(IN)                                      :: tj
     366             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     367             :          INTENT(OUT)                                     :: vec_omega_fit_gw
     368             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     369             :          INTENT(OUT)                                     :: vec_Sigma_x_gw
     370             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     371             :          INTENT(INOUT)                                   :: delta_corr
     372             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     373             :          INTENT(OUT)                                     :: Eigenval_last, Eigenval_scf
     374             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     375             :          INTENT(OUT)                                     :: vec_W_gw
     376             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw
     377             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     378             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     379             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     380             :       TYPE(mp2_type)                                     :: mp2_env
     381             :       TYPE(kpoint_type), POINTER                         :: kpoints
     382             :       INTEGER, INTENT(OUT)                               :: nkp, nkp_self_energy
     383             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA, &
     384             :                                                             do_kpoints_from_Gamma
     385             : 
     386             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw'
     387             : 
     388             :       INTEGER                                            :: handle, iquad, ispin, jquad, nspins
     389             :       LOGICAL                                            :: my_open_shell
     390             :       REAL(KIND=dp)                                      :: omega
     391          72 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_gw
     392             : 
     393          72 :       CALL timeset(routineN, handle)
     394             : 
     395          72 :       nspins = SIZE(Eigenval, 3)
     396          72 :       my_open_shell = (nspins == 2)
     397             : 
     398          72 :       gw_corr_lev_tot = gw_corr_lev_occ(1) + gw_corr_lev_virt(1)
     399             : 
     400             :       ! fill the omega_frequency vector
     401         216 :       ALLOCATE (vec_omega_gw(num_integ_points))
     402        1230 :       vec_omega_gw = 0.0_dp
     403             : 
     404        1230 :       DO jquad = 1, num_integ_points
     405        1158 :          IF (do_minimax_quad) THEN
     406         478 :             omega = tj(jquad)
     407             :          ELSE
     408         680 :             omega = a_scaling/TAN(tj(jquad))
     409             :          END IF
     410        1230 :          vec_omega_gw(jquad) = omega
     411             :       END DO
     412             : 
     413             :       ! determine number of fit points in the interval [0,w_max] for virt, or [-w_max,0] for occ
     414          72 :       num_fit_points = 0
     415             : 
     416        1230 :       DO jquad = 1, num_integ_points
     417        1230 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     418         830 :             num_fit_points = num_fit_points + 1
     419             :          END IF
     420             :       END DO
     421             : 
     422          72 :       IF (mp2_env%ri_g0w0%analytic_continuation == gw_pade_approx) THEN
     423          38 :          IF (mp2_env%ri_g0w0%nparam_pade > num_fit_points) THEN
     424          30 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A)") &
     425          15 :                "Pade approximation: more parameters than data points. Reset # of parameters."
     426          30 :             mp2_env%ri_g0w0%nparam_pade = num_fit_points
     427          30 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A,T74,I7)") &
     428          15 :                "Number of pade parameters:", mp2_env%ri_g0w0%nparam_pade
     429             :          END IF
     430             :       END IF
     431             : 
     432             :       ! create new arrays containing omega values at which we calculate vec_Sigma_c_gw
     433         216 :       ALLOCATE (vec_omega_fit_gw(num_fit_points))
     434             : 
     435             :       ! fill the omega vector with frequencies, where we calculate the self-energy
     436          72 :       iquad = 0
     437        1230 :       DO jquad = 1, num_integ_points
     438        1230 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     439         830 :             iquad = iquad + 1
     440         830 :             vec_omega_fit_gw(iquad) = vec_omega_gw(jquad)
     441             :          END IF
     442             :       END DO
     443             : 
     444          72 :       DEALLOCATE (vec_omega_gw)
     445             : 
     446          72 :       IF (do_kpoints_cubic_RPA) THEN
     447           0 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     448           0 :          IF (mp2_env%ri_g0w0%do_gamma_only_sigma) THEN
     449           0 :             nkp_self_energy = 1
     450             :          ELSE
     451           0 :             nkp_self_energy = nkp
     452             :          END IF
     453          72 :       ELSE IF (do_kpoints_from_Gamma) THEN
     454          18 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     455          18 :          IF (mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     456          18 :             nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
     457             :          ELSE
     458           0 :             nkp_self_energy = 1
     459             :          END IF
     460             :       ELSE
     461          54 :          nkp = 1
     462          54 :          nkp_self_energy = 1
     463             :       END IF
     464         432 :       ALLOCATE (vec_Sigma_c_gw(gw_corr_lev_tot, num_fit_points, nkp_self_energy, nspins))
     465       17896 :       vec_Sigma_c_gw = z_zero
     466             : 
     467         360 :       ALLOCATE (Eigenval_scf(nmo, nkp_self_energy, nspins))
     468        5262 :       Eigenval_scf(:, :, :) = Eigenval(:, :, :)
     469             : 
     470         360 :       ALLOCATE (Eigenval_last(nmo, nkp_self_energy, nspins))
     471        5262 :       Eigenval_last(:, :, :) = Eigenval(:, :, :)
     472             : 
     473          72 :       IF (do_periodic) THEN
     474             : 
     475          12 :          ALLOCATE (delta_corr(1 + homo(1) - gw_corr_lev_occ(1):homo(1) + gw_corr_lev_virt(1)))
     476          48 :          delta_corr(:) = 0.0_dp
     477             : 
     478           4 :          first_cycle_periodic_correction = .TRUE.
     479             : 
     480             :       END IF
     481             : 
     482         360 :       ALLOCATE (vec_Sigma_x_gw(nmo, nkp_self_energy, nspins))
     483        5262 :       vec_Sigma_x_gw = 0.0_dp
     484             : 
     485          72 :       IF (my_do_gw) THEN
     486             : 
     487             :          ! minimax grids not implemented for O(N^4) GW
     488          26 :          CPASSERT(.NOT. do_minimax_quad)
     489             : 
     490             :          ! create temporary matrix to store B*([1+Q(iw')]^-1-1), has the same size as B
     491         108 :          ALLOCATE (fm_mat_S_gw_work(nspins))
     492          56 :          DO ispin = 1, nspins
     493          30 :             CALL cp_fm_create(fm_mat_S_gw_work(ispin), fm_mat_S_gw(ispin)%matrix_struct)
     494          56 :             CALL cp_fm_set_all(matrix=fm_mat_S_gw_work(ispin), alpha=0.0_dp)
     495             :          END DO
     496             : 
     497         104 :          ALLOCATE (vec_W_gw(dimen_nm_gw, nspins))
     498       10488 :          vec_W_gw = 0.0_dp
     499             : 
     500             :          ! in case we do RI for Sigma_x, we calculate Sigma_x right here
     501          26 :          IF (do_ri_Sigma_x) THEN
     502             : 
     503             :             CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 1), nmo, fm_mat_S_gw(1), para_env, num_integ_group, color_rpa_group, &
     504           8 :                                  homo(1), gw_corr_lev_occ(1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, 1))
     505             : 
     506           8 :             IF (my_open_shell) THEN
     507             :                CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 2), nmo, fm_mat_S_gw(2), para_env, num_integ_group, &
     508             :                                     color_rpa_group, homo(2), gw_corr_lev_occ(2), &
     509           0 :                                     mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, 1))
     510             :             END IF
     511             : 
     512             :          END IF
     513             : 
     514             :       END IF
     515             : 
     516          72 :       CALL timestop(handle)
     517             : 
     518          72 :    END SUBROUTINE allocate_matrices_gw
     519             : 
     520             : ! **************************************************************************************************
     521             : !> \brief ...
     522             : !> \param vec_Sigma_x_gw ...
     523             : !> \param nmo ...
     524             : !> \param fm_mat_S_gw ...
     525             : !> \param para_env ...
     526             : !> \param num_integ_group ...
     527             : !> \param color_rpa_group ...
     528             : !> \param homo ...
     529             : !> \param gw_corr_lev_occ ...
     530             : !> \param vec_Sigma_x_minus_vxc_gw11 ...
     531             : ! **************************************************************************************************
     532           8 :    SUBROUTINE get_vec_sigma_x(vec_Sigma_x_gw, nmo, fm_mat_S_gw, para_env, num_integ_group, color_rpa_group, homo, &
     533           8 :                               gw_corr_lev_occ, vec_Sigma_x_minus_vxc_gw11)
     534             : 
     535             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
     536             :       INTEGER, INTENT(IN)                                :: nmo
     537             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_S_gw
     538             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     539             :       INTEGER, INTENT(IN)                                :: num_integ_group, color_rpa_group, homo, &
     540             :                                                             gw_corr_lev_occ
     541             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw11
     542             : 
     543             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_vec_sigma_x'
     544             : 
     545             :       INTEGER                                            :: handle, iiB, m_global, n_global, &
     546             :                                                             ncol_local, nm_global, nrow_local
     547           8 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
     548             : 
     549           8 :       CALL timeset(routineN, handle)
     550             : 
     551             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
     552             :                           nrow_local=nrow_local, &
     553             :                           ncol_local=ncol_local, &
     554           8 :                           col_indices=col_indices)
     555             : 
     556           8 :       CALL para_env%sync()
     557             : 
     558             :       ! loop over (nm) index
     559        3412 :       DO iiB = 1, ncol_local
     560             : 
     561             :          ! this is needed for correct values within parallelization
     562        3404 :          IF (MODULO(1, num_integ_group) /= color_rpa_group) CYCLE
     563             : 
     564        2760 :          nm_global = col_indices(iiB)
     565             : 
     566             :          ! transform the index nm to n and m, formulae copied from Mauro's code
     567        2760 :          n_global = MAX(1, nm_global - 1)/nmo + 1
     568        2760 :          m_global = nm_global - (n_global - 1)*nmo
     569        2760 :          n_global = n_global + homo - gw_corr_lev_occ
     570             : 
     571        2768 :          IF (m_global <= homo) THEN
     572             : 
     573             :             ! Sigma_x_n = -sum_m^occ sum_P (B_(nm)^P)^2
     574             :             vec_Sigma_x_gw(n_global, 1) = &
     575             :                vec_Sigma_x_gw(n_global, 1) - &
     576       25048 :                DOT_PRODUCT(fm_mat_S_gw%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
     577             : 
     578             :          END IF
     579             : 
     580             :       END DO
     581             : 
     582           8 :       CALL para_env%sync()
     583             : 
     584         392 :       CALL para_env%sum(vec_Sigma_x_gw)
     585             : 
     586             :       vec_Sigma_x_minus_vxc_gw11(:) = &
     587             :          vec_Sigma_x_minus_vxc_gw11(:) + &
     588         192 :          vec_Sigma_x_gw(:, 1)
     589             : 
     590           8 :       CALL timestop(handle)
     591             : 
     592           8 :    END SUBROUTINE get_vec_sigma_x
     593             : 
     594             : ! **************************************************************************************************
     595             : !> \brief ...
     596             : !> \param fm_mat_S_gw_work ...
     597             : !> \param vec_W_gw ...
     598             : !> \param vec_Sigma_c_gw ...
     599             : !> \param vec_omega_fit_gw ...
     600             : !> \param vec_Sigma_x_minus_vxc_gw ...
     601             : !> \param Eigenval_last ...
     602             : !> \param Eigenval_scf ...
     603             : !> \param do_periodic ...
     604             : !> \param matrix_berry_re_mo_mo ...
     605             : !> \param matrix_berry_im_mo_mo ...
     606             : !> \param kpoints ...
     607             : !> \param vec_Sigma_x_gw ...
     608             : !> \param my_do_gw ...
     609             : ! **************************************************************************************************
     610          72 :    SUBROUTINE deallocate_matrices_gw(fm_mat_S_gw_work, vec_W_gw, vec_Sigma_c_gw, vec_omega_fit_gw, &
     611             :                                      vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     612             :                                      Eigenval_scf, do_periodic, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, kpoints, &
     613             :                                      vec_Sigma_x_gw, my_do_gw)
     614             : 
     615             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     616             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     617             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     618             :          INTENT(INOUT)                                   :: vec_W_gw
     619             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     620             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     621             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     622             :          INTENT(INOUT)                                   :: vec_omega_fit_gw
     623             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     624             :          INTENT(INOUT)                                   :: vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     625             :                                                             Eigenval_scf
     626             :       LOGICAL, INTENT(IN)                                :: do_periodic
     627             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
     628             :                                                             matrix_berry_im_mo_mo
     629             :       TYPE(kpoint_type), POINTER                         :: kpoints
     630             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     631             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
     632             :       LOGICAL, INTENT(IN)                                :: my_do_gw
     633             : 
     634             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw'
     635             : 
     636             :       INTEGER                                            :: handle, nspins
     637             :       LOGICAL                                            :: my_open_shell
     638             : 
     639          72 :       CALL timeset(routineN, handle)
     640             : 
     641          72 :       nspins = SIZE(Eigenval_last, 3)
     642          72 :       my_open_shell = (nspins == 2)
     643             : 
     644          72 :       IF (my_do_gw) THEN
     645          26 :          CALL cp_fm_release(fm_mat_S_gw_work)
     646          26 :          DEALLOCATE (vec_Sigma_x_minus_vxc_gw)
     647          26 :          DEALLOCATE (vec_W_gw)
     648             :       END IF
     649             : 
     650          72 :       DEALLOCATE (vec_Sigma_c_gw)
     651          72 :       DEALLOCATE (vec_Sigma_x_gw)
     652          72 :       DEALLOCATE (vec_omega_fit_gw)
     653          72 :       DEALLOCATE (Eigenval_last)
     654          72 :       DEALLOCATE (Eigenval_scf)
     655             : 
     656          72 :       IF (do_periodic) THEN
     657           4 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_re_mo_mo)
     658           4 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_im_mo_mo)
     659           4 :          CALL kpoint_release(kpoints)
     660             :       END IF
     661             : 
     662          72 :       CALL timestop(handle)
     663             : 
     664          72 :    END SUBROUTINE deallocate_matrices_gw
     665             : 
     666             : ! **************************************************************************************************
     667             : !> \brief ...
     668             : !> \param weights_cos_tf_w_to_t ...
     669             : !> \param weights_sin_tf_t_to_w ...
     670             : !> \param do_ic_model ...
     671             : !> \param do_kpoints_cubic_RPA ...
     672             : !> \param fm_mat_W ...
     673             : !> \param t_3c_overl_int_ao_mo ...
     674             : !> \param t_3c_O_mo_compressed ...
     675             : !> \param t_3c_O_mo_ind ...
     676             : !> \param t_3c_overl_int_gw_RI ...
     677             : !> \param t_3c_overl_int_gw_AO ...
     678             : !> \param t_3c_overl_nnP_ic ...
     679             : !> \param t_3c_overl_nnP_ic_reflected ...
     680             : !> \param mat_W ...
     681             : !> \param qs_env ...
     682             : ! **************************************************************************************************
     683          46 :    SUBROUTINE deallocate_matrices_gw_im_time(weights_cos_tf_w_to_t, weights_sin_tf_t_to_w, do_ic_model, do_kpoints_cubic_RPA, &
     684             :                                              fm_mat_W, &
     685             :                                              t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     686             :                                              t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     687             :                                              t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, mat_W, &
     688             :                                              qs_env)
     689             : 
     690             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     691             :          INTENT(INOUT)                                   :: weights_cos_tf_w_to_t, &
     692             :                                                             weights_sin_tf_t_to_w
     693             :       LOGICAL, INTENT(IN)                                :: do_ic_model, do_kpoints_cubic_RPA
     694             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     695             :          INTENT(INOUT)                                   :: fm_mat_W
     696             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_ao_mo
     697             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     698             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     699             :       TYPE(two_dim_int_array), ALLOCATABLE, DIMENSION(:) :: t_3c_O_mo_ind
     700             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     701             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     702             :                                                             t_3c_overl_int_gw_AO, &
     703             :                                                             t_3c_overl_nnP_ic, &
     704             :                                                             t_3c_overl_nnP_ic_reflected
     705             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     706             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     707             : 
     708             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw_im_time'
     709             : 
     710             :       INTEGER                                            :: handle, ispin, nspins, unused
     711             :       LOGICAL                                            :: my_open_shell
     712             : 
     713          46 :       CALL timeset(routineN, handle)
     714             : 
     715          46 :       nspins = SIZE(t_3c_overl_int_gw_RI)
     716          46 :       my_open_shell = (nspins == 2)
     717             : 
     718          46 :       IF (ALLOCATED(weights_cos_tf_w_to_t)) DEALLOCATE (weights_cos_tf_w_to_t)
     719          46 :       IF (ALLOCATED(weights_sin_tf_t_to_w)) DEALLOCATE (weights_sin_tf_t_to_w)
     720             : 
     721          46 :       IF (.NOT. do_kpoints_cubic_RPA) THEN
     722          46 :          CALL cp_fm_release(fm_mat_W)
     723          46 :          CALL dbcsr_release_P(mat_W)
     724             :       END IF
     725             : 
     726         102 :       DO ispin = 1, nspins
     727          56 :          CALL dbt_destroy(t_3c_overl_int_gw_RI(ispin))
     728         102 :          CALL dbt_destroy(t_3c_overl_int_gw_AO(ispin))
     729             :       END DO
     730         158 :       DEALLOCATE (t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI)
     731          46 :       IF (do_ic_model) THEN
     732           4 :          DO ispin = 1, nspins
     733           2 :             CALL dbt_destroy(t_3c_overl_nnP_ic(ispin))
     734           4 :             CALL dbt_destroy(t_3c_overl_nnP_ic_reflected(ispin))
     735             :          END DO
     736           6 :          DEALLOCATE (t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected)
     737             :       END IF
     738             : 
     739          46 :       IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     740          62 :          DO ispin = 1, nspins
     741          34 :             DEALLOCATE (t_3c_O_mo_ind(ispin)%array)
     742          62 :             CALL dealloc_containers(t_3c_O_mo_compressed(ispin), unused)
     743             :          END DO
     744          62 :          DEALLOCATE (t_3c_O_mo_ind, t_3c_O_mo_compressed)
     745             : 
     746          28 :          CALL dbt_destroy(t_3c_overl_int_ao_mo)
     747             :       END IF
     748             : 
     749          46 :       IF (qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     750          40 :          DO ispin = 1, nspins
     751          22 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     752          22 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     753             : 
     754          22 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     755          40 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     756             :          END DO
     757          18 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc)
     758          18 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks)
     759             :       END IF
     760             : 
     761          46 :       CALL timestop(handle)
     762             : 
     763          46 :    END SUBROUTINE deallocate_matrices_gw_im_time
     764             : 
     765             : ! **************************************************************************************************
     766             : !> \brief ...
     767             : !> \param vec_Sigma_c_gw ...
     768             : !> \param dimen_nm_gw ...
     769             : !> \param dimen_RI ...
     770             : !> \param gw_corr_lev_occ ...
     771             : !> \param gw_corr_lev_virt ...
     772             : !> \param homo ...
     773             : !> \param jquad ...
     774             : !> \param nmo ...
     775             : !> \param num_fit_points ...
     776             : !> \param num_integ_points ...
     777             : !> \param do_bse ...
     778             : !> \param do_im_time ...
     779             : !> \param do_periodic ...
     780             : !> \param first_cycle_periodic_correction ...
     781             : !> \param fermi_level_offset ...
     782             : !> \param omega ...
     783             : !> \param Eigenval ...
     784             : !> \param delta_corr ...
     785             : !> \param vec_omega_fit_gw ...
     786             : !> \param vec_W_gw ...
     787             : !> \param wj ...
     788             : !> \param fm_mat_Q ...
     789             : !> \param fm_mat_Q_static_bse ...
     790             : !> \param fm_mat_R_gw ...
     791             : !> \param fm_mat_S_gw ...
     792             : !> \param fm_mat_S_gw_work ...
     793             : !> \param mo_coeff ...
     794             : !> \param para_env ...
     795             : !> \param para_env_RPA ...
     796             : !> \param matrix_berry_im_mo_mo ...
     797             : !> \param matrix_berry_re_mo_mo ...
     798             : !> \param kpoints ...
     799             : !> \param qs_env ...
     800             : !> \param mp2_env ...
     801             : ! **************************************************************************************************
     802        4300 :    SUBROUTINE compute_GW_self_energy(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
     803         860 :                                      gw_corr_lev_virt, homo, jquad, nmo, num_fit_points, &
     804             :                                      num_integ_points, do_bse, do_im_time, do_periodic, &
     805             :                                      first_cycle_periodic_correction, fermi_level_offset, &
     806         860 :                                      omega, Eigenval, delta_corr, vec_omega_fit_gw, vec_W_gw, wj, &
     807         860 :                                      fm_mat_Q, fm_mat_Q_static_bse, fm_mat_R_gw, fm_mat_S_gw, &
     808         860 :                                      fm_mat_S_gw_work, mo_coeff, para_env, &
     809             :                                      para_env_RPA, matrix_berry_im_mo_mo, matrix_berry_re_mo_mo, &
     810             :                                      kpoints, qs_env, mp2_env)
     811             : 
     812             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     813             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     814             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI
     815             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     816             :       INTEGER, INTENT(IN)                                :: jquad, nmo, num_fit_points, &
     817             :                                                             num_integ_points
     818             :       LOGICAL, INTENT(IN)                                :: do_bse, do_im_time, do_periodic
     819             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
     820             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset, omega
     821             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     822             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     823             :          INTENT(INOUT)                                   :: delta_corr
     824             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     825             :          INTENT(IN)                                      :: vec_omega_fit_gw
     826             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     827             :          INTENT(INOUT)                                   :: vec_W_gw
     828             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     829             :          INTENT(IN)                                      :: wj
     830             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_Q_static_bse, &
     831             :                                                             fm_mat_R_gw
     832             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw, fm_mat_S_gw_work
     833             :       TYPE(cp_fm_type), INTENT(IN)                       :: mo_coeff
     834             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
     835             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
     836             :                                                             matrix_berry_re_mo_mo
     837             :       TYPE(kpoint_type), POINTER                         :: kpoints
     838             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     839             :       TYPE(mp2_type)                                     :: mp2_env
     840             : 
     841             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy'
     842             : 
     843             :       INTEGER                                            :: handle, i_global, iiB, ispin, j_global, &
     844             :                                                             jjB, ncol_local, nrow_local, nspins
     845         860 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     846             : 
     847         860 :       CALL timeset(routineN, handle)
     848             : 
     849         860 :       nspins = SIZE(fm_mat_S_gw)
     850             : 
     851             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     852             :                           nrow_local=nrow_local, &
     853             :                           ncol_local=ncol_local, &
     854             :                           row_indices=row_indices, &
     855         860 :                           col_indices=col_indices)
     856             : 
     857         860 :       IF (.NOT. do_im_time) THEN
     858             :          ! calculate [1+Q(iw')]^-1
     859         860 :          CALL cp_fm_cholesky_invert(fm_mat_Q)
     860             :          ! symmetrize the result, fm_mat_R_gw is only temporary work matrix
     861         860 :          CALL cp_fm_upper_to_full(fm_mat_Q, fm_mat_R_gw)
     862             : 
     863             :          ! Omega=0 is at last index, not at jquad==1
     864         860 :          IF (do_bse .AND. jquad == num_integ_points) THEN
     865           4 :             CALL cp_fm_to_fm(fm_mat_Q, fm_mat_Q_static_bse)
     866             :          END IF
     867             : 
     868             :          ! periodic correction for GW (paper Phys. Rev. B 95, 235123 (2017))
     869         860 :          IF (do_periodic) THEN
     870             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
     871             :                                           mp2_env%ri_g0w0%kp_grid, homo(1), nmo, gw_corr_lev_occ(1), &
     872             :                                           gw_corr_lev_virt(1), omega, mo_coeff, Eigenval(:, 1), &
     873             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
     874             :                                           first_cycle_periodic_correction, kpoints, &
     875             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
     876             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
     877             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
     878         240 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
     879             :          END IF
     880             : 
     881         860 :          CALL para_env%sync()
     882             : 
     883             :          ! subtract 1 from the diagonal to get rid of exchange self-energy
     884             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     885         860 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     886             :          DO jjB = 1, ncol_local
     887             :             j_global = col_indices(jjB)
     888             :             DO iiB = 1, nrow_local
     889             :                i_global = row_indices(iiB)
     890             :                IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     891             :                   fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
     892             :                END IF
     893             :             END DO
     894             :          END DO
     895             : 
     896         860 :          CALL para_env%sync()
     897             : 
     898        1780 :          DO ispin = 1, nspins
     899             :             CALL compute_GW_self_energy_deep(vec_Sigma_c_gw(:, :, :, ispin), dimen_nm_gw, dimen_RI, &
     900             :                                              gw_corr_lev_occ(ispin), homo(ispin), jquad, nmo, &
     901             :                                            num_fit_points, do_periodic, fermi_level_offset, omega, Eigenval(:, ispin), delta_corr, &
     902             :                                              vec_omega_fit_gw, vec_W_gw(:, ispin), wj, fm_mat_Q, &
     903        1780 :                                              fm_mat_S_gw(ispin), fm_mat_S_gw_work(ispin))
     904             :          END DO
     905             : 
     906             :       END IF ! GW
     907             : 
     908         860 :       CALL timestop(handle)
     909             : 
     910         860 :    END SUBROUTINE compute_GW_self_energy
     911             : 
     912             : ! **************************************************************************************************
     913             : !> \brief ...
     914             : !> \param fermi_level_offset ...
     915             : !> \param fermi_level_offset_input ...
     916             : !> \param Eigenval ...
     917             : !> \param homo ...
     918             : ! **************************************************************************************************
     919        1428 :    SUBROUTINE get_fermi_level_offset(fermi_level_offset, fermi_level_offset_input, Eigenval, homo)
     920             : 
     921             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset
     922             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset_input
     923             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     924             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: homo
     925             : 
     926             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_fermi_level_offset'
     927             : 
     928             :       INTEGER                                            :: handle, ispin, nspins
     929             : 
     930        1428 :       CALL timeset(routineN, handle)
     931             : 
     932        1428 :       nspins = SIZE(Eigenval, 2)
     933             : 
     934             :       ! Fermi level offset should have a maximum such that the Fermi level of occupied orbitals
     935             :       ! is always closer to occupied orbitals than to virtual orbitals and vice versa
     936             :       ! that means, the Fermi level offset is at most as big as half the bandgap
     937        1428 :       fermi_level_offset = fermi_level_offset_input
     938        3060 :       DO ispin = 1, nspins
     939        3060 :          fermi_level_offset = MIN(fermi_level_offset, (Eigenval(homo(ispin) + 1, ispin) - Eigenval(homo(ispin), ispin))*0.5_dp)
     940             :       END DO
     941             : 
     942        1428 :       CALL timestop(handle)
     943             : 
     944        1428 :    END SUBROUTINE get_fermi_level_offset
     945             : 
     946             : ! **************************************************************************************************
     947             : !> \brief ...
     948             : !> \param fm_mat_W ...
     949             : !> \param fm_mat_Q ...
     950             : !> \param fm_mat_work ...
     951             : !> \param dimen_RI ...
     952             : !> \param fm_mat_L ...
     953             : !> \param num_integ_points ...
     954             : !> \param tj ...
     955             : !> \param tau_tj ...
     956             : !> \param weights_cos_tf_w_to_t ...
     957             : !> \param jquad ...
     958             : !> \param omega ...
     959             : ! **************************************************************************************************
     960         460 :    SUBROUTINE compute_W_cubic_GW(fm_mat_W, fm_mat_Q, fm_mat_work, dimen_RI, fm_mat_L, num_integ_points, &
     961             :                                  tj, tau_tj, weights_cos_tf_w_to_t, jquad, omega)
     962             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
     963             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_work
     964             :       INTEGER, INTENT(IN)                                :: dimen_RI
     965             :       TYPE(cp_fm_type), DIMENSION(:, :), INTENT(IN)      :: fm_mat_L
     966             :       INTEGER, INTENT(IN)                                :: num_integ_points
     967             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     968             :          INTENT(IN)                                      :: tj, tau_tj
     969             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     970             :          INTENT(IN)                                      :: weights_cos_tf_w_to_t
     971             :       INTEGER, INTENT(IN)                                :: jquad
     972             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
     973             : 
     974             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_W_cubic_GW'
     975             : 
     976             :       INTEGER                                            :: handle, i_global, iiB, iquad, j_global, &
     977             :                                                             jjB, ncol_local, nrow_local
     978         460 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     979             :       REAL(KIND=dp)                                      :: tau, weight
     980             : 
     981         460 :       CALL timeset(routineN, handle)
     982             : 
     983             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     984             :                           nrow_local=nrow_local, &
     985             :                           ncol_local=ncol_local, &
     986             :                           row_indices=row_indices, &
     987         460 :                           col_indices=col_indices)
     988             :       ! calculate [1+Q(iw')]^-1
     989         460 :       CALL cp_fm_cholesky_invert(fm_mat_Q)
     990             : 
     991             :       ! symmetrize the result
     992         460 :       CALL cp_fm_upper_to_full(fm_mat_Q, fm_mat_work)
     993             : 
     994             :       ! subtract 1 from the diagonal to get rid of exchange self-energy
     995             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     996         460 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     997             :       DO jjB = 1, ncol_local
     998             :          j_global = col_indices(jjB)
     999             :          DO iiB = 1, nrow_local
    1000             :             i_global = row_indices(iiB)
    1001             :             IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
    1002             :                fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
    1003             :             END IF
    1004             :          END DO
    1005             :       END DO
    1006             : 
    1007             :       ! multiply with L from the left and the right to get the screened Coulomb interaction
    1008             :       CALL parallel_gemm('T', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_L(1, 1), fm_mat_Q, &
    1009         460 :                          0.0_dp, fm_mat_work)
    1010             : 
    1011             :       CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_work, fm_mat_L(1, 1), &
    1012         460 :                          0.0_dp, fm_mat_Q)
    1013             : 
    1014             :       ! Fourier transform from w to t
    1015        8360 :       DO iquad = 1, num_integ_points
    1016             : 
    1017        7900 :          omega = tj(jquad)
    1018        7900 :          tau = tau_tj(iquad)
    1019        7900 :          weight = weights_cos_tf_w_to_t(iquad, jquad)*COS(tau*omega)
    1020             : 
    1021        7900 :          IF (jquad == 1) THEN
    1022             : 
    1023         460 :             CALL cp_fm_set_all(matrix=fm_mat_W(iquad), alpha=0.0_dp)
    1024             : 
    1025             :          END IF
    1026             : 
    1027        8360 :          CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_mat_W(iquad), beta=weight, matrix_b=fm_mat_Q)
    1028             : 
    1029             :       END DO
    1030             : 
    1031         460 :       CALL timestop(handle)
    1032         460 :    END SUBROUTINE compute_W_cubic_GW
    1033             : 
    1034             : ! **************************************************************************************************
    1035             : !> \brief ...
    1036             : !> \param vec_Sigma_c_gw ...
    1037             : !> \param dimen_nm_gw ...
    1038             : !> \param dimen_RI ...
    1039             : !> \param gw_corr_lev_occ ...
    1040             : !> \param homo ...
    1041             : !> \param jquad ...
    1042             : !> \param nmo ...
    1043             : !> \param num_fit_points ...
    1044             : !> \param do_periodic ...
    1045             : !> \param fermi_level_offset ...
    1046             : !> \param omega ...
    1047             : !> \param Eigenval ...
    1048             : !> \param delta_corr ...
    1049             : !> \param vec_omega_fit_gw ...
    1050             : !> \param vec_W_gw ...
    1051             : !> \param wj ...
    1052             : !> \param fm_mat_Q ...
    1053             : !> \param fm_mat_S_gw ...
    1054             : !> \param fm_mat_S_gw_work ...
    1055             : ! **************************************************************************************************
    1056        4600 :   SUBROUTINE compute_GW_self_energy_deep(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, gw_corr_lev_occ, homo, jquad, nmo, num_fit_points, &
    1057        1600 :                                          do_periodic, fermi_level_offset, omega, Eigenval, delta_corr, vec_omega_fit_gw, vec_W_gw, &
    1058         920 :                                           wj, fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work)
    1059             : 
    1060             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    1061             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    1062             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
    1063             :                                                             homo, jquad, nmo, num_fit_points
    1064             :       LOGICAL, INTENT(IN)                                :: do_periodic
    1065             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    1066             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
    1067             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval
    1068             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: delta_corr, vec_omega_fit_gw
    1069             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: vec_W_gw
    1070             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wj
    1071             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work
    1072             : 
    1073             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy_deep'
    1074             : 
    1075             :       INTEGER                                            :: handle, iiB, iquad, m_global, n_global, &
    1076             :                                                             ncol_local, nm_global
    1077         920 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1078             :       REAL(KIND=dp)                                      :: delta_corr_nn, e_fermi, omega_i, &
    1079             :                                                             sign_occ_virt
    1080             : 
    1081         920 :       CALL timeset(routineN, handle)
    1082             : 
    1083             :       ! S_work_(nm)Q = B_(nm)P * ([1+Q]^-1-1)_PQ
    1084             :       CALL parallel_gemm(transa="N", transb="N", m=dimen_RI, n=dimen_nm_gw, k=dimen_RI, alpha=1.0_dp, &
    1085             :                          matrix_a=fm_mat_Q, matrix_b=fm_mat_S_gw, beta=0.0_dp, &
    1086         920 :                          matrix_c=fm_mat_S_gw_work)
    1087             : 
    1088             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
    1089             :                           ncol_local=ncol_local, &
    1090             :                           row_indices=row_indices, &
    1091         920 :                           col_indices=col_indices)
    1092             : 
    1093             :       ! vector W_(nm) = S_work_(nm)Q * [B_(nm)Q]^T
    1094             : 
    1095      432040 :       vec_W_gw = 0.0_dp
    1096             : 
    1097      432040 :       DO iiB = 1, ncol_local
    1098      431120 :          nm_global = col_indices(iiB)
    1099             :          vec_W_gw(nm_global) = vec_W_gw(nm_global) + &
    1100    21292280 :                                DOT_PRODUCT(fm_mat_S_gw_work%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
    1101             : 
    1102             :          ! transform the index nm of vec_W_gw back to n and m, formulae copied from Mauro's code
    1103      431120 :          n_global = MAX(1, nm_global - 1)/nmo + 1
    1104      431120 :          m_global = nm_global - (n_global - 1)*nmo
    1105      431120 :          n_global = n_global + homo - gw_corr_lev_occ
    1106             : 
    1107             :          ! compute self-energy for imaginary frequencies
    1108    23626120 :          DO iquad = 1, num_fit_points
    1109             : 
    1110             :             ! for occ orbitals, we compute the self-energy for negative frequencies
    1111    23194080 :             IF (n_global <= homo) THEN
    1112             :                sign_occ_virt = -1.0_dp
    1113             :             ELSE
    1114    18564120 :                sign_occ_virt = 1.0_dp
    1115             :             END IF
    1116             : 
    1117    23194080 :             omega_i = vec_omega_fit_gw(iquad)*sign_occ_virt
    1118             : 
    1119             :             ! set the Fermi energy for occ orbitals slightly above the HOMO and
    1120             :             ! for virt orbitals slightly below the LUMO
    1121    23194080 :             IF (n_global <= homo) THEN
    1122     4629960 :                e_fermi = Eigenval(homo) + fermi_level_offset
    1123             :             ELSE
    1124    18564120 :                e_fermi = Eigenval(homo + 1) - fermi_level_offset
    1125             :             END IF
    1126             : 
    1127             :             ! add here the periodic correction
    1128    23194080 :             IF (do_periodic .AND. row_indices(1) == 1 .AND. n_global == m_global) THEN
    1129       57120 :                delta_corr_nn = delta_corr(n_global)
    1130             :             ELSE
    1131             :                delta_corr_nn = 0.0_dp
    1132             :             END IF
    1133             : 
    1134             :             ! update the self-energy (use that vec_W_gw(iw) is symmetric), divide the integration
    1135             :             ! weight by 2, because the integration is from -infty to +infty and not just 0 to +infty
    1136             :             ! as for RPA, also we need for virtual orbitals a complex conjugate
    1137             :             vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) = &
    1138             :                vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) - &
    1139             :                0.5_dp/pi*wj(jquad)/2.0_dp*(vec_W_gw(nm_global) + delta_corr_nn)* &
    1140             :                (1.0_dp/(gaussi*(omega + omega_i) + e_fermi - Eigenval(m_global)) + &
    1141    23625200 :                 1.0_dp/(gaussi*(-omega + omega_i) + e_fermi - Eigenval(m_global)))
    1142             :          END DO
    1143             : 
    1144             :       END DO
    1145             : 
    1146         920 :       CALL timestop(handle)
    1147             : 
    1148         920 :    END SUBROUTINE compute_GW_self_energy_deep
    1149             : 
    1150             : ! **************************************************************************************************
    1151             : !> \brief ...
    1152             : !> \param vec_Sigma_c_gw ...
    1153             : !> \param count_ev_sc_GW ...
    1154             : !> \param gw_corr_lev_occ ...
    1155             : !> \param gw_corr_lev_tot ...
    1156             : !> \param gw_corr_lev_virt ...
    1157             : !> \param homo ...
    1158             : !> \param nmo ...
    1159             : !> \param num_fit_points ...
    1160             : !> \param num_integ_points ...
    1161             : !> \param unit_nr ...
    1162             : !> \param do_apply_ic_corr_to_gw ...
    1163             : !> \param do_im_time ...
    1164             : !> \param do_periodic ...
    1165             : !> \param do_ri_Sigma_x ...
    1166             : !> \param first_cycle_periodic_correction ...
    1167             : !> \param e_fermi ...
    1168             : !> \param eps_filter ...
    1169             : !> \param fermi_level_offset ...
    1170             : !> \param delta_corr ...
    1171             : !> \param Eigenval ...
    1172             : !> \param Eigenval_last ...
    1173             : !> \param Eigenval_scf ...
    1174             : !> \param iter_sc_GW0 ...
    1175             : !> \param exit_ev_gw ...
    1176             : !> \param tau_tj ...
    1177             : !> \param tj ...
    1178             : !> \param vec_omega_fit_gw ...
    1179             : !> \param vec_Sigma_x_gw ...
    1180             : !> \param ic_corr_list ...
    1181             : !> \param weights_cos_tf_t_to_w ...
    1182             : !> \param weights_sin_tf_t_to_w ...
    1183             : !> \param fm_mo_coeff_occ_scaled ...
    1184             : !> \param fm_mo_coeff_virt_scaled ...
    1185             : !> \param fm_mo_coeff_occ ...
    1186             : !> \param fm_mo_coeff_virt ...
    1187             : !> \param fm_scaled_dm_occ_tau ...
    1188             : !> \param fm_scaled_dm_virt_tau ...
    1189             : !> \param mo_coeff ...
    1190             : !> \param fm_mat_W ...
    1191             : !> \param para_env ...
    1192             : !> \param para_env_RPA ...
    1193             : !> \param mat_dm ...
    1194             : !> \param mat_MinvVMinv ...
    1195             : !> \param t_3c_O ...
    1196             : !> \param t_3c_M ...
    1197             : !> \param t_3c_overl_int_ao_mo ...
    1198             : !> \param t_3c_O_compressed ...
    1199             : !> \param t_3c_O_mo_compressed ...
    1200             : !> \param t_3c_O_ind ...
    1201             : !> \param t_3c_O_mo_ind ...
    1202             : !> \param t_3c_overl_int_gw_RI ...
    1203             : !> \param t_3c_overl_int_gw_AO ...
    1204             : !> \param matrix_berry_im_mo_mo ...
    1205             : !> \param matrix_berry_re_mo_mo ...
    1206             : !> \param mat_W ...
    1207             : !> \param matrix_s ...
    1208             : !> \param kpoints ...
    1209             : !> \param mp2_env ...
    1210             : !> \param qs_env ...
    1211             : !> \param nkp_self_energy ...
    1212             : !> \param do_kpoints_cubic_RPA ...
    1213             : !> \param starts_array_mc ...
    1214             : !> \param ends_array_mc ...
    1215             : ! **************************************************************************************************
    1216         550 :    SUBROUTINE compute_QP_energies(vec_Sigma_c_gw, count_ev_sc_GW, gw_corr_lev_occ, &
    1217         220 :                                   gw_corr_lev_tot, gw_corr_lev_virt, homo, &
    1218             :                                   nmo, num_fit_points, num_integ_points, &
    1219             :                                   unit_nr, do_apply_ic_corr_to_gw, do_im_time, &
    1220             :                                   do_periodic, do_ri_Sigma_x, &
    1221         110 :                                   first_cycle_periodic_correction, e_fermi, eps_filter, &
    1222         110 :                                   fermi_level_offset, delta_corr, Eigenval, &
    1223             :                                   Eigenval_last, Eigenval_scf, iter_sc_GW0, exit_ev_gw, tau_tj, tj, &
    1224             :                                   vec_omega_fit_gw, vec_Sigma_x_gw, ic_corr_list, &
    1225             :                                   weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, &
    1226         110 :                                   fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, fm_mo_coeff_occ, &
    1227         110 :                                   fm_mo_coeff_virt, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, &
    1228             :                                   mo_coeff, fm_mat_W, para_env, para_env_RPA, mat_dm, mat_MinvVMinv, &
    1229             :                                   t_3c_O, t_3c_M, t_3c_overl_int_ao_mo, &
    1230         110 :                                   t_3c_O_compressed, t_3c_O_mo_compressed, &
    1231         110 :                                   t_3c_O_ind, t_3c_O_mo_ind, &
    1232         186 :                                   t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, matrix_berry_im_mo_mo, &
    1233             :                                   matrix_berry_re_mo_mo, mat_W, matrix_s, &
    1234             :                                   kpoints, mp2_env, qs_env, nkp_self_energy, do_kpoints_cubic_RPA, &
    1235         110 :                                   starts_array_mc, ends_array_mc)
    1236             : 
    1237             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    1238             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    1239             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    1240             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ
    1241             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    1242             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_virt, homo
    1243             :       INTEGER, INTENT(IN)                                :: nmo, num_fit_points, num_integ_points, &
    1244             :                                                             unit_nr
    1245             :       LOGICAL, INTENT(IN)                                :: do_apply_ic_corr_to_gw, do_im_time, &
    1246             :                                                             do_periodic, do_ri_Sigma_x
    1247             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    1248             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    1249             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, fermi_level_offset
    1250             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1251             :          INTENT(INOUT)                                   :: delta_corr
    1252             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: Eigenval
    1253             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1254             :          INTENT(INOUT)                                   :: Eigenval_last, Eigenval_scf
    1255             :       INTEGER, INTENT(IN)                                :: iter_sc_GW0
    1256             :       LOGICAL, INTENT(INOUT)                             :: exit_ev_gw
    1257             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1258             :          INTENT(INOUT)                                   :: tau_tj, tj, vec_omega_fit_gw
    1259             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1260             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
    1261             :       TYPE(one_dim_real_array), DIMENSION(2), INTENT(IN) :: ic_corr_list
    1262             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
    1263             :          INTENT(IN)                                      :: weights_cos_tf_t_to_w, &
    1264             :                                                             weights_sin_tf_t_to_w
    1265             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff_occ_scaled, &
    1266             :                                                             fm_mo_coeff_virt_scaled
    1267             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mo_coeff_occ, fm_mo_coeff_virt
    1268             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_scaled_dm_occ_tau, &
    1269             :                                                             fm_scaled_dm_virt_tau, mo_coeff
    1270             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
    1271             :          INTENT(IN)                                      :: fm_mat_W
    1272             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    1273             :       TYPE(dbcsr_p_type), INTENT(IN)                     :: mat_dm, mat_MinvVMinv
    1274             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    1275             :       TYPE(dbt_type)                                     :: t_3c_M, t_3c_overl_int_ao_mo
    1276             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    1277             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_compressed
    1278             :       TYPE(hfx_compression_type), DIMENSION(:)           :: t_3c_O_mo_compressed
    1279             :       TYPE(block_ind_type), ALLOCATABLE, &
    1280             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    1281             :       TYPE(two_dim_int_array), DIMENSION(:)              :: t_3c_O_mo_ind
    1282             :       TYPE(dbt_type), DIMENSION(:)                       :: t_3c_overl_int_gw_RI, &
    1283             :                                                             t_3c_overl_int_gw_AO
    1284             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
    1285             :                                                             matrix_berry_re_mo_mo
    1286             :       TYPE(dbcsr_type), POINTER                          :: mat_W
    1287             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1288             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1289             :       TYPE(mp2_type)                                     :: mp2_env
    1290             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1291             :       INTEGER, INTENT(IN)                                :: nkp_self_energy
    1292             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA
    1293             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    1294             : 
    1295             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_QP_energies'
    1296             : 
    1297             :       INTEGER :: count_ev_sc_GW_print, count_sc_GW0, count_sc_GW0_print, crossing_search, handle, &
    1298             :          idos, ikp, ispin, iunit, n_level_gw, ndos, nspins, num_points_corr, num_poles
    1299             :       LOGICAL                                            :: do_kpoints_Sigma, my_open_shell
    1300             :       REAL(KIND=dp) :: dos_lower_bound, dos_precision, dos_upper_bound, E_CBM_GW, E_CBM_GW_beta, &
    1301             :          E_CBM_SCF, E_CBM_SCF_beta, E_VBM_GW, E_VBM_GW_beta, E_VBM_SCF, E_VBM_SCF_beta, stop_crit
    1302         110 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_gw_dos
    1303         110 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: m_value, vec_gw_energ, z_value
    1304             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1305             : 
    1306         110 :       CALL timeset(routineN, handle)
    1307             : 
    1308         110 :       nspins = SIZE(homo)
    1309         110 :       my_open_shell = (nspins == 2)
    1310             : 
    1311         110 :       do_kpoints_Sigma = mp2_env%ri_g0w0%do_kpoints_Sigma
    1312             : 
    1313         174 :       DO count_sc_GW0 = 1, iter_sc_GW0
    1314             : 
    1315             :          ! postprocessing for cubic scaling GW calculation
    1316         122 :          IF (do_im_time .AND. .NOT. do_kpoints_cubic_RPA .AND. .NOT. do_kpoints_Sigma) THEN
    1317          50 :             num_points_corr = mp2_env%ri_g0w0%num_omega_points
    1318             : 
    1319         106 :             DO ispin = 1, nspins
    1320             :                CALL compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    1321             :                                                  matrix_s, fm_mo_coeff_occ(ispin), &
    1322             :                                                  fm_mo_coeff_virt(ispin), fm_mo_coeff_occ_scaled, &
    1323             :                                                  fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    1324             :                                                  fm_scaled_dm_virt_tau, Eigenval(:, 1, ispin), eps_filter, &
    1325             :                                                  e_fermi(ispin), fm_mat_W, &
    1326             :                                                  gw_corr_lev_tot, gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), homo(ispin), &
    1327             :                                                  count_ev_sc_GW, count_sc_GW0, &
    1328             :                                                  t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(ispin), &
    1329             :                                                  t_3c_O_mo_ind(ispin)%array, &
    1330             :                                                  t_3c_overl_int_gw_RI(ispin), t_3c_overl_int_gw_AO(ispin), &
    1331             :                                                  mat_W, mat_MinvVMinv, mat_dm, &
    1332             :                                                  weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, ispin), &
    1333             :                                                  do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    1334             :                                                  mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    1335             :                                                  first_cycle_periodic_correction, kpoints, num_fit_points, mo_coeff, &
    1336         106 :                                                  do_ri_Sigma_x, vec_Sigma_x_gw(:, :, ispin), unit_nr, ispin)
    1337             :             END DO
    1338             : 
    1339             :          END IF
    1340             : 
    1341         122 :          IF (do_kpoints_Sigma) THEN
    1342             :             CALL compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    1343             :                                                       matrix_s, Eigenval(:, :, :), e_fermi, fm_mat_W, &
    1344             :                                                       gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    1345             :                                                       count_ev_sc_GW, count_sc_GW0, &
    1346             :                                                       t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    1347             :                                                       mat_W, mat_MinvVMinv, &
    1348             :                                                       weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, :), &
    1349             :                                                       qs_env, para_env, &
    1350             :                                                       mp2_env, num_fit_points, mo_coeff, &
    1351             :                                                       do_ri_Sigma_x, vec_Sigma_x_gw(:, :, :), unit_nr, nspins, &
    1352          18 :                                                       starts_array_mc, ends_array_mc, eps_filter)
    1353             : 
    1354             :          END IF
    1355             : 
    1356         122 :          IF (do_periodic .AND. mp2_env%ri_g0w0%do_average_deg_levels) THEN
    1357             : 
    1358          16 :             DO ispin = 1, nspins
    1359             :                CALL average_degenerate_levels(vec_Sigma_c_gw(:, :, :, ispin), &
    1360             :                                               Eigenval(1 + homo(ispin) - gw_corr_lev_occ(ispin): &
    1361             :                                                        homo(ispin) + gw_corr_lev_virt(ispin), 1, ispin), &
    1362          16 :                                               mp2_env%ri_g0w0%eps_eigenval)
    1363             :             END DO
    1364             :          END IF
    1365             : 
    1366         122 :          IF (.NOT. do_im_time) THEN
    1367       37686 :             CALL para_env%sum(vec_Sigma_c_gw)
    1368             :          END IF
    1369             : 
    1370         122 :          CALL para_env%sync()
    1371             : 
    1372         122 :          stop_crit = 1.0e-7
    1373         122 :          num_poles = mp2_env%ri_g0w0%num_poles
    1374         122 :          crossing_search = mp2_env%ri_g0w0%crossing_search
    1375             : 
    1376             :          ! arrays storing the correlation self-energy, stat. error and z-shot value
    1377         610 :          ALLOCATE (vec_gw_energ(gw_corr_lev_tot, nkp_self_energy, nspins))
    1378        2336 :          vec_gw_energ = 0.0_dp
    1379         610 :          ALLOCATE (z_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1380        2336 :          z_value = 0.0_dp
    1381         610 :          ALLOCATE (m_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1382        2336 :          m_value = 0.0_dp
    1383         122 :          E_VBM_GW = -1.0E3
    1384         122 :          E_CBM_GW = 1.0E3
    1385         122 :          E_VBM_SCF = -1.0E3
    1386         122 :          E_CBM_SCF = 1.0E3
    1387         122 :          E_VBM_GW_beta = -1.0E3
    1388         122 :          E_CBM_GW_beta = 1.0E3
    1389         122 :          E_VBM_SCF_beta = -1.0E3
    1390         122 :          E_CBM_SCF_beta = 1.0E3
    1391             : 
    1392         122 :          ndos = 0
    1393         122 :          dos_precision = mp2_env%ri_g0w0%dos_prec
    1394         122 :          dos_upper_bound = mp2_env%ri_g0w0%dos_upper
    1395         122 :          dos_lower_bound = mp2_env%ri_g0w0%dos_lower
    1396             : 
    1397         122 :          IF (dos_lower_bound >= dos_upper_bound) THEN
    1398           0 :             CALL cp_abort(__LOCATION__, "Invalid settings for GW_DOS calculation!")
    1399             :          END IF
    1400             : 
    1401         122 :          IF (dos_precision /= 0) THEN
    1402           0 :             ndos = INT((dos_upper_bound - dos_lower_bound)/dos_precision)
    1403           0 :             ALLOCATE (vec_gw_dos(ndos))
    1404           0 :             vec_gw_dos = 0.0_dp
    1405             :          END IF
    1406             : 
    1407             :          ! for the normal code for molecules or Gamma only: nkp = 1
    1408         362 :          DO ikp = 1, nkp_self_energy
    1409             : 
    1410         240 :             kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1411             : 
    1412             :             ! fit the self-energy on imaginary frequency axis and evaluate the fit on the MO energy of the SCF
    1413        1704 :             DO n_level_gw = 1, gw_corr_lev_tot
    1414             :                ! processes perform different fits
    1415        1464 :                IF (MODULO(n_level_gw, para_env%num_pe) /= para_env%mepos) CYCLE
    1416             : 
    1417        1164 :                SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1418             :                CASE (gw_two_pole_model)
    1419             :                   CALL fit_and_continuation_2pole(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1420             :                                                   z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1421             :                                                   mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1422             :                                                   Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), n_level_gw, &
    1423             :                                                   gw_corr_lev_occ(1), num_poles, &
    1424             :                                                   num_fit_points, crossing_search, homo(1), stop_crit, &
    1425         432 :                                                   fermi_level_offset, do_im_time)
    1426             : 
    1427             :                CASE (gw_pade_approx)
    1428             :                   CALL continuation_pade(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1429             :                                          z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1430             :                                          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1431             :                                          Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), n_level_gw, &
    1432             :                                          gw_corr_lev_occ(1), mp2_env%ri_g0w0%nparam_pade, &
    1433             :                                          num_fit_points, crossing_search, homo(1), fermi_level_offset, &
    1434             :                                          do_im_time, mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1435             :                                          vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1436             :                                          mp2_env%ri_g0w0%min_level_self_energy, &
    1437             :                                          mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1438         300 :                                          mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1439             : 
    1440             :                CASE DEFAULT
    1441         732 :                   CPABORT("Only two-model and Pade approximation are implemented.")
    1442             :                END SELECT
    1443             : 
    1444         972 :                IF (my_open_shell) THEN
    1445         284 :                   SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1446             :                   CASE (gw_two_pole_model)
    1447             :                      CALL fit_and_continuation_2pole( &
    1448             :                         vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1449             :                         z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1450             :                         mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1451             :                         Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), n_level_gw, &
    1452             :                         gw_corr_lev_occ(2), num_poles, &
    1453             :                         num_fit_points, crossing_search, homo(2), stop_crit, &
    1454         126 :                         fermi_level_offset, do_im_time)
    1455             :                   CASE (gw_pade_approx)
    1456             :                      CALL continuation_pade(vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1457             :                                             z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1458             :                                             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1459             :                                             Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), n_level_gw, &
    1460             :                                             gw_corr_lev_occ(2), mp2_env%ri_g0w0%nparam_pade, &
    1461             :                                             num_fit_points, crossing_search, homo(2), &
    1462             :                                             fermi_level_offset, do_im_time, &
    1463             :                                             mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1464             :                                             vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1465             :                                             mp2_env%ri_g0w0%min_level_self_energy, &
    1466             :                                             mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1467          32 :                                             mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1468             :                   CASE DEFAULT
    1469         158 :                      CPABORT("Only two-pole model and Pade approximation are implemented.")
    1470             :                   END SELECT
    1471             : 
    1472             :                END IF
    1473             : 
    1474             :             END DO ! n_level_gw
    1475             : 
    1476         240 :             CALL para_env%sum(vec_gw_energ)
    1477         240 :             CALL para_env%sum(z_value)
    1478         240 :             CALL para_env%sum(m_value)
    1479             : 
    1480         240 :             IF (dos_precision /= 0.0_dp) THEN
    1481           0 :                CALL para_env%sum(vec_gw_dos)
    1482             :             END IF
    1483             : 
    1484         240 :             CALL check_NaN(vec_gw_energ, 0.0_dp)
    1485         240 :             CALL check_NaN(z_value, 1.0_dp)
    1486         240 :             CALL check_NaN(m_value, 0.0_dp)
    1487             : 
    1488         240 :             IF (do_im_time .OR. mp2_env%ri_g0w0%iter_sc_GW0 == 1) THEN
    1489         234 :                count_ev_sc_GW_print = count_ev_sc_GW
    1490         234 :                count_sc_GW0_print = count_sc_GW0
    1491             :             ELSE
    1492           6 :                count_ev_sc_GW_print = count_sc_GW0
    1493           6 :                count_sc_GW0_print = count_ev_sc_GW
    1494             :             END IF
    1495             : 
    1496             :             ! print the quasiparticle energies and update Eigenval in case you do eigenvalue self-consistent GW
    1497         362 :             IF (my_open_shell) THEN
    1498             : 
    1499             :                CALL print_and_update_for_ev_sc( &
    1500             :                   vec_gw_energ(:, ikp, 1), &
    1501             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1502             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1503             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1504             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1505          50 :                   ikp, nkp_self_energy, kpoints_Sigma, 1, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1506             : 
    1507             :                CALL print_and_update_for_ev_sc( &
    1508             :                   vec_gw_energ(:, ikp, 2), &
    1509             :                   z_value(:, ikp, 2), m_value(:, ikp, 2), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1510             :                   Eigenval(:, ikp, 2), Eigenval_last(:, ikp, 2), Eigenval_scf(:, ikp, 2), &
    1511             :                   gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1512             :                   crossing_search, homo(2), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1513          50 :                   ikp, nkp_self_energy, kpoints_Sigma, 2, E_VBM_GW_beta, E_CBM_GW_beta, E_VBM_SCF_beta, E_CBM_SCF_beta)
    1514             : 
    1515          50 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1516             : 
    1517             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1518             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1519           0 :                                      homo(1), nmo, unit_nr, do_alpha=.TRUE.)
    1520             : 
    1521             :                   CALL apply_ic_corr(Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), ic_corr_list(2)%array, &
    1522             :                                      gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1523           0 :                                      homo(2), nmo, unit_nr, do_beta=.TRUE.)
    1524             : 
    1525             :                END IF
    1526             : 
    1527             :             ELSE
    1528             : 
    1529             :                CALL print_and_update_for_ev_sc( &
    1530             :                   vec_gw_energ(:, ikp, 1), &
    1531             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1532             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1533             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1534             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1535         190 :                   ikp, nkp_self_energy, kpoints_Sigma, 0, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1536             : 
    1537         190 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1538             : 
    1539             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1540             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1541           0 :                                      homo(1), nmo, unit_nr)
    1542             : 
    1543             :                END IF
    1544             : 
    1545             :             END IF
    1546             : 
    1547             :          END DO ! ikp
    1548             : 
    1549         122 :          IF (nkp_self_energy > 1 .AND. unit_nr > 0) THEN
    1550             : 
    1551             :             CALL print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    1552           9 :                             E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    1553             : 
    1554             :          END IF
    1555             : 
    1556             :          ! Decide whether to add spin-orbit splitting of bands, spin-orbit coupling strength comes from
    1557             :          ! Hartwigsen parametrization (1999) of GTH pseudopotentials
    1558         122 :          IF (mp2_env%ri_g0w0%soc_type /= soc_none) THEN
    1559             :             CALL calculate_and_print_soc(qs_env, Eigenval_scf, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1560           2 :                                          homo, unit_nr, do_soc_gw=.FALSE., do_soc_scf=.TRUE.)
    1561             :             CALL calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1562           2 :                                          homo, unit_nr, do_soc_gw=.TRUE., do_soc_scf=.FALSE.)
    1563             :          END IF
    1564             : 
    1565         122 :          iunit = cp_logger_get_default_unit_nr()
    1566             : 
    1567         122 :          IF (dos_precision /= 0.0_dp) THEN
    1568           0 :             IF (iunit > 0) THEN
    1569           0 :                CALL open_file('spectral.dat', unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    1570           0 :                DO idos = 1, ndos
    1571             :                   ! 1/pi
    1572             :                   ! [1/Hartree] -> [1/evolt]
    1573           0 :                   WRITE (iunit, '(E17.10, E17.10)') (dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision)*evolt, &
    1574           0 :                      vec_gw_dos(idos)/evolt/pi
    1575             :                END DO
    1576           0 :                CALL close_file(iunit)
    1577             :             END IF
    1578           0 :             DEALLOCATE (vec_gw_dos)
    1579             :          END IF
    1580             : 
    1581         122 :          DEALLOCATE (z_value)
    1582         122 :          DEALLOCATE (m_value)
    1583         122 :          DEALLOCATE (vec_gw_energ)
    1584             : 
    1585         122 :          exit_ev_gw = .FALSE.
    1586             : 
    1587             :          ! if HOMO-LUMO gap differs by less than mp2_env%ri_g0w0%eps_sc_iter, exit ev sc GW loop
    1588         122 :          IF (ABS(Eigenval(homo(1), 1, 1) - Eigenval_last(homo(1), 1, 1) - &
    1589             :                  Eigenval(homo(1) + 1, 1, 1) + Eigenval_last(homo(1) + 1, 1, 1)) &
    1590             :              < mp2_env%ri_g0w0%eps_iter) THEN
    1591           4 :             IF (count_sc_GW0 == 1) exit_ev_gw = .TRUE.
    1592             :             EXIT
    1593             :          END IF
    1594             : 
    1595         258 :          DO ispin = 1, nspins
    1596             :             CALL shift_unshifted_levels(Eigenval(:, 1, ispin), Eigenval_last(:, 1, ispin), gw_corr_lev_occ(ispin), &
    1597         258 :                                         gw_corr_lev_virt(ispin), homo(ispin), nmo)
    1598             :          END DO
    1599             : 
    1600         118 :          IF (do_im_time .AND. do_kpoints_Sigma .AND. mp2_env%ri_g0w0%print_local_bandgap) THEN
    1601           2 :             CALL print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "GW")
    1602           2 :             CALL print_local_bandgap(qs_env, Eigenval_scf, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "DFT")
    1603             :          END IF
    1604             : 
    1605             :          ! in case of N^4 scaling GW, the scGW0 cycle is the eigenvalue sc cycle
    1606         170 :          IF (.NOT. do_im_time) EXIT
    1607             : 
    1608             :       END DO ! scGW0
    1609             : 
    1610         110 :       CALL timestop(handle)
    1611             : 
    1612         110 :    END SUBROUTINE compute_QP_energies
    1613             : 
    1614             : ! **************************************************************************************************
    1615             : !> \brief ...
    1616             : !> \param qs_env ...
    1617             : !> \param Eigenval ...
    1618             : !> \param Eigenval_scf ...
    1619             : !> \param gw_corr_lev_occ ...
    1620             : !> \param gw_corr_lev_virt ...
    1621             : !> \param homo ...
    1622             : !> \param unit_nr ...
    1623             : !> \param do_soc_gw ...
    1624             : !> \param do_soc_scf ...
    1625             : ! **************************************************************************************************
    1626           4 :    SUBROUTINE calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1627           4 :                                       homo, unit_nr, do_soc_gw, do_soc_scf)
    1628             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1629             :       REAL(KIND=dp), DIMENSION(:, :, :)                  :: Eigenval, Eigenval_scf
    1630             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    1631             :       INTEGER                                            :: unit_nr
    1632             :       LOGICAL                                            :: do_soc_gw, do_soc_scf
    1633             : 
    1634             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_and_print_soc'
    1635             : 
    1636             :       INTEGER :: handle, i_dim, i_glob, i_row, ikp, j_col, j_glob, n_level_gw, nao, ncol_local, &
    1637             :          nder, nkind, nkp_self_energy, nrow_local, periodic(3), size_real_space
    1638           4 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: index0
    1639           4 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1640             :       LOGICAL                                            :: calculate_forces, use_virial
    1641             :       REAL(KIND=dp) :: avg_occ_QP_shift, avg_virt_QP_shift, E_CBM_GW_SOC, E_GAP_GW_SOC, E_HOMO, &
    1642             :          E_HOMO_GW_SOC, E_i, E_j, E_LUMO, E_LUMO_GW_SOC, E_VBM_GW_SOC, E_window, eps_ppnl
    1643           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eigenvalues_without_soc_sorted
    1644           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: eigenvalues
    1645           4 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1646             :       TYPE(cell_type), POINTER                           :: cell
    1647             :       TYPE(cp_cfm_type)                                  :: cfm_mat_h_double, cfm_mat_h_ks, &
    1648             :                                                             cfm_mat_s_double, cfm_mat_work_double, &
    1649             :                                                             cfm_mo_coeff, cfm_mo_coeff_double
    1650             :       TYPE(cp_fm_type), POINTER                          :: imos, rmos
    1651           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_desymm
    1652           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_VSOC_l_nosymm, mat_VSOC_lx_kp, &
    1653           4 :                                                             mat_VSOC_ly_kp, mat_VSOC_lz_kp, &
    1654           4 :                                                             matrix_dummy, matrix_l, &
    1655           4 :                                                             matrix_pot_dummy
    1656             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1657             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1658             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1659             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1660           4 :          POINTER                                         :: sab_orb, sap_ppnl
    1661           4 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1662           4 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1663           4 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1664             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1665             :       TYPE(virial_type), POINTER                         :: virial
    1666             : 
    1667           4 :       CALL timeset(routineN, handle)
    1668             : 
    1669           4 :       CPASSERT(do_soc_gw .NEQV. do_soc_scf)
    1670             : 
    1671             :       CALL get_qs_env(qs_env=qs_env, &
    1672             :                       matrix_s=matrix_s, &
    1673             :                       para_env=para_env, &
    1674             :                       qs_kind_set=qs_kind_set, &
    1675             :                       sab_orb=sab_orb, &
    1676             :                       atomic_kind_set=atomic_kind_set, &
    1677             :                       particle_set=particle_set, &
    1678             :                       sap_ppnl=sap_ppnl, &
    1679             :                       dft_control=dft_control, &
    1680             :                       cell=cell, &
    1681             :                       nkind=nkind, &
    1682           4 :                       scf_control=scf_control)
    1683             : 
    1684           4 :       calculate_forces = .FALSE.
    1685           4 :       use_virial = .FALSE.
    1686           4 :       nder = 0
    1687           4 :       eps_ppnl = dft_control%qs_control%eps_ppnl
    1688             : 
    1689           4 :       CALL get_cell(cell=cell, periodic=periodic)
    1690             : 
    1691           4 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    1692             : 
    1693           4 :       NULLIFY (matrix_l)
    1694           4 :       CALL dbcsr_allocate_matrix_set(matrix_l, 3, 1)
    1695          16 :       DO i_dim = 1, 3
    1696          12 :          ALLOCATE (matrix_l(i_dim, 1)%matrix)
    1697             :          CALL dbcsr_create(matrix_l(i_dim, 1)%matrix, template=matrix_s(1)%matrix, &
    1698          12 :                            matrix_type=dbcsr_type_antisymmetric)
    1699          12 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_l(i_dim, 1)%matrix, sab_orb)
    1700          16 :          CALL dbcsr_set(matrix_l(i_dim, 1)%matrix, 0.0_dp)
    1701             :       END DO
    1702             : 
    1703           4 :       NULLIFY (matrix_pot_dummy)
    1704           4 :       CALL dbcsr_allocate_matrix_set(matrix_pot_dummy, 1, 1)
    1705           4 :       ALLOCATE (matrix_pot_dummy(1, 1)%matrix)
    1706           4 :       CALL dbcsr_create(matrix_pot_dummy(1, 1)%matrix, template=matrix_s(1)%matrix)
    1707           4 :       CALL cp_dbcsr_alloc_block_from_nbl(matrix_pot_dummy(1, 1)%matrix, sab_orb)
    1708           4 :       CALL dbcsr_set(matrix_pot_dummy(1, 1)%matrix, 0.0_dp)
    1709             : 
    1710             :       CALL build_core_ppnl(matrix_pot_dummy, matrix_dummy, force, virial, calculate_forces, use_virial, nder, &
    1711             :                            qs_kind_set, atomic_kind_set, particle_set, sab_orb, sap_ppnl, eps_ppnl, &
    1712           4 :                            nimages=1, basis_type="ORB", matrix_l=matrix_l)
    1713             : 
    1714           4 :       CALL alloc_mat_set_2d(mat_VSOC_l_nosymm, 3, size_real_space, matrix_s(1)%matrix, explicitly_no_symmetry=.TRUE.)
    1715          16 :       DO i_dim = 1, 3
    1716          16 :          CALL dbcsr_desymmetrize(matrix_l(i_dim, 1)%matrix, mat_VSOC_l_nosymm(i_dim, 1)%matrix)
    1717             :       END DO
    1718             : 
    1719           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1720             : 
    1721           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lx_kp, mat_VSOC_l_nosymm(1, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1722           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_ly_kp, mat_VSOC_l_nosymm(2, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1723           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lz_kp, mat_VSOC_l_nosymm(3, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1724             : 
    1725           4 :       nkp_self_energy = kpoints_Sigma%nkp
    1726             : 
    1727           4 :       CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1728             : 
    1729           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_h_double)
    1730           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_s_double)
    1731           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mo_coeff_double)
    1732           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_work_double)
    1733             : 
    1734           4 :       CALL cp_cfm_set_all(cfm_mo_coeff_double, z_zero)
    1735             : 
    1736           4 :       CALL cp_cfm_create(cfm_mo_coeff, rmos%matrix_struct)
    1737           4 :       CALL cp_cfm_create(cfm_mat_h_ks, rmos%matrix_struct)
    1738             : 
    1739           4 :       CALL cp_fm_get_info(matrix=rmos, nrow_global=nao)
    1740             : 
    1741           4 :       NULLIFY (matrix_s_desymm)
    1742           4 :       CALL dbcsr_allocate_matrix_set(matrix_s_desymm, 1)
    1743           4 :       ALLOCATE (matrix_s_desymm(1)%matrix)
    1744             :       CALL dbcsr_create(matrix=matrix_s_desymm(1)%matrix, template=matrix_s(1)%matrix, &
    1745           4 :                         matrix_type=dbcsr_type_no_symmetry)
    1746           4 :       CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_s_desymm(1)%matrix)
    1747             : 
    1748          12 :       ALLOCATE (eigenvalues(2*nao))
    1749          76 :       eigenvalues = 0.0_dp
    1750          12 :       ALLOCATE (eigenvalues_without_soc_sorted(2*nao))
    1751             : 
    1752           4 :       E_window = qs_env%mp2_env%ri_g0w0%soc_energy_window
    1753           4 :       IF (unit_nr > 0) THEN
    1754           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1755           2 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1756           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1757           2 :          WRITE (unit_nr, '(T3,A,F42.1)') 'GW_SOC_INFO | SOC energy window (eV)', E_window*evolt
    1758             :       END IF
    1759             : 
    1760           4 :       E_VBM_GW_SOC = -1000.0_dp
    1761           4 :       E_CBM_GW_SOC = 1000.0_dp
    1762             : 
    1763          20 :       DO ikp = 1, nkp_self_energy
    1764             : 
    1765          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1766          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, 1), mo_coeff=imos)
    1767          16 :          CALL cp_fm_to_cfm(rmos, imos, cfm_mo_coeff)
    1768             : 
    1769             :          ! ispin = 1
    1770             :          avg_occ_QP_shift = SUM(Eigenval(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1) - &
    1771          32 :                                 Eigenval_scf(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1))/gw_corr_lev_occ(1)
    1772             :          avg_virt_QP_shift = SUM(Eigenval(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1) - &
    1773          48 :                                  Eigenval_scf(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1))/gw_corr_lev_virt(1)
    1774             : 
    1775          16 :          IF (gw_corr_lev_occ(1) < homo(1)) THEN
    1776             :             Eigenval(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) = Eigenval_scf(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) &
    1777          64 :                                                                + avg_occ_QP_shift
    1778             :          END IF
    1779          16 :          IF (gw_corr_lev_virt(1) < nao - homo(1) + 1) THEN
    1780             :             Eigenval(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) = Eigenval_scf(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) &
    1781          80 :                                                                       + avg_virt_QP_shift
    1782             :          END IF
    1783             : 
    1784          16 :          CALL cp_cfm_set_all(cfm_mat_h_double, z_zero)
    1785          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lx_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, z_one, .TRUE.)
    1786          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_ly_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, gaussi, .TRUE.)
    1787          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, 1, 1, z_one, .FALSE.)
    1788          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, nao + 1, -z_one, .FALSE.)
    1789             : 
    1790             :          ! trafo to MO basis
    1791        2896 :          cfm_mo_coeff_double%local_data = z_zero
    1792          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, 1, 1)
    1793          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, nao + 1, nao + 1)
    1794             : 
    1795             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1796             :                               nrow_local=nrow_local, &
    1797             :                               ncol_local=ncol_local, &
    1798             :                               row_indices=row_indices, &
    1799          16 :                               col_indices=col_indices)
    1800             : 
    1801             :          CALL parallel_gemm(transa="N", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1802             :                             matrix_a=cfm_mat_h_double, matrix_b=cfm_mo_coeff_double, beta=z_zero, &
    1803          16 :                             matrix_c=cfm_mat_work_double)
    1804             : 
    1805             :          CALL parallel_gemm(transa="C", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1806             :                             matrix_a=cfm_mo_coeff_double, matrix_b=cfm_mat_work_double, beta=z_zero, &
    1807          16 :                             matrix_c=cfm_mat_h_double)
    1808             : 
    1809             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1810             :                               nrow_local=nrow_local, &
    1811             :                               ncol_local=ncol_local, &
    1812             :                               row_indices=row_indices, &
    1813          16 :                               col_indices=col_indices)
    1814             : 
    1815          16 :          CALL cp_cfm_set_all(cfm_mat_s_double, z_zero)
    1816             : 
    1817          16 :          E_HOMO = Eigenval(homo(1), ikp, 1)
    1818          16 :          E_LUMO = Eigenval(homo(1) + 1, ikp, 1)
    1819             : 
    1820          16 :          CALL para_env%sync()
    1821             : 
    1822         160 :          DO i_row = 1, nrow_local
    1823        2752 :          DO j_col = 1, ncol_local
    1824        2592 :             i_glob = row_indices(i_row)
    1825        2592 :             j_glob = col_indices(j_col)
    1826        2592 :             IF (i_glob .LE. nao) THEN
    1827        1296 :                E_i = Eigenval(i_glob, ikp, 1)
    1828             :             ELSE
    1829        1296 :                E_i = Eigenval(i_glob - nao, ikp, 1)
    1830             :             END IF
    1831        2592 :             IF (j_glob .LE. nao) THEN
    1832        1296 :                E_j = Eigenval(j_glob, ikp, 1)
    1833             :             ELSE
    1834        1296 :                E_j = Eigenval(j_glob - nao, ikp, 1)
    1835             :             END IF
    1836             : 
    1837             :             ! add eigenvalues to diagonal entries
    1838        2736 :             IF (i_glob == j_glob) THEN
    1839         144 :                cfm_mat_h_double%local_data(i_row, j_col) = cfm_mat_h_double%local_data(i_row, j_col) + E_i*z_one
    1840         144 :                cfm_mat_s_double%local_data(i_row, j_col) = z_one
    1841             :             ELSE
    1842             :                IF (E_i < E_HOMO - 0.5_dp*E_window .OR. E_i > E_LUMO + 0.5_dp*E_window .OR. &
    1843        2448 :                    E_j < E_HOMO - 0.5_dp*E_window .OR. E_j > E_LUMO + 0.5_dp*E_window) THEN
    1844        2000 :                   cfm_mat_h_double%local_data(i_row, j_col) = z_zero
    1845             :                END IF
    1846             :             END IF
    1847             : 
    1848             :          END DO
    1849             :          END DO
    1850             : 
    1851          16 :          CALL para_env%sync()
    1852             : 
    1853         304 :          eigenvalues = 0.0_dp
    1854             :          CALL cp_cfm_geeig_canon(cfm_mat_h_double, cfm_mat_s_double, cfm_mo_coeff_double, eigenvalues, &
    1855          16 :                                  cfm_mat_work_double, scf_control%eps_eigval)
    1856             : 
    1857         160 :          eigenvalues_without_soc_sorted(1:nao) = Eigenval(:, ikp, 1)
    1858         160 :          eigenvalues_without_soc_sorted(nao + 1:2*nao) = Eigenval(:, ikp, 1)
    1859          48 :          ALLOCATE (index0(2*nao))
    1860          16 :          CALL sort(eigenvalues_without_soc_sorted, 2*nao, index0)
    1861          16 :          DEALLOCATE (index0)
    1862             : 
    1863          64 :          E_HOMO_GW_SOC = MAXVAL(eigenvalues(2*homo(1) - 2*gw_corr_lev_occ(1) + 1:2*homo(1)))
    1864          64 :          E_LUMO_GW_SOC = MINVAL(eigenvalues(2*homo(1) + 1:2*homo(1) + 2*gw_corr_lev_virt(1)))
    1865          16 :          E_GAP_GW_SOC = E_LUMO_GW_SOC - E_HOMO_GW_SOC
    1866          16 :          IF (E_HOMO_GW_SOC > E_VBM_GW_SOC) E_VBM_GW_SOC = E_HOMO_GW_SOC
    1867          16 :          IF (E_LUMO_GW_SOC < E_CBM_GW_SOC) E_CBM_GW_SOC = E_LUMO_GW_SOC
    1868             : 
    1869          52 :          IF (unit_nr > 0) THEN
    1870           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1871           8 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    1872           8 :                '   xkp =', kpoints_Sigma%xkp(1, ikp), kpoints_Sigma%xkp(2, ikp), kpoints_Sigma%xkp(3, ikp), &
    1873          16 :                '  and  xkp =', -kpoints_Sigma%xkp(1, ikp), -kpoints_Sigma%xkp(2, ikp), -kpoints_Sigma%xkp(3, ikp)
    1874           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1875           8 :             IF (do_soc_gw) THEN
    1876           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1877           4 :                WRITE (unit_nr, '(T3,A,F13.4)') 'GW_SOC_INFO | Average GW shift of occupied levels compared to SCF', &
    1878           8 :                   avg_occ_QP_shift*evolt
    1879           4 :                WRITE (unit_nr, '(T3,A,F11.4)') 'GW_SOC_INFO | Average GW shift of unoccupied levels compared to SCF', &
    1880           8 :                   avg_virt_QP_shift*evolt
    1881           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1882           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_GW with SOC (eV)   E_GW without SOC (eV)  SOC shift (eV)'
    1883             :             ELSE
    1884           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital  E_SCF with SOC (eV)  E_SCF without SOC (eV)  SOC shift (eV)'
    1885             :             END IF
    1886             : 
    1887          24 :             DO n_level_gw = 2*(homo(1) - gw_corr_lev_occ(1)) + 1, 2*homo(1)
    1888          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( occ )   ', eigenvalues(n_level_gw)*evolt, &
    1889          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1890          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1891             :             END DO
    1892          24 :             DO n_level_gw = 2*homo(1) + 1, 2*(homo(1) + gw_corr_lev_virt(1))
    1893          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( vir )   ', eigenvalues(n_level_gw)*evolt, &
    1894          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1895          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1896             :             END DO
    1897           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1898           8 :             IF (do_soc_gw) THEN
    1899           4 :                WRITE (unit_nr, '(T3,A,F38.4)') 'GW+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1900             :             ELSE
    1901           4 :                WRITE (unit_nr, '(T3,A,F37.4)') 'SCF+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1902             :             END IF
    1903           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1904           8 :             WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1905             :          END IF
    1906             : 
    1907             :       END DO
    1908             : 
    1909           4 :       IF (unit_nr > 0) THEN
    1910           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1911           2 :          IF (do_soc_gw) THEN
    1912           1 :             WRITE (unit_nr, '(T3,A,F46.4)') 'GW+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1913           1 :             WRITE (unit_nr, '(T3,A,F43.4)') 'GW+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1914           1 :             WRITE (unit_nr, '(T3,A,F59.4)') 'GW+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1915             :          ELSE
    1916           1 :             WRITE (unit_nr, '(T3,A,F45.4)') 'SCF+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1917           1 :             WRITE (unit_nr, '(T3,A,F42.4)') 'SCF+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1918           1 :             WRITE (unit_nr, '(T3,A,F58.4)') 'SCF+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1919             :          END IF
    1920             :       END IF
    1921             : 
    1922           4 :       CALL dbcsr_deallocate_matrix_set(matrix_l)
    1923           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_l_nosymm)
    1924           4 :       CALL dbcsr_deallocate_matrix_set(matrix_pot_dummy)
    1925           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lx_kp)
    1926           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_ly_kp)
    1927           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lz_kp)
    1928           4 :       CALL dbcsr_deallocate_matrix_set(matrix_s_desymm)
    1929             : 
    1930           4 :       CALL cp_cfm_release(cfm_mat_h_double)
    1931           4 :       CALL cp_cfm_release(cfm_mat_s_double)
    1932           4 :       CALL cp_cfm_release(cfm_mo_coeff_double)
    1933           4 :       CALL cp_cfm_release(cfm_mo_coeff)
    1934           4 :       CALL cp_cfm_release(cfm_mat_h_ks)
    1935           4 :       CALL cp_cfm_release(cfm_mat_work_double)
    1936           4 :       DEALLOCATE (eigenvalues)
    1937             : 
    1938           4 :       CALL timestop(handle)
    1939             : 
    1940          12 :    END SUBROUTINE calculate_and_print_soc
    1941             : 
    1942             : ! **************************************************************************************************
    1943             : !> \brief ...
    1944             : !> \param cfm_mat_target ...
    1945             : !> \param mat_source ...
    1946             : !> \param cfm_source_template ...
    1947             : !> \param nstart_row ...
    1948             : !> \param nstart_col ...
    1949             : !> \param factor ...
    1950             : !> \param add_also_herm_conj ...
    1951             : ! **************************************************************************************************
    1952          64 :    SUBROUTINE add_dbcsr_submatrix(cfm_mat_target, mat_source, cfm_source_template, &
    1953             :                                   nstart_row, nstart_col, factor, add_also_herm_conj)
    1954             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target
    1955             :       TYPE(dbcsr_p_type), DIMENSION(:)                   :: mat_source
    1956             :       TYPE(cp_cfm_type)                                  :: cfm_source_template
    1957             :       INTEGER                                            :: nstart_row, nstart_col
    1958             :       COMPLEX(KIND=dp)                                   :: factor
    1959             :       LOGICAL                                            :: add_also_herm_conj
    1960             : 
    1961             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'add_dbcsr_submatrix'
    1962             : 
    1963             :       INTEGER                                            :: handle, nao
    1964             :       TYPE(cp_cfm_type)                                  :: cfm_mat_work_double, &
    1965             :                                                             cfm_mat_work_double_2
    1966             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    1967             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    1968             :                                                             fm_mat_work_re
    1969             : 
    1970          64 :       CALL timeset(routineN, handle)
    1971             : 
    1972          64 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    1973          64 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    1974          64 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    1975          64 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    1976             : 
    1977          64 :       CALL cp_cfm_create(cfm_mat_work_double, cfm_mat_target%matrix_struct)
    1978          64 :       CALL cp_cfm_create(cfm_mat_work_double_2, cfm_mat_target%matrix_struct)
    1979          64 :       CALL cp_cfm_set_all(cfm_mat_work_double, z_zero)
    1980          64 :       CALL cp_cfm_set_all(cfm_mat_work_double_2, z_zero)
    1981             : 
    1982          64 :       CALL cp_fm_create(fm_mat_work_re, cfm_source_template%matrix_struct)
    1983          64 :       CALL cp_fm_create(fm_mat_work_im, cfm_source_template%matrix_struct)
    1984             : 
    1985          64 :       CALL copy_dbcsr_to_fm(mat_source(1)%matrix, fm_mat_work_re)
    1986          64 :       CALL copy_dbcsr_to_fm(mat_source(2)%matrix, fm_mat_work_im)
    1987             : 
    1988          64 :       CALL cp_cfm_get_info(cfm_source_template, nrow_global=nao)
    1989             : 
    1990             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    1991             :                               nrow=nao, ncol=nao, &
    1992             :                               s_firstrow=1, s_firstcol=1, &
    1993          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    1994             : 
    1995             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    1996             :                               nrow=nao, ncol=nao, &
    1997             :                               s_firstrow=1, s_firstcol=1, &
    1998          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    1999             : 
    2000          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, z_one, fm_mat_work_double_re)
    2001          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, gaussi, fm_mat_work_double_im)
    2002             : 
    2003          64 :       CALL cp_cfm_scale(factor, cfm_mat_work_double)
    2004             : 
    2005          64 :       CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double)
    2006             : 
    2007          64 :       IF (add_also_herm_conj) THEN
    2008          32 :          CALL cp_cfm_transpose(cfm_mat_work_double, 'C', cfm_mat_work_double_2)
    2009          32 :          CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double_2)
    2010             :       END IF
    2011             : 
    2012          64 :       CALL cp_fm_release(fm_mat_work_double_re)
    2013          64 :       CALL cp_fm_release(fm_mat_work_double_im)
    2014          64 :       CALL cp_cfm_release(cfm_mat_work_double)
    2015          64 :       CALL cp_cfm_release(cfm_mat_work_double_2)
    2016          64 :       CALL cp_fm_release(fm_mat_work_re)
    2017          64 :       CALL cp_fm_release(fm_mat_work_im)
    2018             : 
    2019          64 :       CALL timestop(handle)
    2020             : 
    2021          64 :    END SUBROUTINE
    2022             : 
    2023             : ! **************************************************************************************************
    2024             : !> \brief ...
    2025             : !> \param cfm_mat_target ...
    2026             : !> \param cfm_mat_source ...
    2027             : !> \param nstart_row ...
    2028             : !> \param nstart_col ...
    2029             : ! **************************************************************************************************
    2030          64 :    SUBROUTINE add_cfm_submatrix(cfm_mat_target, cfm_mat_source, nstart_row, nstart_col)
    2031             : 
    2032             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target, cfm_mat_source
    2033             :       INTEGER                                            :: nstart_row, nstart_col
    2034             : 
    2035             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'add_cfm_submatrix'
    2036             : 
    2037             :       INTEGER                                            :: handle, nao
    2038             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    2039             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    2040             :                                                             fm_mat_work_re
    2041             : 
    2042          32 :       CALL timeset(routineN, handle)
    2043             : 
    2044          32 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    2045          32 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    2046          32 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    2047          32 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    2048             : 
    2049          32 :       CALL cp_fm_create(fm_mat_work_re, cfm_mat_source%matrix_struct)
    2050          32 :       CALL cp_fm_create(fm_mat_work_im, cfm_mat_source%matrix_struct)
    2051          32 :       CALL cp_cfm_to_fm(cfm_mat_source, fm_mat_work_re, fm_mat_work_im)
    2052             : 
    2053          32 :       CALL cp_cfm_get_info(cfm_mat_source, nrow_global=nao)
    2054             : 
    2055             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    2056             :                               nrow=nao, ncol=nao, &
    2057             :                               s_firstrow=1, s_firstcol=1, &
    2058          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2059             : 
    2060             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    2061             :                               nrow=nao, ncol=nao, &
    2062             :                               s_firstrow=1, s_firstcol=1, &
    2063          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2064             : 
    2065          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, z_one, fm_mat_work_double_re)
    2066          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, gaussi, fm_mat_work_double_im)
    2067             : 
    2068          32 :       CALL cp_fm_release(fm_mat_work_double_re)
    2069          32 :       CALL cp_fm_release(fm_mat_work_double_im)
    2070          32 :       CALL cp_fm_release(fm_mat_work_re)
    2071          32 :       CALL cp_fm_release(fm_mat_work_im)
    2072             : 
    2073          32 :       CALL timestop(handle)
    2074             : 
    2075          32 :    END SUBROUTINE add_cfm_submatrix
    2076             : 
    2077             : ! **************************************************************************************************
    2078             : !> \brief ...
    2079             : !> \param fm_orig ...
    2080             : !> \param cfm_double ...
    2081             : ! **************************************************************************************************
    2082          32 :    SUBROUTINE create_cfm_double_row_col_size(fm_orig, cfm_double)
    2083             :       TYPE(cp_fm_type)                                   :: fm_orig
    2084             :       TYPE(cp_cfm_type)                                  :: cfm_double
    2085             : 
    2086             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_cfm_double_row_col_size'
    2087             : 
    2088             :       INTEGER                                            :: handle, ncol_global_orig, &
    2089             :                                                             nrow_global_orig
    2090             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_double
    2091             : 
    2092          16 :       CALL timeset(routineN, handle)
    2093             : 
    2094          16 :       CALL cp_fm_get_info(matrix=fm_orig, nrow_global=nrow_global_orig, ncol_global=ncol_global_orig)
    2095             : 
    2096             :       CALL cp_fm_struct_create(fm_struct_double, &
    2097             :                                nrow_global=2*nrow_global_orig, &
    2098             :                                ncol_global=2*ncol_global_orig, &
    2099          16 :                                template_fmstruct=fm_orig%matrix_struct)
    2100             : 
    2101          16 :       CALL cp_cfm_create(cfm_double, fm_struct_double)
    2102             : 
    2103          16 :       CALL cp_fm_struct_release(fm_struct_double)
    2104             : 
    2105          16 :       CALL timestop(handle)
    2106             : 
    2107          16 :    END SUBROUTINE
    2108             : 
    2109             : ! **************************************************************************************************
    2110             : !> \brief ...
    2111             : !> \param E_VBM_SCF ...
    2112             : !> \param E_CBM_SCF ...
    2113             : !> \param E_VBM_SCF_beta ...
    2114             : !> \param E_CBM_SCF_beta ...
    2115             : !> \param E_VBM_GW ...
    2116             : !> \param E_CBM_GW ...
    2117             : !> \param E_VBM_GW_beta ...
    2118             : !> \param E_CBM_GW_beta ...
    2119             : !> \param my_open_shell ...
    2120             : !> \param unit_nr ...
    2121             : ! **************************************************************************************************
    2122           9 :    SUBROUTINE print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    2123             :                          E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    2124             : 
    2125             :       REAL(KIND=dp)                                      :: E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, &
    2126             :                                                             E_CBM_SCF_beta, E_VBM_GW, E_CBM_GW, &
    2127             :                                                             E_VBM_GW_beta, E_CBM_GW_beta
    2128             :       LOGICAL                                            :: my_open_shell
    2129             :       INTEGER                                            :: unit_nr
    2130             : 
    2131           9 :       IF (my_open_shell) THEN
    2132           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2133           2 :          WRITE (unit_nr, '(T3,A,F43.4)') 'Alpha SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2134           2 :          WRITE (unit_nr, '(T3,A,F40.4)') 'Alpha SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2135           2 :          WRITE (unit_nr, '(T3,A,F56.4)') 'Alpha SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2136           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2137           2 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Beta SCF valence band maximum (eV)', E_VBM_SCF_beta*evolt
    2138           2 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Beta SCF conduction band minimum (eV)', E_CBM_SCF_beta*evolt
    2139           2 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Beta SCF bandgap (eV)', (E_CBM_SCF_beta - E_VBM_SCF_beta)*evolt
    2140           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2141           2 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Alpha GW valence band maximum (eV)', E_VBM_GW*evolt
    2142           2 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Alpha GW conduction band minimum (eV)', E_CBM_GW*evolt
    2143           2 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Alpha GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2144           2 :          WRITE (unit_nr, '(T3,A)') ' '
    2145           2 :          WRITE (unit_nr, '(T3,A,F45.4)') 'Beta GW valence band maximum (eV)', E_VBM_GW_beta*evolt
    2146           2 :          WRITE (unit_nr, '(T3,A,F42.4)') 'Beta GW conduction band minimum (eV)', E_CBM_GW_beta*evolt
    2147           2 :          WRITE (unit_nr, '(T3,A,F58.4)') 'Beta GW bandgap (eV)', (E_CBM_GW_beta - E_VBM_GW_beta)*evolt
    2148             :       ELSE
    2149           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2150           7 :          WRITE (unit_nr, '(T3,A,F49.4)') 'SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2151           7 :          WRITE (unit_nr, '(T3,A,F46.4)') 'SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2152           7 :          WRITE (unit_nr, '(T3,A,F62.4)') 'SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2153           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2154           7 :          WRITE (unit_nr, '(T3,A,F50.4)') 'GW valence band maximum (eV)', E_VBM_GW*evolt
    2155           7 :          WRITE (unit_nr, '(T3,A,F47.4)') 'GW conduction band minimum (eV)', E_CBM_GW*evolt
    2156           7 :          WRITE (unit_nr, '(T3,A,F63.4)') 'GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2157             :       END IF
    2158             : 
    2159           9 :    END SUBROUTINE print_gaps
    2160             : 
    2161             : ! **************************************************************************************************
    2162             : !> \brief ...
    2163             : !> \param array ...
    2164             : !> \param real_value ...
    2165             : ! **************************************************************************************************
    2166         720 :    SUBROUTINE check_NaN(array, real_value)
    2167             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    2168             :          INTENT(INOUT)                                   :: array
    2169             :       REAL(KIND=dp), INTENT(IN)                          :: real_value
    2170             : 
    2171             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'check_NaN'
    2172             : 
    2173             :       INTEGER                                            :: handle, i, j, k
    2174             : 
    2175         720 :       CALL timeset(routineN, handle)
    2176             : 
    2177        5112 :       DO i = 1, SIZE(array, 1)
    2178       15024 :       DO j = 1, SIZE(array, 2)
    2179       26508 :       DO k = 1, SIZE(array, 3)
    2180             : 
    2181             :          ! check for NaN
    2182       22116 :          IF (array(i, j, k) .NE. array(i, j, k)) array(i, j, k) = real_value
    2183             : 
    2184             :       END DO
    2185             :       END DO
    2186             :       END DO
    2187             : 
    2188         720 :       CALL timestop(handle)
    2189             : 
    2190         720 :    END SUBROUTINE
    2191             : 
    2192             : ! **************************************************************************************************
    2193             : !> \brief ...
    2194             : !> \param qs_env ...
    2195             : !> \param Eigenval ...
    2196             : !> \param gw_corr_lev_occ ...
    2197             : !> \param gw_corr_lev_virt ...
    2198             : !> \param homo ...
    2199             : !> \param dft_gw_char ...
    2200             : ! **************************************************************************************************
    2201           4 :    SUBROUTINE print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2202             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2203             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2204             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2205             :       CHARACTER(len=*)                                   :: dft_gw_char
    2206             : 
    2207             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_local_bandgap'
    2208             : 
    2209             :       INTEGER                                            :: handle, i_E
    2210             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2211             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2212             :       TYPE(pw_r3d_rs_type)                               :: E_CBM_rspace, E_gap_rspace, E_VBM_rspace
    2213           4 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2214             : 
    2215           4 :       CALL timeset(routineN, handle)
    2216             : 
    2217           4 :       CALL create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2218             : 
    2219             :       CALL calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2220           4 :                                   LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2221             : 
    2222           4 :       CALL auxbas_pw_pool%give_back_pw(E_gap_rspace)
    2223           4 :       CALL auxbas_pw_pool%give_back_pw(E_VBM_rspace)
    2224           4 :       CALL auxbas_pw_pool%give_back_pw(E_CBM_rspace)
    2225           4 :       CALL auxbas_pw_pool%give_back_pw(rho_g_dummy)
    2226          20 :       DO i_E = 1, SIZE(LDOS)
    2227          20 :          CALL auxbas_pw_pool%give_back_pw(LDOS(i_E))
    2228             :       END DO
    2229           4 :       DEALLOCATE (LDOS)
    2230             : 
    2231           4 :       CALL timestop(handle)
    2232             : 
    2233           4 :    END SUBROUTINE print_local_bandgap
    2234             : 
    2235             : ! **************************************************************************************************
    2236             : !> \brief ...
    2237             : !> \param E_gap_rspace ...
    2238             : !> \param E_VBM_rspace ...
    2239             : !> \param E_CBM_rspace ...
    2240             : !> \param rho_g_dummy ...
    2241             : !> \param LDOS ...
    2242             : !> \param qs_env ...
    2243             : !> \param Eigenval ...
    2244             : !> \param gw_corr_lev_occ ...
    2245             : !> \param gw_corr_lev_virt ...
    2246             : !> \param homo ...
    2247             : !> \param dft_gw_char ...
    2248             : ! **************************************************************************************************
    2249           4 :    SUBROUTINE calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2250           4 :                                      LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2251             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2252             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2253             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2254             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2255             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2256             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2257             :       CHARACTER(len=*)                                   :: dft_gw_char
    2258             : 
    2259             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_E_gap_rspace'
    2260             : 
    2261             :       INTEGER :: handle, i_E, i_img, i_spin, i_x, i_y, i_z, ikp, imo, n_E, n_E_occ, n_x_end, &
    2262             :          n_x_start, n_y_end, n_y_start, n_z_end, n_z_start, nimg, nkp, nkp_self_energy
    2263             :       REAL(KIND=dp)                                      :: avg_LDOS_occ, avg_LDOS_virt, d_E, E_CBM, &
    2264             :                                                             E_CBM_at_k, E_diff, E_VBM, E_VBM_at_k
    2265           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: E_array
    2266           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: occupation
    2267             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    2268           4 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_work
    2269           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, rho_ao
    2270           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_weighted
    2271             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2272             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    2273             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2274             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2275             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2276           4 :          POINTER                                         :: sab_orb
    2277             :       TYPE(particle_list_type), POINTER                  :: particles
    2278             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2279             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
    2280             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    2281             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2282             : 
    2283           4 :       CALL timeset(routineN, handle)
    2284             : 
    2285             :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, mp2_env=mp2_env, ks_env=ks_env, matrix_s=matrix_s, &
    2286           4 :                       scf_env=scf_env, sab_orb=sab_orb, dft_control=dft_control, subsys=subsys)
    2287             : 
    2288             :       ! compute valence band maximum (VBM) and conduction band minimum (CBM)
    2289           4 :       nkp = SIZE(Eigenval, 2)
    2290           4 :       E_VBM = -1.0E3_dp
    2291           4 :       E_CBM = 1.0E3_dp
    2292             : 
    2293          36 :       DO ikp = 1, nkp
    2294             : 
    2295          96 :          E_VBM_at_k = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo, ikp, 1))
    2296          32 :          IF (E_VBM_at_k > E_VBM) E_VBM = E_VBM_at_k
    2297             : 
    2298          96 :          E_CBM_at_k = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt, ikp, 1))
    2299          36 :          IF (E_CBM_at_k < E_CBM) E_CBM = E_CBM_at_k
    2300             : 
    2301             :       END DO
    2302             : 
    2303           4 :       d_E = mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap
    2304             : 
    2305           4 :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/d_E)
    2306             : 
    2307           4 :       n_E_occ = n_E/2
    2308          12 :       ALLOCATE (E_array(n_E))
    2309          12 :       DO i_E = 1, n_E_occ
    2310          12 :          E_array(i_E) = E_VBM - REAL(n_E_occ - i_E, KIND=dp)*d_E
    2311             :       END DO
    2312          12 :       DO i_E = n_E_occ + 1, n_E
    2313          12 :          E_array(i_E) = E_CBM + REAL(i_E - n_E_occ - 1, KIND=dp)*d_E
    2314             :       END DO
    2315             : 
    2316           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    2317             : 
    2318           4 :       nkp_self_energy = kpoints_Sigma%nkp
    2319           4 :       CPASSERT(nkp == nkp_self_energy)
    2320             : 
    2321           4 :       kpoints_Sigma%sab_nl => sab_orb
    2322             : 
    2323           4 :       DEALLOCATE (kpoints_Sigma%cell_to_index)
    2324             :       NULLIFY (kpoints_Sigma%cell_to_index)
    2325           4 :       CALL kpoint_init_cell_index(kpoints_Sigma, sab_orb, para_env, dft_control)
    2326             : 
    2327         424 :       nimg = MAXVAL(kpoints_Sigma%cell_to_index)
    2328             : 
    2329           4 :       NULLIFY (rho_ao_weighted)
    2330           4 :       CALL dbcsr_allocate_matrix_set(rho_ao_weighted, 2, nimg)
    2331             : 
    2332          12 :       DO i_spin = 1, 2
    2333         236 :          DO i_img = 1, nimg
    2334         224 :             ALLOCATE (rho_ao_weighted(i_spin, i_img)%matrix)
    2335         224 :             CALL dbcsr_create(matrix=rho_ao_weighted(i_spin, i_img)%matrix, template=matrix_s(1)%matrix)
    2336         224 :             CALL cp_dbcsr_alloc_block_from_nbl(rho_ao_weighted(i_spin, i_img)%matrix, sab_orb)
    2337         232 :             CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2338             :          END DO
    2339             :       END DO
    2340             : 
    2341         124 :       ALLOCATE (fm_work(nimg))
    2342           4 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    2343         116 :       DO i_img = 1, nimg
    2344         116 :          CALL cp_fm_create(fm_work(i_img), matrix_struct)
    2345             :       END DO
    2346             : 
    2347          20 :       DO i_E = 1, n_E
    2348             : 
    2349             :          ! occupation = weight factor for computing LDOS
    2350         144 :          DO ikp = 1, nkp
    2351             :             CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), &
    2352         128 :                             occupation_numbers=occupation)
    2353             : 
    2354        3072 :             occupation(:) = 0.0_dp
    2355         400 :             DO imo = homo - gw_corr_lev_occ + 1, homo + gw_corr_lev_virt
    2356         256 :                E_diff = E_array(i_E) - Eigenval(imo, ikp, 1)
    2357         384 :                occupation(imo) = EXP(-(E_diff/d_E)**2)
    2358             :             END DO
    2359             : 
    2360             :          END DO
    2361             : 
    2362             :          CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), &
    2363          16 :                          occupation_numbers=occupation)
    2364             : 
    2365             :          ! density matrices
    2366          16 :          CALL kpoint_density_matrices(kpoints_Sigma)
    2367             : 
    2368             :          ! density matrices in real space
    2369             :          CALL kpoint_density_transform(kpoints_Sigma, rho_ao_weighted, .FALSE., &
    2370          16 :                                        matrix_s(1)%matrix, sab_orb, fm_work)
    2371             : 
    2372          16 :          rho_ao => rho_ao_weighted(1, :)
    2373             : 
    2374             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    2375             :                                  rho=LDOS(i_E), &
    2376             :                                  rho_gspace=rho_g_dummy, &
    2377          16 :                                  ks_env=ks_env)
    2378             : 
    2379          52 :          DO i_spin = 1, 2
    2380         944 :             DO i_img = 1, nimg
    2381         928 :                CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2382             :             END DO
    2383             :          END DO
    2384             : 
    2385             :       END DO
    2386             : 
    2387           4 :       n_x_start = LBOUND(LDOS(1)%array, 1)
    2388           4 :       n_x_end = UBOUND(LDOS(1)%array, 1)
    2389           4 :       n_y_start = LBOUND(LDOS(1)%array, 2)
    2390           4 :       n_y_end = UBOUND(LDOS(1)%array, 2)
    2391           4 :       n_z_start = LBOUND(LDOS(1)%array, 3)
    2392           4 :       n_z_end = UBOUND(LDOS(1)%array, 3)
    2393             : 
    2394           4 :       CALL pw_zero(E_VBM_rspace)
    2395           4 :       CALL pw_zero(E_CBM_rspace)
    2396             : 
    2397          68 :       DO i_x = n_x_start, n_x_end
    2398        2116 :          DO i_y = n_y_start, n_y_end
    2399       94272 :             DO i_z = n_z_start, n_z_end
    2400             :                ! compute average occ and virt LDOS
    2401             :                avg_LDOS_occ = 0.0_dp
    2402      276480 :                DO i_E = 1, n_E_occ
    2403      276480 :                   avg_LDOS_occ = avg_LDOS_occ + LDOS(i_E)%array(i_x, i_y, i_z)
    2404             :                END DO
    2405       92160 :                avg_LDOS_occ = avg_LDOS_occ/REAL(n_E_occ, KIND=dp)
    2406             : 
    2407       92160 :                avg_LDOS_virt = 0.0_dp
    2408      276480 :                DO i_E = n_E_occ + 1, n_E
    2409      276480 :                   avg_LDOS_virt = avg_LDOS_virt + LDOS(i_E)%array(i_x, i_y, i_z)
    2410             :                END DO
    2411       92160 :                avg_LDOS_virt = avg_LDOS_virt/REAL(n_E - n_E_occ, KIND=dp)
    2412             : 
    2413             :                ! compute local valence band maximum (VBM)
    2414      117660 :                DO i_E = n_E_occ, 1, -1
    2415      117660 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_occ) THEN
    2416       79668 :                      E_VBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2417       79668 :                      EXIT
    2418             :                   END IF
    2419             :                END DO
    2420             : 
    2421             :                ! compute local valence band maximum (VBM)
    2422       94304 :                DO i_E = n_E_occ + 1, n_E
    2423       92256 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_virt) THEN
    2424       92112 :                      E_CBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2425       92112 :                      EXIT
    2426             :                   END IF
    2427             :                END DO
    2428             : 
    2429             :             END DO
    2430             :          END DO
    2431             :       END DO
    2432             : 
    2433           4 :       CALL pw_scale(E_VBM_rspace, evolt)
    2434           4 :       CALL pw_scale(E_CBM_rspace, evolt)
    2435             : 
    2436           4 :       CALL pw_copy(E_CBM_rspace, E_gap_rspace)
    2437           4 :       CALL pw_axpy(E_VBM_rspace, E_gap_rspace, -1.0_dp)
    2438             : 
    2439           4 :       gw_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%GW")
    2440           4 :       CALL qs_subsys_get(subsys, particles=particles)
    2441             : 
    2442           4 :       CALL print_file(E_gap_rspace, dft_gw_char//"_Gap_in_eV", gw_section, particles, mp2_env)
    2443           4 :       CALL print_file(E_VBM_rspace, dft_gw_char//"_VBM_in_eV", gw_section, particles, mp2_env)
    2444           4 :       CALL print_file(E_CBM_rspace, dft_gw_char//"_CBM_in_eV", gw_section, particles, mp2_env)
    2445           4 :       CALL print_file(LDOS(n_E_occ), dft_gw_char//"_LDOS_VBM_in_eV", gw_section, particles, mp2_env)
    2446           4 :       CALL print_file(LDOS(n_E_occ + 1), dft_gw_char//"_LDOS_CBM_in_eV", gw_section, particles, mp2_env)
    2447             : 
    2448           4 :       CALL dbcsr_deallocate_matrix_set(rho_ao_weighted)
    2449             : 
    2450           4 :       CALL cp_fm_release(fm_work)
    2451             : 
    2452           4 :       DEALLOCATE (E_array)
    2453             : 
    2454           4 :       NULLIFY (kpoints_Sigma%sab_nl)
    2455             : 
    2456           4 :       CALL timestop(handle)
    2457             : 
    2458           8 :    END SUBROUTINE calculate_E_gap_rspace
    2459             : 
    2460             : ! **************************************************************************************************
    2461             : !> \brief ...
    2462             : !> \param pw_print ...
    2463             : !> \param middle_name ...
    2464             : !> \param gw_section ...
    2465             : !> \param particles ...
    2466             : !> \param mp2_env ...
    2467             : ! **************************************************************************************************
    2468          20 :    SUBROUTINE print_file(pw_print, middle_name, gw_section, particles, mp2_env)
    2469             :       TYPE(pw_r3d_rs_type)                               :: pw_print
    2470             :       CHARACTER(len=*)                                   :: middle_name
    2471             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2472             :       TYPE(particle_list_type), POINTER                  :: particles
    2473             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2474             : 
    2475             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'print_file'
    2476             : 
    2477             :       INTEGER                                            :: handle, unit_nr_cube
    2478             :       LOGICAL                                            :: mpi_io
    2479             :       TYPE(cp_logger_type), POINTER                      :: logger
    2480             : 
    2481          20 :       CALL timeset(routineN, handle)
    2482             : 
    2483          20 :       NULLIFY (logger)
    2484          20 :       logger => cp_get_default_logger()
    2485          20 :       mpi_io = .TRUE.
    2486             :       unit_nr_cube = cp_print_key_unit_nr(logger, gw_section, "PRINT%LOCAL_BANDGAP", extension=".cube", &
    2487          20 :                                           middle_name=middle_name, file_form="FORMATTED", mpi_io=mpi_io)
    2488             :       CALL cp_pw_to_cube(pw_print, unit_nr_cube, middle_name, particles=particles, &
    2489          20 :                          stride=mp2_env%ri_g0w0%stride_loc_bandgap, mpi_io=mpi_io)
    2490             :       CALL cp_print_key_finished_output(unit_nr_cube, logger, gw_section, &
    2491          20 :                                         "PRINT%LOCAL_BANDGAP", mpi_io=mpi_io)
    2492             : 
    2493          20 :       CALL timestop(handle)
    2494             : 
    2495          20 :    END SUBROUTINE print_file
    2496             : 
    2497             : ! **************************************************************************************************
    2498             : !> \brief ...
    2499             : !> \param E_gap_rspace ...
    2500             : !> \param E_VBM_rspace ...
    2501             : !> \param E_CBM_rspace ...
    2502             : !> \param rho_g_dummy ...
    2503             : !> \param LDOS ...
    2504             : !> \param auxbas_pw_pool ...
    2505             : !> \param qs_env ...
    2506             : ! **************************************************************************************************
    2507           4 :    SUBROUTINE create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2508             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2509             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2510             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2511             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2512             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2513             : 
    2514             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_real_space_grids'
    2515             : 
    2516             :       INTEGER                                            :: handle, i_E, n_E
    2517             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2518             :       TYPE(pw_env_type), POINTER                         :: pw_env
    2519             : 
    2520           4 :       CALL timeset(routineN, handle)
    2521             : 
    2522           4 :       CALL get_qs_env(qs_env=qs_env, mp2_env=mp2_env, pw_env=pw_env)
    2523             : 
    2524           4 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2525             : 
    2526           4 :       CALL auxbas_pw_pool%create_pw(E_gap_rspace)
    2527           4 :       CALL auxbas_pw_pool%create_pw(E_VBM_rspace)
    2528           4 :       CALL auxbas_pw_pool%create_pw(E_CBM_rspace)
    2529           4 :       CALL auxbas_pw_pool%create_pw(rho_g_dummy)
    2530             : 
    2531             :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/ &
    2532           4 :                 mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap)
    2533             : 
    2534          28 :       ALLOCATE (LDOS(n_E))
    2535             : 
    2536          20 :       DO i_E = 1, n_E
    2537          20 :          CALL auxbas_pw_pool%create_pw(LDOS(i_E))
    2538             :       END DO
    2539             : 
    2540           4 :       CALL timestop(handle)
    2541             : 
    2542           4 :    END SUBROUTINE create_real_space_grids
    2543             : 
    2544             : ! **************************************************************************************************
    2545             : !> \brief ...
    2546             : !> \param delta_corr ...
    2547             : !> \param qs_env ...
    2548             : !> \param para_env ...
    2549             : !> \param para_env_RPA ...
    2550             : !> \param kp_grid ...
    2551             : !> \param homo ...
    2552             : !> \param nmo ...
    2553             : !> \param gw_corr_lev_occ ...
    2554             : !> \param gw_corr_lev_virt ...
    2555             : !> \param omega ...
    2556             : !> \param fm_mo_coeff ...
    2557             : !> \param Eigenval ...
    2558             : !> \param matrix_berry_re_mo_mo ...
    2559             : !> \param matrix_berry_im_mo_mo ...
    2560             : !> \param first_cycle_periodic_correction ...
    2561             : !> \param kpoints ...
    2562             : !> \param do_mo_coeff_Gamma_only ...
    2563             : !> \param num_kp_grids ...
    2564             : !> \param eps_kpoint ...
    2565             : !> \param do_extra_kpoints ...
    2566             : !> \param do_aux_bas ...
    2567             : !> \param frac_aux_mos ...
    2568             : ! **************************************************************************************************
    2569         250 :    SUBROUTINE calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, kp_grid, homo, nmo, &
    2570         250 :                                        gw_corr_lev_occ, gw_corr_lev_virt, omega, fm_mo_coeff, Eigenval, &
    2571             :                                        matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2572             :                                        first_cycle_periodic_correction, kpoints, do_mo_coeff_Gamma_only, &
    2573             :                                        num_kp_grids, eps_kpoint, do_extra_kpoints, do_aux_bas, frac_aux_mos)
    2574             : 
    2575             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2576             :          INTENT(INOUT)                                   :: delta_corr
    2577             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2578             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    2579             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    2580             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_occ, &
    2581             :                                                             gw_corr_lev_virt
    2582             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2583             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2584             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2585             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2586             :                                                             matrix_berry_im_mo_mo
    2587             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    2588             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2589             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2590             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    2591             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2592             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints, do_aux_bas
    2593             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2594             : 
    2595             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calc_periodic_correction'
    2596             : 
    2597             :       INTEGER                                            :: handle
    2598         250 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eps_head, eps_inv_head
    2599             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_inv
    2600             : 
    2601         250 :       CALL timeset(routineN, handle)
    2602             : 
    2603         250 :       IF (first_cycle_periodic_correction) THEN
    2604             : 
    2605             :          CALL get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, do_mo_coeff_Gamma_only, &
    2606           4 :                           do_extra_kpoints)
    2607             : 
    2608             :          CALL get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, &
    2609             :                               para_env, do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2610           4 :                               frac_aux_mos)
    2611             : 
    2612             :       END IF
    2613             : 
    2614             :       CALL compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2615         250 :                                   qs_env, homo, Eigenval, omega)
    2616             : 
    2617             :       CALL compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    2618             : 
    2619             :       CALL kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, &
    2620             :                                              matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2621             :                                              homo, gw_corr_lev_occ, gw_corr_lev_virt, para_env_RPA, &
    2622         250 :                                              do_extra_kpoints)
    2623             : 
    2624         250 :       DEALLOCATE (eps_head, eps_inv_head)
    2625             : 
    2626         250 :       first_cycle_periodic_correction = .FALSE.
    2627             : 
    2628         250 :       CALL timestop(handle)
    2629             : 
    2630         250 :    END SUBROUTINE calc_periodic_correction
    2631             : 
    2632             : ! **************************************************************************************************
    2633             : !> \brief ...
    2634             : !> \param eps_head ...
    2635             : !> \param kpoints ...
    2636             : !> \param matrix_berry_re_mo_mo ...
    2637             : !> \param matrix_berry_im_mo_mo ...
    2638             : !> \param para_env_RPA ...
    2639             : !> \param qs_env ...
    2640             : !> \param homo ...
    2641             : !> \param Eigenval ...
    2642             : !> \param omega ...
    2643             : ! **************************************************************************************************
    2644         250 :    SUBROUTINE compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2645         250 :                                      qs_env, homo, Eigenval, omega)
    2646             : 
    2647             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2648             :          INTENT(OUT)                                     :: eps_head
    2649             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2650             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    2651             :                                                             matrix_berry_im_mo_mo
    2652             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env_RPA
    2653             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2654             :       INTEGER, INTENT(IN)                                :: homo
    2655             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2656             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2657             : 
    2658             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_head_Berry'
    2659             : 
    2660             :       INTEGER :: col, col_end_in_block, col_offset, col_size, handle, i_col, i_row, ikp, nkp, row, &
    2661             :          row_offset, row_size, row_start_in_block
    2662             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    2663             :                                                             correct_kpoint(3), cos_square, &
    2664             :                                                             eigen_diff, relative_kpoint(3), &
    2665             :                                                             sin_square
    2666             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: P_head
    2667         250 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    2668             :       TYPE(cell_type), POINTER                           :: cell
    2669             :       TYPE(dbcsr_iterator_type)                          :: iter
    2670             : 
    2671         250 :       CALL timeset(routineN, handle)
    2672             : 
    2673         250 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    2674         250 :       CALL get_cell(cell=cell, deth=cell_volume)
    2675             : 
    2676         250 :       NULLIFY (data_block)
    2677             : 
    2678         250 :       nkp = kpoints%nkp
    2679             : 
    2680         750 :       ALLOCATE (P_head(nkp))
    2681      256570 :       P_head(:) = 0.0_dp
    2682             : 
    2683         750 :       ALLOCATE (eps_head(nkp))
    2684      256570 :       eps_head(:) = 0.0_dp
    2685             : 
    2686      256570 :       DO ikp = 1, nkp
    2687             : 
    2688     3332160 :          relative_kpoint(1:3) = MATMUL(cell%hmat, kpoints%xkp(1:3, ikp))
    2689             : 
    2690     1025280 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    2691             : 
    2692      256320 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    2693             : 
    2694             :          ! real part of the Berry phase
    2695      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    2696      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2697             : 
    2698             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2699             :                                            row_size=row_size, col_size=col_size, &
    2700      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    2701             : 
    2702      151200 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2703             : 
    2704      151200 :             IF (row_offset <= homo) THEN
    2705      128160 :                row_start_in_block = homo - row_offset + 2
    2706             :             ELSE
    2707             :                row_start_in_block = 1
    2708             :             END IF
    2709             : 
    2710      151200 :             IF (col_offset + col_size - 1 > homo) THEN
    2711      151200 :                col_end_in_block = homo - col_offset + 1
    2712             :             ELSE
    2713             :                col_end_in_block = col_size
    2714             :             END IF
    2715             : 
    2716     1676160 :             DO i_row = row_start_in_block, row_size
    2717             : 
    2718     6494400 :                DO i_col = 1, col_end_in_block
    2719             : 
    2720     5074560 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2721             : 
    2722     5074560 :                   cos_square = (data_block(i_row, i_col))**2
    2723             : 
    2724     6343200 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*cos_square/abs_k_square
    2725             : 
    2726             :                END DO
    2727             : 
    2728             :             END DO
    2729             : 
    2730             :          END DO
    2731             : 
    2732      256320 :          CALL dbcsr_iterator_stop(iter)
    2733             : 
    2734             :          ! imaginary part of the Berry phase
    2735      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_im_mo_mo(ikp)%matrix)
    2736      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2737             : 
    2738             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2739             :                                            row_size=row_size, col_size=col_size, &
    2740      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    2741             : 
    2742      151200 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2743             : 
    2744      151200 :             IF (row_offset <= homo) THEN
    2745      128160 :                row_start_in_block = homo - row_offset + 2
    2746             :             ELSE
    2747             :                row_start_in_block = 1
    2748             :             END IF
    2749             : 
    2750      151200 :             IF (col_offset + col_size - 1 > homo) THEN
    2751      151200 :                col_end_in_block = homo - col_offset + 1
    2752             :             ELSE
    2753             :                col_end_in_block = col_size
    2754             :             END IF
    2755             : 
    2756     1676160 :             DO i_row = row_start_in_block, row_size
    2757             : 
    2758     6494400 :                DO i_col = 1, col_end_in_block
    2759             : 
    2760     5074560 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2761             : 
    2762     5074560 :                   sin_square = (data_block(i_row, i_col))**2
    2763             : 
    2764     6343200 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*sin_square/abs_k_square
    2765             : 
    2766             :                END DO
    2767             : 
    2768             :             END DO
    2769             : 
    2770             :          END DO
    2771             : 
    2772      256570 :          CALL dbcsr_iterator_stop(iter)
    2773             : 
    2774             :       END DO
    2775             : 
    2776         250 :       CALL para_env_RPA%sum(P_head)
    2777             : 
    2778             :       ! normalize eps_head
    2779             :       ! 2.0_dp due to closed shell
    2780      256570 :       eps_head(:) = 1.0_dp - 2.0_dp*P_head(:)/cell_volume*fourpi
    2781             : 
    2782         250 :       DEALLOCATE (P_head)
    2783             : 
    2784         250 :       CALL timestop(handle)
    2785             : 
    2786         500 :    END SUBROUTINE compute_eps_head_Berry
    2787             : 
    2788             : ! **************************************************************************************************
    2789             : !> \brief ...
    2790             : !> \param qs_env ...
    2791             : !> \param kpoints ...
    2792             : !> \param matrix_berry_re_mo_mo ...
    2793             : !> \param matrix_berry_im_mo_mo ...
    2794             : !> \param fm_mo_coeff ...
    2795             : !> \param para_env ...
    2796             : !> \param do_mo_coeff_Gamma_only ...
    2797             : !> \param homo ...
    2798             : !> \param nmo ...
    2799             : !> \param gw_corr_lev_virt ...
    2800             : !> \param eps_kpoint ...
    2801             : !> \param do_aux_bas ...
    2802             : !> \param frac_aux_mos ...
    2803             : ! **************************************************************************************************
    2804           4 :    SUBROUTINE get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, para_env, &
    2805             :                               do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2806             :                               frac_aux_mos)
    2807             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2808             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2809             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2810             :                                                             matrix_berry_im_mo_mo
    2811             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2812             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2813             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2814             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_virt
    2815             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2816             :       LOGICAL, INTENT(IN)                                :: do_aux_bas
    2817             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2818             : 
    2819             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_berry_phase'
    2820             : 
    2821             :       INTEGER                                            :: col_index, handle, i_col_local, ikind, &
    2822             :                                                             ikp, nao_aux, ncol_local, nkind, nkp, &
    2823             :                                                             nmo_for_aux_bas
    2824           4 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
    2825             :       REAL(dp)                                           :: abs_kpoint, correct_kpoint(3), &
    2826             :                                                             scale_kpoint
    2827           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: evals_P, evals_P_sqrt_inv
    2828             :       TYPE(cell_type), POINTER                           :: cell
    2829             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_aux_aux
    2830             :       TYPE(cp_fm_type) :: fm_mat_eigv_P, fm_mat_P, fm_mat_P_sqrt_inv, fm_mat_s_aux_aux_inv, &
    2831             :          fm_mat_scaled_eigv_P, fm_mat_work_aux_aux
    2832           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux_aux, &
    2833           4 :                                                             matrix_s_aux_orb
    2834             :       TYPE(dbcsr_type), POINTER :: cosmat, cosmat_desymm, mat_mo_coeff_aux, mat_mo_coeff_aux_2, &
    2835             :          mat_mo_coeff_Gamma_all, mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_im, mat_mo_coeff_re, &
    2836             :          mat_work_aux_orb, mat_work_aux_orb_2, matrix_P, matrix_P_sqrt, matrix_P_sqrt_inv, &
    2837             :          matrix_s_inv_aux_aux, sinmat, sinmat_desymm, tmp
    2838           4 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: gw_aux_basis_set_list, orb_basis_set_list
    2839             :       TYPE(gto_basis_set_type), POINTER                  :: basis_set_gw_aux
    2840             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2841           4 :          POINTER                                         :: sab_orb, sab_orb_mic, sgwgw_list, &
    2842           4 :                                                             sgworb_list
    2843           4 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2844             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
    2845             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2846             : 
    2847           4 :       CALL timeset(routineN, handle)
    2848             : 
    2849           4 :       nkp = kpoints%nkp
    2850             : 
    2851           4 :       NULLIFY (matrix_berry_re_mo_mo, matrix_s, cell, matrix_berry_im_mo_mo, sinmat, cosmat, tmp, &
    2852           4 :                cosmat_desymm, sinmat_desymm, qs_kind_set, orb_basis_set_list, sab_orb_mic)
    2853             : 
    2854             :       CALL get_qs_env(qs_env=qs_env, &
    2855             :                       cell=cell, &
    2856             :                       matrix_s=matrix_s, &
    2857             :                       qs_kind_set=qs_kind_set, &
    2858             :                       nkind=nkind, &
    2859             :                       ks_env=ks_env, &
    2860           4 :                       sab_orb=sab_orb)
    2861             : 
    2862          20 :       ALLOCATE (orb_basis_set_list(nkind))
    2863           4 :       CALL basis_set_list_setup(orb_basis_set_list, "ORB", qs_kind_set)
    2864             : 
    2865           4 :       CALL setup_neighbor_list(sab_orb_mic, orb_basis_set_list, qs_env=qs_env, mic=.FALSE.)
    2866             : 
    2867             :       ! create dbcsr matrix of mo_coeff for multiplcation
    2868           4 :       NULLIFY (mat_mo_coeff_re)
    2869           4 :       CALL dbcsr_init_p(mat_mo_coeff_re)
    2870             :       CALL dbcsr_create(matrix=mat_mo_coeff_re, &
    2871             :                         template=matrix_s(1)%matrix, &
    2872           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2873             : 
    2874           4 :       NULLIFY (mat_mo_coeff_im)
    2875           4 :       CALL dbcsr_init_p(mat_mo_coeff_im)
    2876             :       CALL dbcsr_create(matrix=mat_mo_coeff_im, &
    2877             :                         template=matrix_s(1)%matrix, &
    2878           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2879             : 
    2880           4 :       NULLIFY (mat_mo_coeff_Gamma_all)
    2881           4 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    2882             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    2883             :                         template=matrix_s(1)%matrix, &
    2884           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2885             : 
    2886           4 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_all, keep_sparsity=.FALSE.)
    2887             : 
    2888           4 :       NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    2889           4 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    2890             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    2891             :                         template=matrix_s(1)%matrix, &
    2892           4 :                         matrix_type=dbcsr_type_no_symmetry)
    2893             : 
    2894           4 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_occ_and_GW, keep_sparsity=.FALSE.)
    2895             : 
    2896           4 :       IF (.NOT. do_aux_bas) THEN
    2897             : 
    2898             :          ! allocate intermediate matrices
    2899           2 :          CALL dbcsr_init_p(cosmat)
    2900           2 :          CALL dbcsr_init_p(sinmat)
    2901           2 :          CALL dbcsr_init_p(tmp)
    2902           2 :          CALL dbcsr_init_p(cosmat_desymm)
    2903           2 :          CALL dbcsr_init_p(sinmat_desymm)
    2904           2 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s(1)%matrix)
    2905           2 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s(1)%matrix)
    2906             :          CALL dbcsr_create(matrix=tmp, &
    2907             :                            template=matrix_s(1)%matrix, &
    2908           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2909             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    2910             :                            template=matrix_s(1)%matrix, &
    2911           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2912             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    2913             :                            template=matrix_s(1)%matrix, &
    2914           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2915           2 :          CALL dbcsr_copy(cosmat, matrix_s(1)%matrix)
    2916           2 :          CALL dbcsr_copy(sinmat, matrix_s(1)%matrix)
    2917           2 :          CALL dbcsr_set(cosmat, 0.0_dp)
    2918           2 :          CALL dbcsr_set(sinmat, 0.0_dp)
    2919             : 
    2920           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    2921           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    2922             : 
    2923             :       ELSE
    2924             : 
    2925           2 :          NULLIFY (gw_aux_basis_set_list)
    2926          10 :          ALLOCATE (gw_aux_basis_set_list(nkind))
    2927             : 
    2928           6 :          DO ikind = 1, nkind
    2929             : 
    2930           4 :             NULLIFY (gw_aux_basis_set_list(ikind)%gto_basis_set)
    2931             : 
    2932           4 :             NULLIFY (basis_set_gw_aux)
    2933             : 
    2934           4 :             qs_kind => qs_kind_set(ikind)
    2935           4 :             CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set_gw_aux, basis_type="AUX_GW")
    2936           4 :             CPASSERT(ASSOCIATED(basis_set_gw_aux))
    2937             : 
    2938           4 :             basis_set_gw_aux%kind_radius = orb_basis_set_list(ikind)%gto_basis_set%kind_radius
    2939             : 
    2940           6 :             gw_aux_basis_set_list(ikind)%gto_basis_set => basis_set_gw_aux
    2941             : 
    2942             :          END DO
    2943             : 
    2944             :          ! neighbor lists
    2945           2 :          NULLIFY (sgwgw_list, sgworb_list)
    2946           2 :          CALL setup_neighbor_list(sgwgw_list, gw_aux_basis_set_list, qs_env=qs_env)
    2947           2 :          CALL setup_neighbor_list(sgworb_list, gw_aux_basis_set_list, orb_basis_set_list, qs_env=qs_env)
    2948             : 
    2949           2 :          NULLIFY (matrix_s_aux_aux, matrix_s_aux_orb)
    2950             : 
    2951             :          ! build overlap matrix in gw aux basis and the mixed gw aux basis-orb basis
    2952             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_aux, &
    2953           2 :                                           gw_aux_basis_set_list, gw_aux_basis_set_list, sgwgw_list)
    2954             : 
    2955             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_orb, &
    2956           2 :                                           gw_aux_basis_set_list, orb_basis_set_list, sgworb_list)
    2957             : 
    2958           2 :          CALL dbcsr_get_info(matrix_s_aux_aux(1)%matrix, nfullrows_total=nao_aux)
    2959             : 
    2960           2 :          nmo_for_aux_bas = FLOOR(frac_aux_mos*REAL(nao_aux, KIND=dp))
    2961             : 
    2962             :          CALL cp_fm_struct_create(fm_struct_aux_aux, &
    2963             :                                   context=fm_mo_coeff%matrix_struct%context, &
    2964             :                                   nrow_global=nao_aux, &
    2965             :                                   ncol_global=nao_aux, &
    2966           2 :                                   para_env=para_env)
    2967             : 
    2968           2 :          NULLIFY (mat_work_aux_orb)
    2969           2 :          CALL dbcsr_init_p(mat_work_aux_orb)
    2970             :          CALL dbcsr_create(matrix=mat_work_aux_orb, &
    2971             :                            template=matrix_s_aux_orb(1)%matrix, &
    2972           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2973             : 
    2974           2 :          NULLIFY (mat_work_aux_orb_2)
    2975           2 :          CALL dbcsr_init_p(mat_work_aux_orb_2)
    2976             :          CALL dbcsr_create(matrix=mat_work_aux_orb_2, &
    2977             :                            template=matrix_s_aux_orb(1)%matrix, &
    2978           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2979             : 
    2980           2 :          NULLIFY (mat_mo_coeff_aux)
    2981           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux)
    2982             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux, &
    2983             :                            template=matrix_s_aux_orb(1)%matrix, &
    2984           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2985             : 
    2986           2 :          NULLIFY (mat_mo_coeff_aux_2)
    2987           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux_2)
    2988             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux_2, &
    2989             :                            template=matrix_s_aux_orb(1)%matrix, &
    2990           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2991             : 
    2992           2 :          NULLIFY (matrix_s_inv_aux_aux)
    2993           2 :          CALL dbcsr_init_p(matrix_s_inv_aux_aux)
    2994             :          CALL dbcsr_create(matrix=matrix_s_inv_aux_aux, &
    2995             :                            template=matrix_s_aux_aux(1)%matrix, &
    2996           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2997             : 
    2998           2 :          NULLIFY (matrix_P)
    2999           2 :          CALL dbcsr_init_p(matrix_P)
    3000             :          CALL dbcsr_create(matrix=matrix_P, &
    3001             :                            template=matrix_s(1)%matrix, &
    3002           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3003             : 
    3004           2 :          NULLIFY (matrix_P_sqrt)
    3005           2 :          CALL dbcsr_init_p(matrix_P_sqrt)
    3006             :          CALL dbcsr_create(matrix=matrix_P_sqrt, &
    3007             :                            template=matrix_s(1)%matrix, &
    3008           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3009             : 
    3010           2 :          NULLIFY (matrix_P_sqrt_inv)
    3011           2 :          CALL dbcsr_init_p(matrix_P_sqrt_inv)
    3012             :          CALL dbcsr_create(matrix=matrix_P_sqrt_inv, &
    3013             :                            template=matrix_s(1)%matrix, &
    3014           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3015             : 
    3016           2 :          CALL cp_fm_create(fm_mat_s_aux_aux_inv, fm_struct_aux_aux, name="inverse overlap mat")
    3017           2 :          CALL cp_fm_create(fm_mat_work_aux_aux, fm_struct_aux_aux, name="work mat")
    3018           2 :          CALL cp_fm_create(fm_mat_P, fm_mo_coeff%matrix_struct)
    3019           2 :          CALL cp_fm_create(fm_mat_eigv_P, fm_mo_coeff%matrix_struct)
    3020           2 :          CALL cp_fm_create(fm_mat_scaled_eigv_P, fm_mo_coeff%matrix_struct)
    3021           2 :          CALL cp_fm_create(fm_mat_P_sqrt_inv, fm_mo_coeff%matrix_struct)
    3022             : 
    3023             :          NULLIFY (evals_P)
    3024           6 :          ALLOCATE (evals_P(nmo))
    3025             : 
    3026           2 :          NULLIFY (evals_P_sqrt_inv)
    3027           6 :          ALLOCATE (evals_P_sqrt_inv(nmo))
    3028             : 
    3029           2 :          CALL copy_dbcsr_to_fm(matrix_s_aux_aux(1)%matrix, fm_mat_s_aux_aux_inv)
    3030             :          ! Calculate S_inverse
    3031           2 :          CALL cp_fm_cholesky_decompose(fm_mat_s_aux_aux_inv)
    3032           2 :          CALL cp_fm_cholesky_invert(fm_mat_s_aux_aux_inv)
    3033             :          ! Symmetrize the guy
    3034           2 :          CALL cp_fm_upper_to_full(fm_mat_s_aux_aux_inv, fm_mat_work_aux_aux)
    3035             : 
    3036           2 :          CALL copy_fm_to_dbcsr(fm_mat_s_aux_aux_inv, matrix_s_inv_aux_aux, keep_sparsity=.FALSE.)
    3037             : 
    3038             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_inv_aux_aux, matrix_s_aux_orb(1)%matrix, 0.0_dp, mat_work_aux_orb, &
    3039           2 :                              filter_eps=1.0E-15_dp)
    3040             : 
    3041             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_work_aux_orb, mat_mo_coeff_Gamma_all, 0.0_dp, mat_mo_coeff_aux_2, &
    3042           2 :                              last_column=nmo_for_aux_bas, filter_eps=1.0E-15_dp)
    3043             : 
    3044             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_aux_aux(1)%matrix, mat_mo_coeff_aux_2, 0.0_dp, mat_work_aux_orb, &
    3045           2 :                              filter_eps=1.0E-15_dp)
    3046             : 
    3047             :          CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_aux_2, mat_work_aux_orb, 0.0_dp, matrix_P, &
    3048           2 :                              filter_eps=1.0E-15_dp)
    3049             : 
    3050           2 :          CALL copy_dbcsr_to_fm(matrix_P, fm_mat_P)
    3051             : 
    3052           2 :          CALL cp_fm_syevd(fm_mat_P, fm_mat_eigv_P, evals_P)
    3053             : 
    3054             :          ! only invert the eigenvalues which correspond to the MOs used in the aux. basis
    3055          62 :          evals_P_sqrt_inv(1:nmo - nmo_for_aux_bas) = 0.0_dp
    3056          46 :          evals_P_sqrt_inv(nmo - nmo_for_aux_bas + 1:nmo) = 1.0_dp/SQRT(evals_P(nmo - nmo_for_aux_bas + 1:nmo))
    3057             : 
    3058           2 :          CALL cp_fm_to_fm(fm_mat_eigv_P, fm_mat_scaled_eigv_P)
    3059             : 
    3060             :          CALL cp_fm_get_info(matrix=fm_mat_scaled_eigv_P, &
    3061             :                              ncol_local=ncol_local, &
    3062           2 :                              col_indices=col_indices)
    3063             : 
    3064           2 :          CALL para_env%sync()
    3065             : 
    3066             :          ! multiply eigenvectors with inverse sqrt of eigenvalues
    3067          84 :          DO i_col_local = 1, ncol_local
    3068             : 
    3069          82 :             col_index = col_indices(i_col_local)
    3070             : 
    3071             :             fm_mat_scaled_eigv_P%local_data(:, i_col_local) = &
    3072        1765 :                fm_mat_scaled_eigv_P%local_data(:, i_col_local)*evals_P_sqrt_inv(col_index)
    3073             : 
    3074             :          END DO
    3075             : 
    3076           2 :          CALL para_env%sync()
    3077             : 
    3078             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    3079             :                             matrix_a=fm_mat_eigv_P, matrix_b=fm_mat_scaled_eigv_P, beta=0.0_dp, &
    3080           2 :                             matrix_c=fm_mat_P_sqrt_inv)
    3081             : 
    3082           2 :          CALL copy_fm_to_dbcsr(fm_mat_P_sqrt_inv, matrix_P_sqrt_inv, keep_sparsity=.FALSE.)
    3083             : 
    3084             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_mo_coeff_aux_2, matrix_P_sqrt_inv, 0.0_dp, mat_mo_coeff_aux, &
    3085           2 :                              filter_eps=1.0E-15_dp)
    3086             : 
    3087             :          ! allocate intermediate matrices
    3088           2 :          CALL dbcsr_init_p(cosmat)
    3089           2 :          CALL dbcsr_init_p(sinmat)
    3090           2 :          CALL dbcsr_init_p(tmp)
    3091           2 :          CALL dbcsr_init_p(cosmat_desymm)
    3092           2 :          CALL dbcsr_init_p(sinmat_desymm)
    3093           2 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s_aux_aux(1)%matrix)
    3094           2 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s_aux_aux(1)%matrix)
    3095             :          CALL dbcsr_create(matrix=tmp, &
    3096             :                            template=matrix_s_aux_orb(1)%matrix, &
    3097           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3098             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    3099             :                            template=matrix_s_aux_aux(1)%matrix, &
    3100           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3101             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    3102             :                            template=matrix_s_aux_aux(1)%matrix, &
    3103           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3104           2 :          CALL dbcsr_copy(cosmat, matrix_s_aux_aux(1)%matrix)
    3105           2 :          CALL dbcsr_copy(sinmat, matrix_s_aux_aux(1)%matrix)
    3106           2 :          CALL dbcsr_set(cosmat, 0.0_dp)
    3107           2 :          CALL dbcsr_set(sinmat, 0.0_dp)
    3108             : 
    3109           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    3110           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    3111             : 
    3112             :          ! allocate the new MO coefficients in the aux basis
    3113           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3114           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3115             : 
    3116           2 :          NULLIFY (mat_mo_coeff_Gamma_all)
    3117           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    3118             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    3119             :                            template=matrix_s_aux_orb(1)%matrix, &
    3120           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3121             : 
    3122           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_all, mat_mo_coeff_aux)
    3123             : 
    3124           2 :          NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    3125           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    3126             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    3127             :                            template=matrix_s_aux_orb(1)%matrix, &
    3128           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3129             : 
    3130           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_aux)
    3131             : 
    3132           6 :          DEALLOCATE (evals_P, evals_P_sqrt_inv)
    3133             : 
    3134             :       END IF
    3135             : 
    3136           4 :       CALL remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3137             : 
    3138        6556 :       DO ikp = 1, nkp
    3139             : 
    3140        6552 :          ALLOCATE (matrix_berry_re_mo_mo(ikp)%matrix)
    3141        6552 :          CALL dbcsr_init_p(matrix_berry_re_mo_mo(ikp)%matrix)
    3142             :          CALL dbcsr_create(matrix_berry_re_mo_mo(ikp)%matrix, &
    3143             :                            template=matrix_s(1)%matrix, &
    3144        6552 :                            matrix_type=dbcsr_type_no_symmetry)
    3145        6552 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_re_mo_mo(ikp)%matrix)
    3146        6552 :          CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3147             : 
    3148        6552 :          ALLOCATE (matrix_berry_im_mo_mo(ikp)%matrix)
    3149        6552 :          CALL dbcsr_init_p(matrix_berry_im_mo_mo(ikp)%matrix)
    3150             :          CALL dbcsr_create(matrix_berry_im_mo_mo(ikp)%matrix, &
    3151             :                            template=matrix_s(1)%matrix, &
    3152        6552 :                            matrix_type=dbcsr_type_no_symmetry)
    3153        6552 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_im_mo_mo(ikp)%matrix)
    3154        6552 :          CALL dbcsr_set(matrix_berry_im_mo_mo(ikp)%matrix, 0.0_dp)
    3155             : 
    3156       26208 :          correct_kpoint(1:3) = -twopi*kpoints%xkp(1:3, ikp)
    3157             : 
    3158        6552 :          abs_kpoint = SQRT(correct_kpoint(1)**2 + correct_kpoint(2)**2 + correct_kpoint(3)**2)
    3159             : 
    3160        6552 :          IF (abs_kpoint < eps_kpoint) THEN
    3161             : 
    3162           0 :             scale_kpoint = eps_kpoint/abs_kpoint
    3163           0 :             correct_kpoint(:) = correct_kpoint(:)*scale_kpoint
    3164             : 
    3165             :          END IF
    3166             : 
    3167             :          ! get the Berry phase
    3168        6552 :          IF (do_aux_bas) THEN
    3169             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3170        1944 :                                            basis_type="AUX_GW")
    3171             :          ELSE
    3172             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3173        4608 :                                            basis_type="ORB")
    3174             :          END IF
    3175             : 
    3176        6552 :          IF (do_mo_coeff_Gamma_only) THEN
    3177             : 
    3178        6552 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3179             : 
    3180             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3181        6552 :                                 filter_eps=1.0E-15_dp)
    3182             : 
    3183             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3184        6552 :                                 matrix_berry_re_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3185             : 
    3186        6552 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3187             : 
    3188             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3189        6552 :                                 filter_eps=1.0E-15_dp)
    3190             : 
    3191             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3192        6552 :                                 matrix_berry_im_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3193             : 
    3194             :          ELSE
    3195             : 
    3196             :             ! get mo coeff at the ikp
    3197             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(1, 1)%mo_coeff, &
    3198           0 :                                   mat_mo_coeff_re, keep_sparsity=.FALSE.)
    3199             : 
    3200             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(2, 1)%mo_coeff, &
    3201           0 :                                   mat_mo_coeff_im, keep_sparsity=.FALSE.)
    3202             : 
    3203           0 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3204             : 
    3205           0 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3206             : 
    3207             :             ! I.
    3208           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3209             : 
    3210             :             ! I.1
    3211             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3212           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3213             : 
    3214             :             ! II.
    3215           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3216             : 
    3217             :             ! II.5
    3218             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3219           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3220             : 
    3221             :             ! III.
    3222           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3223             : 
    3224             :             ! III.7
    3225             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3226           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3227             : 
    3228             :             ! IV.
    3229           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3230             : 
    3231             :             ! IV.3
    3232             :             CALL dbcsr_multiply('T', 'N', -1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3233           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3234             : 
    3235             :          END IF
    3236             : 
    3237        6556 :          IF (abs_kpoint < eps_kpoint) THEN
    3238             : 
    3239           0 :             CALL dbcsr_scale(matrix_berry_im_mo_mo(ikp)%matrix, 1.0_dp/scale_kpoint)
    3240           0 :             CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3241           0 :             CALL dbcsr_add_on_diag(matrix_berry_re_mo_mo(ikp)%matrix, 1.0_dp)
    3242             : 
    3243             :          END IF
    3244             : 
    3245             :       END DO
    3246             : 
    3247           4 :       CALL dbcsr_release_p(cosmat)
    3248           4 :       CALL dbcsr_release_p(sinmat)
    3249           4 :       CALL dbcsr_release_p(mat_mo_coeff_re)
    3250           4 :       CALL dbcsr_release_p(mat_mo_coeff_im)
    3251           4 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3252           4 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3253           4 :       CALL dbcsr_release_p(tmp)
    3254           4 :       CALL dbcsr_release_p(cosmat_desymm)
    3255           4 :       CALL dbcsr_release_p(sinmat_desymm)
    3256           4 :       DEALLOCATE (orb_basis_set_list)
    3257             : 
    3258           4 :       CALL release_neighbor_list_sets(sab_orb_mic)
    3259             : 
    3260           4 :       IF (do_aux_bas) THEN
    3261             : 
    3262           2 :          DEALLOCATE (gw_aux_basis_set_list)
    3263           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_aux)
    3264           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_orb)
    3265           2 :          CALL dbcsr_release_p(mat_work_aux_orb)
    3266           2 :          CALL dbcsr_release_p(mat_work_aux_orb_2)
    3267           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux)
    3268           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux_2)
    3269           2 :          CALL dbcsr_release_p(matrix_s_inv_aux_aux)
    3270           2 :          CALL dbcsr_release_p(matrix_P)
    3271           2 :          CALL dbcsr_release_p(matrix_P_sqrt)
    3272           2 :          CALL dbcsr_release_p(matrix_P_sqrt_inv)
    3273             : 
    3274           2 :          CALL cp_fm_struct_release(fm_struct_aux_aux)
    3275             : 
    3276           2 :          CALL cp_fm_release(fm_mat_s_aux_aux_inv)
    3277           2 :          CALL cp_fm_release(fm_mat_work_aux_aux)
    3278           2 :          CALL cp_fm_release(fm_mat_P)
    3279           2 :          CALL cp_fm_release(fm_mat_eigv_P)
    3280           2 :          CALL cp_fm_release(fm_mat_scaled_eigv_P)
    3281           2 :          CALL cp_fm_release(fm_mat_P_sqrt_inv)
    3282             : 
    3283             :          ! Deallocate the neighbor list structure
    3284           2 :          CALL release_neighbor_list_sets(sgwgw_list)
    3285           2 :          CALL release_neighbor_list_sets(sgworb_list)
    3286             : 
    3287             :       END IF
    3288             : 
    3289           4 :       CALL timestop(handle)
    3290             : 
    3291           4 :    END SUBROUTINE get_berry_phase
    3292             : 
    3293             : ! **************************************************************************************************
    3294             : !> \brief ...
    3295             : !> \param mat_mo_coeff_Gamma_occ_and_GW ...
    3296             : !> \param homo ...
    3297             : !> \param gw_corr_lev_virt ...
    3298             : ! **************************************************************************************************
    3299           4 :    SUBROUTINE remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3300             : 
    3301             :       TYPE(dbcsr_type), POINTER                          :: mat_mo_coeff_Gamma_occ_and_GW
    3302             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_virt
    3303             : 
    3304             :       INTEGER                                            :: col, col_offset, row
    3305           4 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3306             :       TYPE(dbcsr_iterator_type)                          :: iter
    3307             : 
    3308           4 :       CALL dbcsr_iterator_start(iter, mat_mo_coeff_Gamma_occ_and_GW)
    3309             : 
    3310          16 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
    3311             : 
    3312             :          CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3313          12 :                                         col_offset=col_offset)
    3314             : 
    3315          16 :          IF (col_offset > homo + gw_corr_lev_virt) THEN
    3316             : 
    3317         266 :             data_block = 0.0_dp
    3318             : 
    3319             :          END IF
    3320             : 
    3321             :       END DO
    3322             : 
    3323           4 :       CALL dbcsr_iterator_stop(iter)
    3324             : 
    3325           4 :       CALL dbcsr_filter(mat_mo_coeff_Gamma_occ_and_GW, 1.0E-15_dp)
    3326             : 
    3327           4 :    END SUBROUTINE remove_unnecessary_blocks
    3328             : 
    3329             : ! **************************************************************************************************
    3330             : !> \brief ...
    3331             : !> \param delta_corr ...
    3332             : !> \param eps_inv_head ...
    3333             : !> \param kpoints ...
    3334             : !> \param qs_env ...
    3335             : !> \param matrix_berry_re_mo_mo ...
    3336             : !> \param matrix_berry_im_mo_mo ...
    3337             : !> \param homo ...
    3338             : !> \param gw_corr_lev_occ ...
    3339             : !> \param gw_corr_lev_virt ...
    3340             : !> \param para_env_RPA ...
    3341             : !> \param do_extra_kpoints ...
    3342             : ! **************************************************************************************************
    3343         250 :    SUBROUTINE kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, matrix_berry_re_mo_mo, &
    3344         250 :                                                 matrix_berry_im_mo_mo, homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    3345             :                                                 para_env_RPA, do_extra_kpoints)
    3346             : 
    3347             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3348             :          INTENT(INOUT)                                   :: delta_corr
    3349             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_inv_head
    3350             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3351             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3352             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    3353             :                                                             matrix_berry_im_mo_mo
    3354             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_occ, gw_corr_lev_virt
    3355             :       TYPE(mp_para_env_type), INTENT(IN), OPTIONAL       :: para_env_RPA
    3356             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints
    3357             : 
    3358             :       INTEGER                                            :: col, col_offset, col_size, i_col, i_row, &
    3359             :                                                             ikp, m_level, n_level_gw, nkp, row, &
    3360             :                                                             row_offset, row_size
    3361             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    3362             :                                                             check_int_one_over_ksq, contribution, &
    3363             :                                                             weight
    3364             :       REAL(KIND=dp), DIMENSION(3)                        :: correct_kpoint
    3365         250 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: delta_corr_extra
    3366         250 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3367             :       TYPE(cell_type), POINTER                           :: cell
    3368             :       TYPE(dbcsr_iterator_type)                          :: iter, iter_new
    3369             : 
    3370         250 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    3371             : 
    3372         250 :       CALL get_cell(cell=cell, deth=cell_volume)
    3373             : 
    3374         250 :       nkp = kpoints%nkp
    3375             : 
    3376        3690 :       delta_corr = 0.0_dp
    3377             : 
    3378         250 :       IF (do_extra_kpoints) THEN
    3379         250 :          NULLIFY (delta_corr_extra)
    3380         750 :          ALLOCATE (delta_corr_extra(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt))
    3381        3690 :          delta_corr_extra = 0.0_dp
    3382             :       END IF
    3383             : 
    3384         250 :       check_int_one_over_ksq = 0.0_dp
    3385             : 
    3386      256570 :       DO ikp = 1, nkp
    3387             : 
    3388      256320 :          weight = kpoints%wkp(ikp)
    3389             : 
    3390     1025280 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    3391             : 
    3392      256320 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    3393             : 
    3394             :          ! cos part of the Berry phase
    3395      256320 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    3396      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    3397             : 
    3398             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3399             :                                            row_size=row_size, col_size=col_size, &
    3400      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    3401             : 
    3402     2373120 :             DO i_col = 1, col_size
    3403             : 
    3404    26939520 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3405             : 
    3406    26788320 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3407             : 
    3408    23624640 :                      DO i_row = 1, row_size
    3409             : 
    3410    21831840 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3411             : 
    3412    21831840 :                         m_level = i_row + row_offset - 1
    3413             : 
    3414             :                         ! we only compute the correction for n=m
    3415    21831840 :                         IF (m_level .NE. n_level_gw) CYCLE
    3416             : 
    3417     3401280 :                         IF (.NOT. do_extra_kpoints) THEN
    3418             : 
    3419           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3420             : 
    3421             :                         ELSE
    3422             : 
    3423     1608480 :                            IF (ikp <= nkp*8/9) THEN
    3424             : 
    3425     1429760 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3426             : 
    3427             :                            ELSE
    3428             : 
    3429      178720 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3430             : 
    3431             :                            END IF
    3432             : 
    3433             :                         END IF
    3434             : 
    3435             :                      END DO
    3436             : 
    3437             :                   END IF
    3438             : 
    3439             :                END DO
    3440             : 
    3441             :             END DO
    3442             : 
    3443             :          END DO
    3444             : 
    3445      256320 :          CALL dbcsr_iterator_stop(iter)
    3446             : 
    3447             :          ! the same for the im. part of the Berry phase
    3448      256320 :          CALL dbcsr_iterator_start(iter_new, matrix_berry_im_mo_mo(ikp)%matrix)
    3449      407520 :          DO WHILE (dbcsr_iterator_blocks_left(iter_new))
    3450             : 
    3451             :             CALL dbcsr_iterator_next_block(iter_new, row, col, data_block, &
    3452             :                                            row_size=row_size, col_size=col_size, &
    3453      151200 :                                            row_offset=row_offset, col_offset=col_offset)
    3454             : 
    3455     2373120 :             DO i_col = 1, col_size
    3456             : 
    3457    26939520 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3458             : 
    3459    26788320 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3460             : 
    3461    23624640 :                      DO i_row = 1, row_size
    3462             : 
    3463    21831840 :                         m_level = i_row + row_offset - 1
    3464             : 
    3465    21831840 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3466             : 
    3467             :                         ! we only compute the correction for n=m
    3468    21831840 :                         IF (m_level .NE. n_level_gw) CYCLE
    3469             : 
    3470     3401280 :                         IF (.NOT. do_extra_kpoints) THEN
    3471             : 
    3472           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3473             : 
    3474             :                         ELSE
    3475             : 
    3476     1608480 :                            IF (ikp <= nkp*8/9) THEN
    3477             : 
    3478     1429760 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3479             : 
    3480             :                            ELSE
    3481             : 
    3482      178720 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3483             : 
    3484             :                            END IF
    3485             : 
    3486             :                         END IF
    3487             : 
    3488             :                      END DO
    3489             : 
    3490             :                   END IF
    3491             : 
    3492             :                END DO
    3493             : 
    3494             :             END DO
    3495             : 
    3496             :          END DO
    3497             : 
    3498      256320 :          CALL dbcsr_iterator_stop(iter_new)
    3499             : 
    3500      256570 :          check_int_one_over_ksq = check_int_one_over_ksq + weight/abs_k_square
    3501             : 
    3502             :       END DO
    3503             : 
    3504             :       ! normalize by the cell volume
    3505        3690 :       delta_corr = delta_corr/cell_volume*fourpi
    3506             : 
    3507         250 :       check_int_one_over_ksq = check_int_one_over_ksq/cell_volume
    3508             : 
    3509         250 :       CALL para_env_RPA%sum(delta_corr)
    3510             : 
    3511         250 :       IF (do_extra_kpoints) THEN
    3512             : 
    3513        3690 :          delta_corr_extra = delta_corr_extra/cell_volume*fourpi
    3514             : 
    3515        7130 :          CALL para_env_RPA%sum(delta_corr_extra)
    3516             : 
    3517        3690 :          delta_corr(:) = delta_corr(:) + (delta_corr(:) - delta_corr_extra(:))
    3518             : 
    3519         250 :          DEALLOCATE (delta_corr_extra)
    3520             : 
    3521             :       END IF
    3522             : 
    3523         250 :    END SUBROUTINE kpoint_sum_for_eps_inv_head_Berry
    3524             : 
    3525             : ! **************************************************************************************************
    3526             : !> \brief ...
    3527             : !> \param eps_inv_head ...
    3528             : !> \param eps_head ...
    3529             : !> \param kpoints ...
    3530             : ! **************************************************************************************************
    3531         250 :    SUBROUTINE compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    3532             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3533             :          INTENT(OUT)                                     :: eps_inv_head
    3534             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_head
    3535             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3536             : 
    3537             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_inv_head'
    3538             : 
    3539             :       INTEGER                                            :: handle, ikp, nkp
    3540             : 
    3541         250 :       CALL timeset(routineN, handle)
    3542             : 
    3543         250 :       nkp = kpoints%nkp
    3544             : 
    3545         750 :       ALLOCATE (eps_inv_head(nkp))
    3546             : 
    3547      256570 :       DO ikp = 1, nkp
    3548             : 
    3549      256570 :          eps_inv_head(ikp) = 1.0_dp/eps_head(ikp)
    3550             : 
    3551             :       END DO
    3552             : 
    3553         250 :       CALL timestop(handle)
    3554             : 
    3555         250 :    END SUBROUTINE compute_eps_inv_head
    3556             : 
    3557             : ! **************************************************************************************************
    3558             : !> \brief ...
    3559             : !> \param qs_env ...
    3560             : !> \param kpoints ...
    3561             : !> \param kp_grid ...
    3562             : !> \param num_kp_grids ...
    3563             : !> \param para_env ...
    3564             : !> \param h_inv ...
    3565             : !> \param nmo ...
    3566             : !> \param do_mo_coeff_Gamma_only ...
    3567             : !> \param do_extra_kpoints ...
    3568             : ! **************************************************************************************************
    3569           4 :    SUBROUTINE get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, &
    3570             :                           do_mo_coeff_Gamma_only, do_extra_kpoints)
    3571             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3572             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3573             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    3574             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    3575             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    3576             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(INOUT)      :: h_inv
    3577             :       INTEGER, INTENT(IN)                                :: nmo
    3578             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only, do_extra_kpoints
    3579             : 
    3580             :       INTEGER                                            :: end_kp, i, i_grid_level, ix, iy, iz, &
    3581             :                                                             nkp_inner_grid, nkp_outer_grid, &
    3582             :                                                             npoints, start_kp
    3583             :       INTEGER, DIMENSION(3)                              :: outer_kp_grid
    3584             :       REAL(KIND=dp)                                      :: kpoint_weight_left, single_weight
    3585             :       REAL(KIND=dp), DIMENSION(3)                        :: kpt_latt, reducing_factor
    3586             :       TYPE(cell_type), POINTER                           :: cell
    3587           4 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3588             : 
    3589           4 :       NULLIFY (kpoints, cell, particle_set)
    3590             : 
    3591             :       ! check whether kp_grid includes the Gamma point. If so, abort.
    3592           4 :       CPASSERT(MOD(kp_grid(1)*kp_grid(2)*kp_grid(3), 2) == 0)
    3593           4 :       IF (do_extra_kpoints) THEN
    3594           4 :          CPASSERT(do_mo_coeff_Gamma_only)
    3595             :       END IF
    3596             : 
    3597           4 :       IF (do_mo_coeff_Gamma_only) THEN
    3598             : 
    3599           4 :          outer_kp_grid(1) = kp_grid(1) - 1
    3600           4 :          outer_kp_grid(2) = kp_grid(2) - 1
    3601           4 :          outer_kp_grid(3) = kp_grid(3) - 1
    3602             : 
    3603           4 :          CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3604             : 
    3605           4 :          CALL get_cell(cell, h_inv=h_inv)
    3606             : 
    3607           4 :          CALL kpoint_create(kpoints)
    3608             : 
    3609           4 :          kpoints%kp_scheme = "GENERAL"
    3610           4 :          kpoints%symmetry = .FALSE.
    3611           4 :          kpoints%verbose = .FALSE.
    3612           4 :          kpoints%full_grid = .FALSE.
    3613           4 :          kpoints%use_real_wfn = .FALSE.
    3614           4 :          kpoints%eps_geo = 1.e-6_dp
    3615             :          npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + &
    3616           4 :                    (num_kp_grids - 1)*((outer_kp_grid(1) + 1)/2*outer_kp_grid(2)*outer_kp_grid(3) - 1)
    3617             : 
    3618           4 :          IF (do_extra_kpoints) THEN
    3619             : 
    3620           4 :             CPASSERT(num_kp_grids == 1)
    3621           4 :             CPASSERT(MOD(kp_grid(1), 4) == 0)
    3622           4 :             CPASSERT(MOD(kp_grid(2), 4) == 0)
    3623           4 :             CPASSERT(MOD(kp_grid(3), 4) == 0)
    3624             : 
    3625             :          END IF
    3626             : 
    3627           4 :          IF (do_extra_kpoints) THEN
    3628             : 
    3629           4 :             npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + kp_grid(1)*kp_grid(2)*kp_grid(3)/2/8
    3630             : 
    3631             :          END IF
    3632             : 
    3633           4 :          kpoints%full_grid = .TRUE.
    3634           4 :          kpoints%nkp = npoints
    3635          20 :          ALLOCATE (kpoints%xkp(3, npoints), kpoints%wkp(npoints))
    3636       26212 :          kpoints%xkp = 0.0_dp
    3637        6556 :          kpoints%wkp = 0.0_dp
    3638             : 
    3639           4 :          nkp_outer_grid = outer_kp_grid(1)*outer_kp_grid(2)*outer_kp_grid(3)
    3640           4 :          nkp_inner_grid = kp_grid(1)*kp_grid(2)*kp_grid(3)
    3641             : 
    3642           4 :          i = 0
    3643          16 :          reducing_factor(:) = 1.0_dp
    3644             :          kpoint_weight_left = 1.0_dp
    3645             : 
    3646             :          ! the outer grids
    3647           4 :          DO i_grid_level = 1, num_kp_grids - 1
    3648             : 
    3649           0 :             single_weight = kpoint_weight_left/REAL(nkp_outer_grid, KIND=dp)
    3650             : 
    3651           0 :             start_kp = i + 1
    3652             : 
    3653           0 :             DO ix = 1, outer_kp_grid(1)
    3654           0 :                DO iy = 1, outer_kp_grid(2)
    3655           0 :                   DO iz = 1, outer_kp_grid(3)
    3656             : 
    3657             :                      ! exclude Gamma
    3658           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0 .AND. 2*iy - outer_kp_grid(2) - 1 == 0 .AND. &
    3659             :                          2*iz - outer_kp_grid(3) - 1 == 0) CYCLE
    3660             : 
    3661             :                      ! use time reversal symmetry k<->-k
    3662           0 :                      IF (2*ix - outer_kp_grid(1) - 1 < 0) CYCLE
    3663             : 
    3664           0 :                      i = i + 1
    3665             :                      kpt_latt(1) = REAL(2*ix - outer_kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(1), KIND=dp)) &
    3666           0 :                                    *reducing_factor(1)
    3667             :                      kpt_latt(2) = REAL(2*iy - outer_kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(2), KIND=dp)) &
    3668           0 :                                    *reducing_factor(2)
    3669             :                      kpt_latt(3) = REAL(2*iz - outer_kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(3), KIND=dp)) &
    3670           0 :                                    *reducing_factor(3)
    3671           0 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3672             : 
    3673           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0) THEN
    3674           0 :                         kpoints%wkp(i) = single_weight
    3675             :                      ELSE
    3676           0 :                         kpoints%wkp(i) = 2._dp*single_weight
    3677             :                      END IF
    3678             : 
    3679             :                   END DO
    3680             :                END DO
    3681             :             END DO
    3682             : 
    3683           0 :             end_kp = i
    3684             : 
    3685           0 :             kpoint_weight_left = kpoint_weight_left - SUM(kpoints%wkp(start_kp:end_kp))
    3686             : 
    3687           0 :             reducing_factor(1) = reducing_factor(1)/REAL(outer_kp_grid(1), KIND=dp)
    3688           0 :             reducing_factor(2) = reducing_factor(2)/REAL(outer_kp_grid(2), KIND=dp)
    3689           4 :             reducing_factor(3) = reducing_factor(3)/REAL(outer_kp_grid(3), KIND=dp)
    3690             : 
    3691             :          END DO
    3692             : 
    3693           4 :          single_weight = kpoint_weight_left/REAL(nkp_inner_grid, KIND=dp)
    3694             : 
    3695             :          ! the inner grid
    3696          60 :          DO ix = 1, kp_grid(1)
    3697         860 :             DO iy = 1, kp_grid(2)
    3698       12504 :                DO iz = 1, kp_grid(3)
    3699             : 
    3700             :                   ! use time reversal symmetry k<->-k
    3701       11648 :                   IF (2*ix - kp_grid(1) - 1 < 0) CYCLE
    3702             : 
    3703        5824 :                   i = i + 1
    3704        5824 :                   kpt_latt(1) = REAL(2*ix - kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(kp_grid(1), KIND=dp))*reducing_factor(1)
    3705        5824 :                   kpt_latt(2) = REAL(2*iy - kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(kp_grid(2), KIND=dp))*reducing_factor(2)
    3706        5824 :                   kpt_latt(3) = REAL(2*iz - kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(kp_grid(3), KIND=dp))*reducing_factor(3)
    3707             : 
    3708       23296 :                   kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3709             : 
    3710       12448 :                   kpoints%wkp(i) = 2._dp*single_weight
    3711             : 
    3712             :                END DO
    3713             :             END DO
    3714             :          END DO
    3715             : 
    3716           4 :          IF (do_extra_kpoints) THEN
    3717             : 
    3718           4 :             single_weight = kpoint_weight_left/REAL(kp_grid(1)*kp_grid(2)*kp_grid(3)/8, KIND=dp)
    3719             : 
    3720          32 :             DO ix = 1, kp_grid(1)/2
    3721         232 :                DO iy = 1, kp_grid(2)/2
    3722        1684 :                   DO iz = 1, kp_grid(3)/2
    3723             : 
    3724             :                      ! use time reversal symmetry k<->-k
    3725        1456 :                      IF (2*ix - kp_grid(1)/2 - 1 < 0) CYCLE
    3726             : 
    3727         728 :                      i = i + 1
    3728         728 :                      kpt_latt(1) = REAL(2*ix - kp_grid(1)/2 - 1, KIND=dp)/(REAL(kp_grid(1), KIND=dp))
    3729         728 :                      kpt_latt(2) = REAL(2*iy - kp_grid(2)/2 - 1, KIND=dp)/(REAL(kp_grid(2), KIND=dp))
    3730         728 :                      kpt_latt(3) = REAL(2*iz - kp_grid(3)/2 - 1, KIND=dp)/(REAL(kp_grid(3), KIND=dp))
    3731             : 
    3732        2912 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3733             : 
    3734        1656 :                      kpoints%wkp(i) = 2._dp*single_weight
    3735             : 
    3736             :                   END DO
    3737             :                END DO
    3738             :             END DO
    3739             : 
    3740             :          END IF
    3741             : 
    3742             :          ! default: no symmetry settings
    3743          12 :          ALLOCATE (kpoints%kp_sym(kpoints%nkp))
    3744        6556 :          DO i = 1, kpoints%nkp
    3745        6552 :             NULLIFY (kpoints%kp_sym(i)%kpoint_sym)
    3746        6556 :             CALL kpoint_sym_create(kpoints%kp_sym(i)%kpoint_sym)
    3747             :          END DO
    3748             : 
    3749             :       ELSE
    3750             : 
    3751             :          BLOCK
    3752             :             TYPE(qs_environment_type), POINTER :: qs_env_kp_Gamma_only
    3753           0 :             CALL create_kp_from_gamma(qs_env, qs_env_kp_Gamma_only)
    3754             : 
    3755           0 :             CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3756             : 
    3757             :             CALL calculate_kp_orbitals(qs_env_kp_Gamma_only, kpoints, "MONKHORST-PACK", nadd=nmo, mp_grid=kp_grid(1:3), &
    3758           0 :                                        group_size_ext=para_env%num_pe)
    3759             : 
    3760           0 :             CALL qs_env_release(qs_env_kp_Gamma_only)
    3761           0 :             DEALLOCATE (qs_env_kp_Gamma_only)
    3762             :          END BLOCK
    3763             : 
    3764             :       END IF
    3765             : 
    3766           4 :    END SUBROUTINE get_kpoints
    3767             : 
    3768             : ! **************************************************************************************************
    3769             : !> \brief ...
    3770             : !> \param vec_Sigma_c_gw ...
    3771             : !> \param Eigenval_DFT ...
    3772             : !> \param eps_eigenval ...
    3773             : ! **************************************************************************************************
    3774           8 :    PURE SUBROUTINE average_degenerate_levels(vec_Sigma_c_gw, Eigenval_DFT, eps_eigenval)
    3775             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    3776             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    3777             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval_DFT
    3778             :       REAL(KIND=dp), INTENT(IN)                          :: eps_eigenval
    3779             : 
    3780           8 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: avg_self_energy
    3781             :       INTEGER :: degeneracy, first_degenerate_level, i_deg_level, i_level_gw, j_deg_level, jquad, &
    3782             :          num_deg_levels, num_integ_points, num_levels_gw
    3783           8 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: list_degenerate_levels
    3784             : 
    3785           8 :       num_levels_gw = SIZE(vec_Sigma_c_gw, 1)
    3786             : 
    3787          24 :       ALLOCATE (list_degenerate_levels(num_levels_gw))
    3788         108 :       list_degenerate_levels = 1
    3789             : 
    3790           8 :       num_integ_points = SIZE(vec_Sigma_c_gw, 2)
    3791             : 
    3792          24 :       ALLOCATE (avg_self_energy(num_integ_points))
    3793             : 
    3794         100 :       DO i_level_gw = 2, num_levels_gw
    3795             : 
    3796         100 :          IF (ABS(Eigenval_DFT(i_level_gw) - Eigenval_DFT(i_level_gw - 1)) < eps_eigenval) THEN
    3797             : 
    3798           0 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1)
    3799             : 
    3800             :          ELSE
    3801             : 
    3802          92 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1) + 1
    3803             : 
    3804             :          END IF
    3805             : 
    3806             :       END DO
    3807             : 
    3808           8 :       num_deg_levels = list_degenerate_levels(num_levels_gw)
    3809             : 
    3810         108 :       DO i_deg_level = 1, num_deg_levels
    3811             : 
    3812             :          degeneracy = 0
    3813             : 
    3814        1404 :          DO i_level_gw = 1, num_levels_gw
    3815             : 
    3816        1304 :             IF (degeneracy == 0 .AND. i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3817             : 
    3818         100 :                first_degenerate_level = i_level_gw
    3819             : 
    3820             :             END IF
    3821             : 
    3822        1404 :             IF (i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3823             : 
    3824         100 :                degeneracy = degeneracy + 1
    3825             : 
    3826             :             END IF
    3827             : 
    3828             :          END DO
    3829             : 
    3830        3020 :          DO jquad = 1, num_integ_points
    3831             : 
    3832             :             avg_self_energy(jquad) = SUM(vec_Sigma_c_gw(first_degenerate_level:first_degenerate_level + degeneracy - 1, jquad, 1)) &
    3833        5940 :                                      /REAL(degeneracy, KIND=dp)
    3834             : 
    3835             :          END DO
    3836             : 
    3837         208 :          DO j_deg_level = 0, degeneracy - 1
    3838             : 
    3839        3120 :             vec_Sigma_c_gw(first_degenerate_level + j_deg_level, :, 1) = avg_self_energy(:)
    3840             : 
    3841             :          END DO
    3842             : 
    3843             :       END DO
    3844             : 
    3845           8 :    END SUBROUTINE average_degenerate_levels
    3846             : 
    3847             : ! **************************************************************************************************
    3848             : !> \brief ...
    3849             : !> \param vec_gw_energ ...
    3850             : !> \param vec_omega_fit_gw ...
    3851             : !> \param z_value ...
    3852             : !> \param m_value ...
    3853             : !> \param vec_Sigma_c_gw ...
    3854             : !> \param vec_Sigma_x_minus_vxc_gw ...
    3855             : !> \param Eigenval ...
    3856             : !> \param Eigenval_scf ...
    3857             : !> \param n_level_gw ...
    3858             : !> \param gw_corr_lev_occ ...
    3859             : !> \param num_poles ...
    3860             : !> \param num_fit_points ...
    3861             : !> \param crossing_search ...
    3862             : !> \param homo ...
    3863             : !> \param stop_crit ...
    3864             : !> \param fermi_level_offset ...
    3865             : !> \param do_gw_im_time ...
    3866             : ! **************************************************************************************************
    3867         558 :    SUBROUTINE fit_and_continuation_2pole(vec_gw_energ, vec_omega_fit_gw, &
    3868        1116 :                                          z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    3869        1116 :                                          Eigenval, Eigenval_scf, n_level_gw, gw_corr_lev_occ, num_poles, &
    3870             :                                          num_fit_points, crossing_search, homo, stop_crit, &
    3871             :                                          fermi_level_offset, do_gw_im_time)
    3872             : 
    3873             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ, vec_omega_fit_gw, z_value, &
    3874             :                                                             m_value
    3875             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    3876             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    3877             :                                                             Eigenval_scf
    3878             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, num_poles, &
    3879             :                                                             num_fit_points, crossing_search, homo
    3880             :       REAL(KIND=dp), INTENT(IN)                          :: stop_crit, fermi_level_offset
    3881             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time
    3882             : 
    3883             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fit_and_continuation_2pole'
    3884             : 
    3885             :       COMPLEX(KIND=dp)                                   :: func_val, rho1
    3886         558 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: dLambda, dLambda_2, Lambda, &
    3887         558 :                                                             Lambda_without_offset, vec_b_gw, &
    3888         558 :                                                             vec_b_gw_copy
    3889         558 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: mat_A_gw, mat_B_gw
    3890             :       INTEGER                                            :: handle4, ierr, iii, iiter, info, &
    3891             :                                                             integ_range, jjj, jquad, kkk, &
    3892             :                                                             max_iter_fit, n_level_gw_ref, num_var, &
    3893             :                                                             xpos
    3894         558 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ipiv
    3895             :       LOGICAL                                            :: could_exit
    3896             :       REAL(KIND=dp) :: chi2, chi2_old, delta, deriv_val_real, e_fermi, gw_energ, Ldown, &
    3897             :          level_energ_GW, Lup, range_step, ScalParam, sign_occ_virt, stat_error
    3898         558 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Lambda_Im, Lambda_Re, stat_errors, &
    3899         558 :                                                             vec_N_gw, vec_omega_fit_gw_sign
    3900         558 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: mat_N_gw
    3901             : 
    3902         558 :       max_iter_fit = 10000
    3903             : 
    3904         558 :       num_var = 2*num_poles + 1
    3905        1674 :       ALLOCATE (Lambda(num_var))
    3906        3348 :       Lambda = z_zero
    3907        1674 :       ALLOCATE (Lambda_without_offset(num_var))
    3908        3348 :       Lambda_without_offset = z_zero
    3909        1674 :       ALLOCATE (Lambda_Re(num_var))
    3910        3348 :       Lambda_Re = 0.0_dp
    3911        1674 :       ALLOCATE (Lambda_Im(num_var))
    3912        3348 :       Lambda_Im = 0.0_dp
    3913             : 
    3914        1674 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    3915             : 
    3916         558 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    3917             :          sign_occ_virt = -1.0_dp
    3918             :       ELSE
    3919         399 :          sign_occ_virt = 1.0_dp
    3920             :       END IF
    3921             : 
    3922         558 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    3923             : 
    3924        6580 :       DO jquad = 1, num_fit_points
    3925        6580 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    3926             :       END DO
    3927             : 
    3928             :       ! initial guess
    3929         558 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/(num_poles - 1)
    3930        1674 :       DO iii = 1, num_poles
    3931        1674 :          Lambda_Im(2*iii + 1) = vec_omega_fit_gw_sign(1) + (iii - 1)*range_step
    3932             :       END DO
    3933         558 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/num_poles
    3934        1674 :       DO iii = 1, num_poles
    3935        1674 :          Lambda_Re(2*iii + 1) = ABS(vec_omega_fit_gw_sign(1) + (iii - 0.5_dp)*range_step)
    3936             :       END DO
    3937             : 
    3938        3348 :       DO iii = 1, num_var
    3939        3348 :          Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    3940             :       END DO
    3941             : 
    3942             :       CALL calc_chi2(chi2_old, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    3943         558 :                      num_fit_points, n_level_gw)
    3944             : 
    3945        2232 :       ALLOCATE (mat_A_gw(num_poles + 1, num_poles + 1))
    3946        1674 :       ALLOCATE (vec_b_gw(num_poles + 1))
    3947        1674 :       ALLOCATE (ipiv(num_poles + 1))
    3948        7254 :       mat_A_gw = z_zero
    3949        2232 :       vec_b_gw = 0.0_dp
    3950             : 
    3951        2232 :       mat_A_gw(1:num_poles + 1, 1) = z_one
    3952         558 :       integ_range = num_fit_points/num_poles
    3953        2232 :       DO kkk = 1, num_poles + 1
    3954        1674 :          xpos = (kkk - 1)*integ_range + 1
    3955        1674 :          xpos = MIN(xpos, num_fit_points)
    3956             :          ! calculate coefficient at this point
    3957        5022 :          DO iii = 1, num_poles
    3958        3348 :             jjj = iii*2
    3959             :             func_val = z_one/(gaussi*vec_omega_fit_gw_sign(xpos) - &
    3960        3348 :                               CMPLX(Lambda_Re(jjj + 1), Lambda_Im(jjj + 1), KIND=dp))
    3961        5022 :             mat_A_gw(kkk, iii + 1) = func_val
    3962             :          END DO
    3963        2232 :          vec_b_gw(kkk) = vec_Sigma_c_gw(n_level_gw, xpos)
    3964             :       END DO
    3965             : 
    3966             :       ! Solve system of linear equations
    3967         558 :       CALL ZGETRF(num_poles + 1, num_poles + 1, mat_A_gw, num_poles + 1, ipiv, info)
    3968             : 
    3969         558 :       CALL ZGETRS('N', num_poles + 1, 1, mat_A_gw, num_poles + 1, ipiv, vec_b_gw, num_poles + 1, info)
    3970             : 
    3971         558 :       Lambda_Re(1) = REAL(vec_b_gw(1))
    3972         558 :       Lambda_Im(1) = AIMAG(vec_b_gw(1))
    3973        1674 :       DO iii = 1, num_poles
    3974        1116 :          jjj = iii*2
    3975        1116 :          Lambda_Re(jjj) = REAL(vec_b_gw(iii + 1))
    3976        1674 :          Lambda_Im(jjj) = AIMAG(vec_b_gw(iii + 1))
    3977             :       END DO
    3978             : 
    3979         558 :       DEALLOCATE (mat_A_gw)
    3980         558 :       DEALLOCATE (vec_b_gw)
    3981         558 :       DEALLOCATE (ipiv)
    3982             : 
    3983        2232 :       ALLOCATE (mat_A_gw(num_var*2, num_var*2))
    3984        2232 :       ALLOCATE (mat_B_gw(num_fit_points, num_var*2))
    3985        1674 :       ALLOCATE (dLambda(num_fit_points))
    3986        1674 :       ALLOCATE (dLambda_2(num_fit_points))
    3987        1674 :       ALLOCATE (vec_b_gw(num_var*2))
    3988        1674 :       ALLOCATE (vec_b_gw_copy(num_var*2))
    3989        1674 :       ALLOCATE (ipiv(num_var*2))
    3990             : 
    3991             :       ScalParam = 0.01_dp
    3992             :       Ldown = 1.5_dp
    3993             :       Lup = 10.0_dp
    3994             :       could_exit = .FALSE.
    3995             : 
    3996             :       ! iteration loop for fitting
    3997     1070684 :       DO iiter = 1, max_iter_fit
    3998             : 
    3999     1070657 :          CALL timeset(routineN//"_fit_loop_1", handle4)
    4000             : 
    4001             :          ! calc delta lambda
    4002     6423942 :          DO iii = 1, num_var
    4003     6423942 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    4004             :          END DO
    4005    12243539 :          dLambda = z_zero
    4006             : 
    4007    12243539 :          DO kkk = 1, num_fit_points
    4008    11172882 :             func_val = Lambda(1)
    4009    33518646 :             DO iii = 1, num_poles
    4010    22345764 :                jjj = iii*2
    4011    33518646 :                func_val = func_val + Lambda(jjj)/(vec_omega_fit_gw_sign(kkk)*gaussi - Lambda(jjj + 1))
    4012             :             END DO
    4013    12243539 :             dLambda(kkk) = vec_Sigma_c_gw(n_level_gw, kkk) - func_val
    4014             :          END DO
    4015    12243539 :          rho1 = SUM(dLambda*dLambda)
    4016             : 
    4017             :          ! fill matrix
    4018   123506047 :          mat_B_gw = z_zero
    4019    12243539 :          DO iii = 1, num_fit_points
    4020    11172882 :             mat_B_gw(iii, 1) = 1.0_dp
    4021    12243539 :             mat_B_gw(iii, num_var + 1) = gaussi
    4022             :          END DO
    4023     3211971 :          DO iii = 1, num_poles
    4024     2141314 :             jjj = iii*2
    4025    25557735 :             DO kkk = 1, num_fit_points
    4026    22345764 :                mat_B_gw(kkk, jjj) = 1.0_dp/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4027    22345764 :                mat_B_gw(kkk, jjj + num_var) = gaussi/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4028    22345764 :                mat_B_gw(kkk, jjj + 1) = Lambda(jjj)/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4029             :                mat_B_gw(kkk, jjj + 1 + num_var) = (-Lambda_Im(jjj) + gaussi*Lambda_Re(jjj))/ &
    4030    24487078 :                                                   (gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4031             :             END DO
    4032             :          END DO
    4033             : 
    4034     1070657 :          CALL timestop(handle4)
    4035             : 
    4036     1070657 :          CALL timeset(routineN//"_fit_matmul_1", handle4)
    4037             : 
    4038             :          CALL zgemm('C', 'N', num_var*2, num_var*2, num_fit_points, z_one, mat_B_gw, num_fit_points, mat_B_gw, num_fit_points, &
    4039     1070657 :                     z_zero, mat_A_gw, num_var*2)
    4040     1070657 :          CALL timestop(handle4)
    4041             : 
    4042     1070657 :          CALL timeset(routineN//"_fit_zgemv_1", handle4)
    4043             :          CALL zgemv('C', num_fit_points, num_var*2, z_one, mat_B_gw, num_fit_points, dLambda, 1, &
    4044     1070657 :                     z_zero, vec_b_gw, 1)
    4045             : 
    4046     1070657 :          CALL timestop(handle4)
    4047             : 
    4048             :          ! scale diagonal elements of a_mat
    4049    11777227 :          DO iii = 1, num_var*2
    4050    11777227 :             mat_A_gw(iii, iii) = mat_A_gw(iii, iii) + ScalParam*mat_A_gw(iii, iii)
    4051             :          END DO
    4052             : 
    4053             :          ! solve linear system
    4054             :          ierr = 0
    4055    11777227 :          ipiv = 0
    4056             : 
    4057     1070657 :          CALL timeset(routineN//"_fit_lin_eq_2", handle4)
    4058             : 
    4059     1070657 :          CALL ZGETRF(2*num_var, 2*num_var, mat_A_gw, 2*num_var, ipiv, info)
    4060             : 
    4061     1070657 :          CALL ZGETRS('N', 2*num_var, 1, mat_A_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4062             : 
    4063     1070657 :          CALL timestop(handle4)
    4064             : 
    4065     6423942 :          DO iii = 1, num_var
    4066     6423942 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii) + vec_b_gw(iii) + vec_b_gw(iii + num_var)
    4067             :          END DO
    4068             : 
    4069             :          ! calculate chi2
    4070             :          CALL calc_chi2(chi2, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4071     1070657 :                         num_fit_points, n_level_gw)
    4072             : 
    4073             :          ! if the fit is already super accurate, exit. otherwise maybe issues when dividing by 0
    4074     1070657 :          IF (chi2 < 1.0E-30_dp) EXIT
    4075             : 
    4076     1070603 :          IF (chi2 < chi2_old) THEN
    4077      908900 :             ScalParam = MAX(ScalParam/Ldown, 1E-12_dp)
    4078     5453400 :             DO iii = 1, num_var
    4079     4544500 :                Lambda_Re(iii) = Lambda_Re(iii) + REAL(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4080     5453400 :                Lambda_Im(iii) = Lambda_Im(iii) + AIMAG(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4081             :             END DO
    4082      908900 :             IF (chi2_old/chi2 - 1.0_dp < stop_crit) could_exit = .TRUE.
    4083      908900 :             chi2_old = chi2
    4084             :          ELSE
    4085      161703 :             ScalParam = ScalParam*Lup
    4086             :          END IF
    4087     1070603 :          IF (ScalParam > 100.0_dp .AND. could_exit) EXIT
    4088             : 
    4089     5353312 :          IF (ScalParam > 1E+10_dp) ScalParam = 1E-4_dp
    4090             : 
    4091             :       END DO
    4092             : 
    4093         558 :       IF (.NOT. do_gw_im_time) THEN
    4094             : 
    4095             :          ! change a_0 [Lambda(1)], so that Sigma(i0) = Fit(i0)
    4096             :          ! do not do this for imaginary time since we do not have many fit points and the fit should be perfect
    4097         420 :          func_val = Lambda(1)
    4098        1260 :          DO iii = 1, num_poles
    4099         840 :             jjj = iii*2
    4100             :             ! calculate value of the fit function
    4101        1260 :             func_val = func_val + Lambda(jjj)/(-Lambda(jjj + 1))
    4102             :          END DO
    4103             : 
    4104         420 :          Lambda_Re(1) = Lambda_Re(1) - REAL(func_val) + REAL(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4105         420 :          Lambda_Im(1) = Lambda_Im(1) - AIMAG(func_val) + AIMAG(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4106             : 
    4107             :       END IF
    4108             : 
    4109        3348 :       Lambda_without_offset(:) = Lambda(:)
    4110             : 
    4111        3348 :       DO iii = 1, num_var
    4112        3348 :          Lambda(iii) = CMPLX(Lambda_Re(iii), Lambda_Im(iii), KIND=dp)
    4113             :       END DO
    4114             : 
    4115         558 :       IF (do_gw_im_time) THEN
    4116             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states with the Fermi level
    4117             :          ! in the middle of homo and lumo
    4118         138 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4119             :       ELSE
    4120             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4121             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4122         420 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4123         114 :             e_fermi = Eigenval(homo) + fermi_level_offset
    4124             :          ELSE
    4125         306 :             e_fermi = Eigenval(homo + 1) - fermi_level_offset
    4126             :          END IF
    4127             :       END IF
    4128             : 
    4129             :       ! either Z-shot or Newton/bisection crossing search for evaluating Sigma_c
    4130         558 :       IF (crossing_search == ri_rpa_g0w0_crossing_z_shot .OR. &
    4131             :           crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4132             : 
    4133             :          ! calculate Sigma_c_fit(e_n) and Z
    4134         558 :          func_val = Lambda(1)
    4135         558 :          z_value(n_level_gw) = 1.0_dp
    4136        1674 :          DO iii = 1, num_poles
    4137        1116 :             jjj = iii*2
    4138             :             z_value(n_level_gw) = z_value(n_level_gw) + REAL(Lambda(jjj)/ &
    4139        1116 :                                                              (Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))**2)
    4140        1674 :             func_val = func_val + Lambda(jjj)/(Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))
    4141             :          END DO
    4142             :          ! m is the slope of the correl self-energy
    4143         558 :          m_value(n_level_gw) = 1.0_dp - z_value(n_level_gw)
    4144         558 :          z_value(n_level_gw) = 1.0_dp/z_value(n_level_gw)
    4145         558 :          gw_energ = REAL(func_val)
    4146         558 :          vec_gw_energ(n_level_gw) = gw_energ
    4147             : 
    4148             :          ! in case one wants to do Newton-Raphson on top of the Z-shot
    4149         558 :          IF (crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4150             : 
    4151             :             level_energ_GW = (Eigenval_scf(n_level_gw_ref) - &
    4152             :                               m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4153             :                               vec_gw_energ(n_level_gw) + &
    4154             :                               vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4155          32 :                              z_value(n_level_gw)
    4156             : 
    4157             :             ! Newton-Raphson iteration
    4158         240 :             DO kkk = 1, 1000
    4159             : 
    4160             :                ! calculate the value of the fit function for level_energ_GW
    4161         240 :                func_val = Lambda(1)
    4162         240 :                z_value(n_level_gw) = 1.0_dp
    4163         720 :                DO iii = 1, num_poles
    4164         480 :                   jjj = iii*2
    4165         720 :                   func_val = func_val + Lambda(jjj)/(level_energ_GW - e_fermi - Lambda(jjj + 1))
    4166             :                END DO
    4167             : 
    4168             :                ! calculate the derivative of the fit function for level_energ_GW
    4169         240 :                deriv_val_real = -1.0_dp
    4170         720 :                DO iii = 1, num_poles
    4171         480 :                   jjj = iii*2
    4172             :                   deriv_val_real = deriv_val_real + REAL(Lambda(jjj))/((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2) &
    4173             :                                    - (REAL(Lambda(jjj))*(level_energ_GW - e_fermi) - REAL(Lambda(jjj)*CONJG(Lambda(jjj + 1))))* &
    4174             :                                    2.0_dp*(level_energ_GW - e_fermi - REAL(Lambda(jjj + 1)))/ &
    4175         720 :                                    ((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2)
    4176             : 
    4177             :                END DO
    4178             : 
    4179             :               delta = (Eigenval_scf(n_level_gw_ref) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref) + REAL(func_val) - level_energ_GW)/ &
    4180         240 :                        deriv_val_real
    4181             : 
    4182         240 :                level_energ_GW = level_energ_GW - delta
    4183             : 
    4184         240 :                IF (ABS(delta) < 1.0E-08) EXIT
    4185             : 
    4186             :             END DO
    4187             : 
    4188             :             ! update the GW-energy by Newton-Raphson and set the Z-value to 1
    4189             : 
    4190          32 :             vec_gw_energ(n_level_gw) = REAL(func_val)
    4191          32 :             z_value(n_level_gw) = 1.0_dp
    4192          32 :             m_value(n_level_gw) = 0.0_dp
    4193             : 
    4194             :          END IF ! Newton-Raphson on top of Z-shot
    4195             : 
    4196             :       ELSE
    4197           0 :          CPABORT("Only NONE, ZSHOT and NEWTON implemented for 2-pole model")
    4198             :       END IF ! decision crossing search none, Z-shot
    4199             : 
    4200             :       !   --------------------------------------------
    4201             :       !  | calculate statistical error due to fitting |
    4202             :       !   --------------------------------------------
    4203             : 
    4204             :       ! estimate the statistical error of the calculated Sigma_c(i*omega)
    4205             :       ! by sqrt(chi2/n), where n is the number of fit points
    4206             : 
    4207             :       CALL calc_chi2(chi2, Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4208         558 :                      num_fit_points, n_level_gw)
    4209             : 
    4210             :       ! Estimate the statistical error of every fit point
    4211         558 :       stat_error = SQRT(chi2/num_fit_points)
    4212             : 
    4213             :       ! allocate N array containing the second derivatives of chi^2
    4214        1674 :       ALLOCATE (vec_N_gw(num_var*2))
    4215        6138 :       vec_N_gw = 0.0_dp
    4216             : 
    4217        2232 :       ALLOCATE (mat_N_gw(num_var*2, num_var*2))
    4218       61938 :       mat_N_gw = 0.0_dp
    4219             : 
    4220        6138 :       DO iii = 1, num_var*2
    4221             :          CALL calc_mat_N(vec_N_gw(iii), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4222        6138 :                          iii, iii, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4223             :       END DO
    4224             : 
    4225        6138 :       DO iii = 1, num_var*2
    4226       61938 :          DO jjj = 1, num_var*2
    4227             :             CALL calc_mat_N(mat_N_gw(iii, jjj), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4228       61380 :                             iii, jjj, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4229             :          END DO
    4230             :       END DO
    4231             : 
    4232         558 :       CALL DGETRF(2*num_var, 2*num_var, mat_N_gw, 2*num_var, ipiv, info)
    4233             : 
    4234             :       ! vec_b_gw is only working array
    4235         558 :       CALL DGETRI(2*num_var, mat_N_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4236             : 
    4237        1674 :       ALLOCATE (stat_errors(2*num_var))
    4238        6138 :       stat_errors = 0.0_dp
    4239             : 
    4240        6138 :       DO iii = 1, 2*num_var
    4241        6138 :          stat_errors(iii) = SQRT(ABS(mat_N_gw(iii, iii)))*stat_error
    4242             :       END DO
    4243             : 
    4244         558 :       DEALLOCATE (mat_N_gw)
    4245         558 :       DEALLOCATE (vec_N_gw)
    4246         558 :       DEALLOCATE (mat_A_gw)
    4247         558 :       DEALLOCATE (mat_B_gw)
    4248         558 :       DEALLOCATE (stat_errors)
    4249         558 :       DEALLOCATE (dLambda)
    4250         558 :       DEALLOCATE (dLambda_2)
    4251         558 :       DEALLOCATE (vec_b_gw)
    4252         558 :       DEALLOCATE (vec_b_gw_copy)
    4253         558 :       DEALLOCATE (ipiv)
    4254         558 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4255         558 :       DEALLOCATE (Lambda)
    4256         558 :       DEALLOCATE (Lambda_without_offset)
    4257         558 :       DEALLOCATE (Lambda_Re)
    4258         558 :       DEALLOCATE (Lambda_Im)
    4259             : 
    4260         558 :    END SUBROUTINE fit_and_continuation_2pole
    4261             : 
    4262             : ! **************************************************************************************************
    4263             : !> \brief perform analytic continuation with pade approximation
    4264             : !> \param vec_gw_energ real Sigma_c
    4265             : !> \param vec_omega_fit_gw frequency points for Sigma_c(iomega)
    4266             : !> \param z_value 1/(1-dev)
    4267             : !> \param m_value derivative of real Sigma_c
    4268             : !> \param vec_Sigma_c_gw complex Sigma_c(iomega)
    4269             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4270             : !> \param Eigenval quasiparticle energy during ev self-consistent GW
    4271             : !> \param Eigenval_scf KS/HF eigenvalue
    4272             : !> \param n_level_gw ...
    4273             : !> \param gw_corr_lev_occ ...
    4274             : !> \param nparam_pade number of pade parameters
    4275             : !> \param num_fit_points number of fit points for Sigma_c(iomega)
    4276             : !> \param crossing_search type ofr cross search to find quasiparticle energies
    4277             : !> \param homo ...
    4278             : !> \param fermi_level_offset ...
    4279             : !> \param do_gw_im_time ...
    4280             : !> \param print_self_energy ...
    4281             : !> \param count_ev_sc_GW ...
    4282             : !> \param vec_gw_dos ...
    4283             : !> \param dos_lower_bound ...
    4284             : !> \param dos_precision ...
    4285             : !> \param ndos ...
    4286             : !> \param min_level_self_energy ...
    4287             : !> \param max_level_self_energy ...
    4288             : !> \param dos_eta ...
    4289             : !> \param dos_min ...
    4290             : !> \param dos_max ...
    4291             : ! **************************************************************************************************
    4292         774 :    SUBROUTINE continuation_pade(vec_gw_energ, vec_omega_fit_gw, &
    4293        1548 :                                 z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    4294        1548 :                                 Eigenval, Eigenval_scf, n_level_gw, gw_corr_lev_occ, nparam_pade, &
    4295             :                                 num_fit_points, crossing_search, homo, &
    4296             :                                 fermi_level_offset, do_gw_im_time, print_self_energy, count_ev_sc_GW, &
    4297             :                                 vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    4298             :                                 min_level_self_energy, max_level_self_energy, dos_eta, dos_min, dos_max)
    4299             : 
    4300             :       ! Optional arguments for spectral function
    4301             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ
    4302             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    4303             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: z_value, m_value
    4304             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    4305             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4306             :                                                             Eigenval_scf
    4307             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, &
    4308             :                                                             nparam_pade, num_fit_points, &
    4309             :                                                             crossing_search, homo
    4310             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    4311             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time, print_self_energy
    4312             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    4313             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), OPTIONAL :: vec_gw_dos
    4314             :       REAL(KIND=dp), OPTIONAL                            :: dos_lower_bound, dos_precision
    4315             :       INTEGER, INTENT(IN), OPTIONAL                      :: ndos, min_level_self_energy, &
    4316             :                                                             max_level_self_energy
    4317             :       REAL(KIND=dp), OPTIONAL                            :: dos_eta
    4318             :       INTEGER, INTENT(IN), OPTIONAL                      :: dos_min, dos_max
    4319             : 
    4320             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'continuation_pade'
    4321             : 
    4322             :       CHARACTER(LEN=5)                                   :: string_level
    4323             :       CHARACTER(len=default_path_length)                 :: filename
    4324             :       COMPLEX(KIND=dp)                                   :: sigma_c_pade, sigma_c_pade_im_freq
    4325         774 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: coeff_pade, omega_points_pade, &
    4326         774 :                                                             Sigma_c_gw_reorder
    4327             :       INTEGER                                            :: handle, i_omega, idos, iunit, jquad, &
    4328             :                                                             n_level_gw_ref, num_omega
    4329             :       REAL(KIND=dp)                                      :: e_fermi, energy_val, level_energ_GW, &
    4330             :                                                             omega, omega_dos, omega_dos_pade_eval, &
    4331             :                                                             sign_occ_virt
    4332         774 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_fit_gw_sign, &
    4333         774 :                                                             vec_omega_fit_gw_sign_reorder, &
    4334         774 :                                                             vec_sigma_imag, vec_sigma_real
    4335             : 
    4336         774 :       CALL timeset(routineN, handle)
    4337             : 
    4338        2322 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    4339             : 
    4340         774 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    4341             :          sign_occ_virt = -1.0_dp
    4342             :       ELSE
    4343         478 :          sign_occ_virt = 1.0_dp
    4344             :       END IF
    4345             : 
    4346        8032 :       DO jquad = 1, num_fit_points
    4347        8032 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    4348             :       END DO
    4349             : 
    4350         774 :       IF (do_gw_im_time) THEN
    4351             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states with the Fermi level
    4352             :          ! in the middle of homo and lumo
    4353         714 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4354             :       ELSE
    4355             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4356             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4357          60 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4358          12 :             e_fermi = Eigenval(homo) + fermi_level_offset
    4359             :          ELSE
    4360          48 :             e_fermi = Eigenval(homo + 1) - fermi_level_offset
    4361             :          END IF
    4362             :       END IF
    4363             : 
    4364         774 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    4365             : 
    4366             :       !*** reorder, such that omega=i*0 is first entry
    4367        2322 :       ALLOCATE (Sigma_c_gw_reorder(num_fit_points))
    4368        2322 :       ALLOCATE (vec_omega_fit_gw_sign_reorder(num_fit_points))
    4369             :       ! for cubic scaling GW fit points are ordered differently than in N^4 GW
    4370         774 :       IF (do_gw_im_time) THEN
    4371        3982 :          DO jquad = 1, num_fit_points
    4372        3268 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, jquad)
    4373        3982 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(jquad)
    4374             :          END DO
    4375             :       ELSE
    4376        4050 :          DO jquad = 1, num_fit_points
    4377        3990 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, num_fit_points - jquad + 1)
    4378        4050 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(num_fit_points - jquad + 1)
    4379             :          END DO
    4380             :       END IF
    4381             : 
    4382             :       !*** evaluate parameters for pade approximation
    4383        2322 :       ALLOCATE (coeff_pade(nparam_pade))
    4384        2322 :       ALLOCATE (omega_points_pade(nparam_pade))
    4385        4848 :       coeff_pade = 0.0_dp
    4386             :       CALL get_pade_parameters(Sigma_c_gw_reorder, vec_omega_fit_gw_sign_reorder, &
    4387         774 :                                num_fit_points, nparam_pade, omega_points_pade, coeff_pade)
    4388             : 
    4389             :       !*** calculate start_value for iterative cross-searching methods
    4390         774 :       IF ((crossing_search == ri_rpa_g0w0_crossing_bisection) .OR. &
    4391             :           (crossing_search == ri_rpa_g0w0_crossing_newton)) THEN
    4392         774 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4393             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4394         774 :                                      coeff_pade, sigma_c_pade)
    4395             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4396         774 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4397             :          level_energ_GW = (Eigenval_scf(n_level_gw_ref) - &
    4398             :                            m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4399             :                            REAL(sigma_c_pade) + &
    4400             :                            vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4401         774 :                           z_value(n_level_gw)
    4402             :       END IF
    4403             : 
    4404         774 :       iunit = cp_logger_get_default_unit_nr()
    4405             : 
    4406         774 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4407         332 :          IF (n_level_gw_ref >= min_level_self_energy .AND. n_level_gw_ref <= max_level_self_energy) THEN
    4408           0 :             ALLOCATE (vec_sigma_real(ndos))
    4409           0 :             ALLOCATE (vec_sigma_imag(ndos))
    4410           0 :             WRITE (string_level, "(I4)") n_level_gw_ref
    4411           0 :             string_level = ADJUSTL(string_level)
    4412             :          END IF
    4413             :       END IF
    4414             : 
    4415             :       !*** Calculate spectral function
    4416             :       !***         1   \‾‾                    |Im 𝚺ₘ(ω)|+η
    4417             :       !*** A(ω) = ---   |    ---------------------------------------------------
    4418             :       !***         π   /__   [ω - eₘ^DFT - (Re 𝚺ₘ(ω) - vₘ^xc)]² + (|Im 𝚺ₘ(ω)|+η)²
    4419             : 
    4420         774 :       IF (PRESENT(ndos)) THEN
    4421         332 :       IF (ndos /= 0) THEN
    4422           0 :          DO idos = 1, ndos
    4423           0 :             omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4424           0 :             omega_dos_pade_eval = omega_dos - e_fermi
    4425             :             CALL evaluate_pade_function(omega_dos_pade_eval, nparam_pade, omega_points_pade, &
    4426           0 :                                         coeff_pade, sigma_c_pade)
    4427             : 
    4428             :             IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4429           0 :                 n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4430             : 
    4431           0 :                vec_sigma_real(idos) = (REAL(sigma_c_pade))
    4432           0 :                vec_sigma_imag(idos) = (AIMAG(sigma_c_pade))
    4433             : 
    4434             :             END IF
    4435             : 
    4436           0 :             IF (n_level_gw_ref >= dos_min .AND. &
    4437           0 :                 (n_level_gw_ref <= dos_max .OR. dos_max > 0)) THEN
    4438             :                vec_gw_dos(idos) = vec_gw_dos(idos) + &
    4439             :                                   (ABS(AIMAG(sigma_c_pade)) + dos_eta) &
    4440             :                                   /( &
    4441             :                                   (omega_dos - Eigenval_scf(n_level_gw_ref) - &
    4442             :                                    (REAL(sigma_c_pade) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)) &
    4443             :                                    )**2 &
    4444             :                                   + (ABS(AIMAG(sigma_c_pade)) + dos_eta)**2 &
    4445           0 :                                   )
    4446             :             END IF
    4447             : 
    4448             :          END DO
    4449             :       END IF
    4450             :       END IF
    4451             : 
    4452         774 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4453             :       IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4454         332 :           n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4455             : 
    4456             :          CALL open_file('self_energy_re_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4457           0 :                         file_status="UNKNOWN", file_action="WRITE")
    4458           0 :          DO idos = 1, ndos
    4459           0 :             omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4460           0 :             WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_real(idos)*evolt
    4461             :          END DO
    4462             : 
    4463           0 :          CALL close_file(iunit)
    4464             : 
    4465             :          CALL open_file('self_energy_im_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4466           0 :                         file_status="UNKNOWN", file_action="WRITE")
    4467           0 :          DO idos = 1, ndos
    4468           0 :             omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4469           0 :             WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_imag(idos)*evolt
    4470             :          END DO
    4471             : 
    4472           0 :          CALL close_file(iunit)
    4473             : 
    4474           0 :          DEALLOCATE (vec_sigma_real)
    4475           0 :          DEALLOCATE (vec_sigma_imag)
    4476             :       END IF
    4477             :       END IF
    4478             : 
    4479             :       !*** perform crossing search
    4480           0 :       SELECT CASE (crossing_search)
    4481             :       CASE (ri_rpa_g0w0_crossing_z_shot)
    4482           0 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4483             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4484           0 :                                      coeff_pade, sigma_c_pade)
    4485           0 :          vec_gw_energ(n_level_gw) = REAL(sigma_c_pade)
    4486             : 
    4487             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4488           0 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4489             : 
    4490             :       CASE (ri_rpa_g0w0_crossing_bisection)
    4491             :          CALL get_sigma_c_bisection_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4492             :                                          vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4493             :                                          nparam_pade, omega_points_pade, coeff_pade, &
    4494           8 :                                          n_level_gw_ref, start_val=level_energ_GW)
    4495           8 :          z_value(n_level_gw) = 1.0_dp
    4496           8 :          m_value(n_level_gw) = 0.0_dp
    4497             : 
    4498             :       CASE (ri_rpa_g0w0_crossing_newton)
    4499             :          CALL get_sigma_c_newton_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4500             :                                       vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4501             :                                       nparam_pade, omega_points_pade, coeff_pade, &
    4502         766 :                                       n_level_gw_ref, start_val=level_energ_GW)
    4503         766 :          z_value(n_level_gw) = 1.0_dp
    4504         766 :          m_value(n_level_gw) = 0.0_dp
    4505             : 
    4506             :       CASE DEFAULT
    4507         774 :          CPABORT("Only Z_SHOT, NEWTON, and BISECTION crossing search implemented.")
    4508             :       END SELECT
    4509             : 
    4510         774 :       IF (print_self_energy) THEN
    4511             : 
    4512           0 :          IF (count_ev_sc_GW == 1) THEN
    4513             : 
    4514           0 :             IF (n_level_gw_ref < 10) THEN
    4515           0 :                WRITE (filename, "(A26,I1)") "G0W0_self_energy_level_000", n_level_gw_ref
    4516           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4517           0 :                WRITE (filename, "(A25,I2)") "G0W0_self_energy_level_00", n_level_gw_ref
    4518           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4519           0 :                WRITE (filename, "(A24,I3)") "G0W0_self_energy_level_0", n_level_gw_ref
    4520             :             ELSE
    4521           0 :                WRITE (filename, "(A23,I4)") "G0W0_self_energy_level_", n_level_gw_ref
    4522             :             END IF
    4523             : 
    4524             :          ELSE
    4525             : 
    4526           0 :             IF (n_level_gw_ref < 10) THEN
    4527           0 :                WRITE (filename, "(A11,I1,A22,I1)") "evGW_cycle_", count_ev_sc_GW, &
    4528           0 :                   "_self_energy_level_000", n_level_gw_ref
    4529           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4530           0 :                WRITE (filename, "(A11,I1,A21,I2)") "evGW_cycle_", count_ev_sc_GW, &
    4531           0 :                   "_self_energy_level_00", n_level_gw_ref
    4532           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4533           0 :                WRITE (filename, "(A11,I1,A20,I3)") "evGW_cycle_", count_ev_sc_GW, &
    4534           0 :                   "_self_energy_level_0", n_level_gw_ref
    4535             :             ELSE
    4536           0 :                WRITE (filename, "(A11,I1,A19,I4)") "evGW_cycle_", count_ev_sc_GW, &
    4537           0 :                   "_self_energy_level_", n_level_gw_ref
    4538             :             END IF
    4539             : 
    4540             :          END IF
    4541             : 
    4542           0 :          CALL open_file(TRIM(filename), unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    4543             : 
    4544           0 :          num_omega = 10000
    4545             : 
    4546           0 :          WRITE (iunit, "(2A42)") " omega (eV)     Sigma(omega) (eV)  ", &
    4547           0 :             "  omega - e_n^DFT - Sigma_n^x - v_n^xc (eV)"
    4548             : 
    4549           0 :          DO i_omega = 0, num_omega
    4550             : 
    4551           0 :             omega = -50.0_dp/evolt + REAL(i_omega, KIND=dp)/REAL(num_omega, KIND=dp)*100.0_dp/evolt
    4552             : 
    4553             :             CALL evaluate_pade_function(omega - e_fermi, nparam_pade, omega_points_pade, &
    4554           0 :                                         coeff_pade, sigma_c_pade)
    4555             : 
    4556           0 :             WRITE (iunit, "(F12.2,2F17.5)") omega*evolt, REAL(sigma_c_pade)*evolt, &
    4557           0 :                (omega - Eigenval_scf(n_level_gw_ref) - vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))*evolt
    4558             : 
    4559             :          END DO
    4560             : 
    4561           0 :          WRITE (iunit, "(A51,A39)") " w (eV)  Re(Sigma(i*w)) (eV)   Im(Sigma(i*w)) (eV) ", &
    4562           0 :             "  Re(Fit(i*w)) (eV)    Im(Fit(iw)) (eV)"
    4563             : 
    4564           0 :          DO jquad = 1, num_fit_points
    4565             : 
    4566             :             CALL evaluate_pade_function(vec_omega_fit_gw_sign_reorder(jquad), &
    4567             :                                         nparam_pade, omega_points_pade, &
    4568           0 :                                         coeff_pade, sigma_c_pade_im_freq, do_imag_freq=.TRUE.)
    4569             : 
    4570           0 :             WRITE (iunit, "(F12.2,4F17.5)") vec_omega_fit_gw_sign_reorder(jquad)*evolt, &
    4571           0 :                REAL(Sigma_c_gw_reorder(jquad)*evolt), &
    4572           0 :                AIMAG(Sigma_c_gw_reorder(jquad)*evolt), &
    4573           0 :                REAL(sigma_c_pade_im_freq*evolt), &
    4574           0 :                AIMAG(sigma_c_pade_im_freq*evolt)
    4575             : 
    4576             :          END DO
    4577             : 
    4578           0 :          CALL close_file(iunit)
    4579             : 
    4580             :       END IF
    4581             : 
    4582         774 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4583         774 :       DEALLOCATE (Sigma_c_gw_reorder)
    4584         774 :       DEALLOCATE (vec_omega_fit_gw_sign_reorder)
    4585         774 :       DEALLOCATE (coeff_pade, omega_points_pade)
    4586             : 
    4587         774 :       CALL timestop(handle)
    4588             : 
    4589        1548 :    END SUBROUTINE continuation_pade
    4590             : 
    4591             : ! **************************************************************************************************
    4592             : !> \brief calculate pade parameter recursively as in  Eq. (A2) in J. Low Temp. Phys., Vol. 29,
    4593             : !>          1977, pp. 179
    4594             : !> \param y f(x), here: Sigma_c(iomega)
    4595             : !> \param x the frequency points omega
    4596             : !> \param num_fit_points ...
    4597             : !> \param nparam number of pade parameters
    4598             : !> \param xpoints set of points used in pade approximation, selection of x
    4599             : !> \param coeff pade coefficients
    4600             : ! **************************************************************************************************
    4601         774 :    PURE SUBROUTINE get_pade_parameters(y, x, num_fit_points, nparam, xpoints, coeff)
    4602             : 
    4603             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: y
    4604             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: x
    4605             :       INTEGER, INTENT(IN)                                :: num_fit_points, nparam
    4606             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(INOUT)      :: xpoints, coeff
    4607             : 
    4608         774 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: ypoints
    4609         774 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: g_mat
    4610             :       INTEGER                                            :: idat, iparam, nstep
    4611             : 
    4612         774 :       nstep = INT(num_fit_points/(nparam - 1))
    4613             : 
    4614        2322 :       ALLOCATE (ypoints(nparam))
    4615             :       !omega=i0 is in element x(1)
    4616         774 :       idat = 1
    4617        4074 :       DO iparam = 1, nparam - 1
    4618        3300 :          xpoints(iparam) = gaussi*x(idat)
    4619        3300 :          ypoints(iparam) = y(idat)
    4620        4074 :          idat = idat + nstep
    4621             :       END DO
    4622         774 :       xpoints(nparam) = gaussi*x(num_fit_points)
    4623         774 :       ypoints(nparam) = y(num_fit_points)
    4624             : 
    4625             :       !*** generate parameters recursively
    4626             : 
    4627        3096 :       ALLOCATE (g_mat(nparam, nparam))
    4628        4848 :       g_mat(:, 1) = ypoints(:)
    4629        4074 :       DO iparam = 2, nparam
    4630       17908 :          DO idat = iparam, nparam
    4631             :             g_mat(idat, iparam) = (g_mat(iparam - 1, iparam - 1) - g_mat(idat, iparam - 1))/ &
    4632       17134 :                                   ((xpoints(idat) - xpoints(iparam - 1))*g_mat(idat, iparam - 1))
    4633             :          END DO
    4634             :       END DO
    4635             : 
    4636        4848 :       DO iparam = 1, nparam
    4637        4848 :          coeff(iparam) = g_mat(iparam, iparam)
    4638             :       END DO
    4639             : 
    4640         774 :       DEALLOCATE (ypoints)
    4641         774 :       DEALLOCATE (g_mat)
    4642             : 
    4643         774 :    END SUBROUTINE get_pade_parameters
    4644             : 
    4645             : ! **************************************************************************************************
    4646             : !> \brief evaluate pade function for a real value x_val
    4647             : !> \param x_val real value
    4648             : !> \param nparam number of pade parameters
    4649             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4650             : !> \param coeff pade coefficients
    4651             : !> \param func_val function value
    4652             : !> \param do_imag_freq ...
    4653             : ! **************************************************************************************************
    4654        3451 :    PURE SUBROUTINE evaluate_pade_function(x_val, nparam, xpoints, coeff, func_val, do_imag_freq)
    4655             : 
    4656             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4657             :       INTEGER, INTENT(IN)                                :: nparam
    4658             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4659             :       COMPLEX(KIND=dp), INTENT(OUT)                      :: func_val
    4660             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_imag_freq
    4661             : 
    4662             :       INTEGER                                            :: iparam
    4663             :       LOGICAL                                            :: my_do_imag_freq
    4664             : 
    4665        3451 :       my_do_imag_freq = .FALSE.
    4666        3451 :       IF (PRESENT(do_imag_freq)) my_do_imag_freq = do_imag_freq
    4667             : 
    4668        3451 :       func_val = z_one
    4669       17762 :       DO iparam = nparam, 2, -1
    4670       17762 :          IF (my_do_imag_freq) THEN
    4671           0 :             func_val = z_one + coeff(iparam)*(gaussi*x_val - xpoints(iparam - 1))/func_val
    4672             :          ELSE
    4673       14311 :             func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4674             :          END IF
    4675             :       END DO
    4676             : 
    4677        3451 :       func_val = coeff(1)/func_val
    4678             : 
    4679        3451 :    END SUBROUTINE evaluate_pade_function
    4680             : 
    4681             : ! **************************************************************************************************
    4682             : !> \brief get the z-value and the m-value (derivative) of the pade function
    4683             : !> \param x_val real value
    4684             : !> \param nparam number of pade parameters
    4685             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4686             : !> \param coeff pade coefficients
    4687             : !> \param z_value 1/(1-dev)
    4688             : !> \param m_value derivative
    4689             : ! **************************************************************************************************
    4690        3343 :    PURE SUBROUTINE get_z_and_m_value_pade(x_val, nparam, xpoints, coeff, z_value, m_value)
    4691             : 
    4692             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4693             :       INTEGER, INTENT(IN)                                :: nparam
    4694             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4695             :       REAL(KIND=dp), INTENT(OUT), OPTIONAL               :: z_value, m_value
    4696             : 
    4697             :       COMPLEX(KIND=dp)                                   :: denominator, dev_denominator, &
    4698             :                                                             dev_numerator, dev_val, func_val, &
    4699             :                                                             numerator
    4700             :       INTEGER                                            :: iparam
    4701             : 
    4702        3343 :       func_val = z_one
    4703        3343 :       dev_val = z_zero
    4704       17546 :       DO iparam = nparam, 2, -1
    4705       14203 :          numerator = coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))
    4706       14203 :          dev_numerator = coeff(iparam)*z_one
    4707       14203 :          denominator = func_val
    4708       14203 :          dev_denominator = dev_val
    4709       14203 :          dev_val = dev_numerator/denominator - (numerator*dev_denominator)/(denominator**2)
    4710       17546 :          func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4711             :       END DO
    4712             : 
    4713        3343 :       dev_val = -1.0_dp*coeff(1)/(func_val**2)*dev_val
    4714        3343 :       func_val = coeff(1)/func_val
    4715             : 
    4716        3343 :       IF (PRESENT(z_value)) THEN
    4717         774 :          z_value = 1.0_dp - REAL(dev_val)
    4718         774 :          z_value = 1.0_dp/z_value
    4719             :       END IF
    4720        3343 :       IF (PRESENT(m_value)) m_value = REAL(dev_val)
    4721             : 
    4722        3343 :    END SUBROUTINE get_z_and_m_value_pade
    4723             : 
    4724             : ! **************************************************************************************************
    4725             : !> \brief crossing search using the bisection method to find the quasiparticle energy
    4726             : !> \param gw_energ real Sigma_c
    4727             : !> \param Eigenval_scf Eigenvalue from the SCF
    4728             : !> \param Sigma_x_minus_vxc_gw ...
    4729             : !> \param e_fermi fermi level
    4730             : !> \param nparam_pade number of pade parameters
    4731             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4732             : !> \param coeff_pade pade coefficients
    4733             : !> \param n_level_gw_ref ...
    4734             : !> \param start_val start value for the quasiparticle iteration
    4735             : ! **************************************************************************************************
    4736          16 :    SUBROUTINE get_sigma_c_bisection_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4737           8 :                                          nparam_pade, omega_points_pade, coeff_pade, n_level_gw_ref, start_val)
    4738             : 
    4739             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4740             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4741             :                                                             e_fermi
    4742             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4743             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4744             :       INTEGER, INTENT(IN)                                :: n_level_gw_ref
    4745             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: start_val
    4746             : 
    4747             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_bisection_pade'
    4748             : 
    4749             :       CHARACTER(LEN=512)                                 :: error_msg
    4750             :       CHARACTER(LEN=64)                                  :: n_level_gw_ref_char
    4751             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4752             :       INTEGER                                            :: handle, icount
    4753             :       REAL(KIND=dp)                                      :: delta, energy_val, my_start_val, &
    4754             :                                                             qp_energy, qp_energy_old, threshold
    4755             : 
    4756           8 :       CALL timeset(routineN, handle)
    4757             : 
    4758           8 :       threshold = 1.0E-7_dp
    4759             : 
    4760           8 :       IF (PRESENT(start_val)) THEN
    4761           8 :          my_start_val = start_val
    4762             :       ELSE
    4763           0 :          my_start_val = Eigenval_scf
    4764             :       END IF
    4765             : 
    4766         116 :       qp_energy = my_start_val
    4767             :       qp_energy_old = my_start_val
    4768             :       delta = 1.0E-3_dp
    4769             : 
    4770             :       icount = 0
    4771         116 :       DO WHILE (ABS(delta) > threshold)
    4772         108 :          icount = icount + 1
    4773         108 :          qp_energy = qp_energy_old + 0.5_dp*delta
    4774         108 :          qp_energy_old = qp_energy
    4775         108 :          energy_val = qp_energy - e_fermi
    4776             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4777         108 :                                      coeff_pade, sigma_c)
    4778         108 :          qp_energy = Eigenval_scf + REAL(sigma_c) + Sigma_x_minus_vxc_gw
    4779         108 :          delta = qp_energy - qp_energy_old
    4780         116 :          IF (icount > 500) THEN
    4781           0 :             WRITE (n_level_gw_ref_char, '(I10)') n_level_gw_ref
    4782             :             WRITE (error_msg, '(A,A,A)') " Self-consistent quasi-particle solution of "// &
    4783           0 :                "MO ", TRIM(n_level_gw_ref_char), " has not been found."
    4784           0 :             CPWARN(error_msg)
    4785           0 :             EXIT
    4786             :          END IF
    4787             :       END DO
    4788             : 
    4789           8 :       gw_energ = REAL(sigma_c)
    4790             : 
    4791           8 :       CALL timestop(handle)
    4792             : 
    4793           8 :    END SUBROUTINE get_sigma_c_bisection_pade
    4794             : 
    4795             : ! **************************************************************************************************
    4796             : !> \brief crossing search using the Newton method to find the quasiparticle energy
    4797             : !> \param gw_energ real Sigma_c
    4798             : !> \param Eigenval_scf Eigenvalue from the SCF
    4799             : !> \param Sigma_x_minus_vxc_gw ...
    4800             : !> \param e_fermi fermi level
    4801             : !> \param nparam_pade number of pade parameters
    4802             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4803             : !> \param coeff_pade pade coefficients
    4804             : !> \param n_level_gw_ref ...
    4805             : !> \param start_val start value for the quasiparticle iteration
    4806             : ! **************************************************************************************************
    4807        1532 :    SUBROUTINE get_sigma_c_newton_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4808         766 :                                       nparam_pade, omega_points_pade, coeff_pade, n_level_gw_ref, start_val)
    4809             : 
    4810             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4811             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4812             :                                                             e_fermi
    4813             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4814             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4815             :       INTEGER, INTENT(IN)                                :: n_level_gw_ref
    4816             :       REAL(KIND=dp), INTENT(IN), OPTIONAL                :: start_val
    4817             : 
    4818             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_newton_pade'
    4819             : 
    4820             :       CHARACTER(LEN=512)                                 :: error_msg
    4821             :       CHARACTER(LEN=64)                                  :: n_level_gw_ref_char
    4822             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4823             :       INTEGER                                            :: handle, icount
    4824             :       REAL(KIND=dp)                                      :: delta, energy_val, m_value, &
    4825             :                                                             my_start_val, qp_energy, &
    4826             :                                                             qp_energy_old, threshold
    4827             : 
    4828         766 :       CALL timeset(routineN, handle)
    4829             : 
    4830         766 :       threshold = 1.0E-7_dp
    4831             : 
    4832         766 :       IF (PRESENT(start_val)) THEN
    4833         766 :          my_start_val = start_val
    4834             :       ELSE
    4835           0 :          my_start_val = Eigenval_scf
    4836             :       END IF
    4837             : 
    4838             :       qp_energy = my_start_val
    4839        3335 :       qp_energy_old = my_start_val
    4840             :       delta = 1.0E-3_dp
    4841             : 
    4842             :       icount = 0
    4843        3335 :       DO WHILE (ABS(delta) > threshold)
    4844        2569 :          icount = icount + 1
    4845        2569 :          energy_val = qp_energy - e_fermi
    4846             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4847        2569 :                                      coeff_pade, sigma_c)
    4848             :          !get m_value --> derivative of function
    4849             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4850        2569 :                                      coeff_pade, m_value=m_value)
    4851        2569 :          qp_energy_old = qp_energy
    4852             :          qp_energy = qp_energy - (Eigenval_scf + Sigma_x_minus_vxc_gw + REAL(sigma_c) - qp_energy)/ &
    4853        2569 :                      (m_value - 1.0_dp)
    4854        2569 :          delta = qp_energy - qp_energy_old
    4855        3335 :          IF (icount > 500) THEN
    4856           0 :             WRITE (n_level_gw_ref_char, '(I10)') n_level_gw_ref
    4857             :             WRITE (error_msg, '(A,A,A)') " Self-consistent quasi-particle solution of "// &
    4858           0 :                "MO ", TRIM(n_level_gw_ref_char), " has not been found."
    4859           0 :             CPWARN(error_msg)
    4860           0 :             EXIT
    4861             :          END IF
    4862             :       END DO
    4863             : 
    4864         766 :       gw_energ = REAL(sigma_c)
    4865             : 
    4866         766 :       CALL timestop(handle)
    4867             : 
    4868         766 :    END SUBROUTINE get_sigma_c_newton_pade
    4869             : 
    4870             : ! **************************************************************************************************
    4871             : !> \brief Prints the GW stuff to the output and optinally to an external file.
    4872             : !>        Also updates the eigenvalues for eigenvalue-self-consistent GW
    4873             : !> \param vec_gw_energ ...
    4874             : !> \param z_value ...
    4875             : !> \param m_value ...
    4876             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4877             : !> \param Eigenval ...
    4878             : !> \param Eigenval_last ...
    4879             : !> \param Eigenval_scf ...
    4880             : !> \param gw_corr_lev_occ ...
    4881             : !> \param gw_corr_lev_virt ...
    4882             : !> \param gw_corr_lev_tot ...
    4883             : !> \param crossing_search ...
    4884             : !> \param homo ...
    4885             : !> \param unit_nr ...
    4886             : !> \param count_ev_sc_GW ...
    4887             : !> \param count_sc_GW0 ...
    4888             : !> \param ikp ...
    4889             : !> \param nkp_self_energy ...
    4890             : !> \param kpoints ...
    4891             : !> \param ispin requested spin-state (1 for alpha, 2 for beta, else closed-shell)
    4892             : !> \param E_VBM_GW ...
    4893             : !> \param E_CBM_GW ...
    4894             : !> \param E_VBM_SCF ...
    4895             : !> \param E_CBM_SCF ...
    4896             : ! **************************************************************************************************
    4897        1160 :    SUBROUTINE print_and_update_for_ev_sc(vec_gw_energ, &
    4898         290 :                                          z_value, m_value, vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4899         290 :                                          Eigenval_last, Eigenval_scf, &
    4900             :                                          gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, &
    4901             :                                          crossing_search, homo, unit_nr, count_ev_sc_GW, count_sc_GW0, &
    4902             :                                          ikp, nkp_self_energy, kpoints, ispin, E_VBM_GW, E_CBM_GW, &
    4903             :                                          E_VBM_SCF, E_CBM_SCF)
    4904             : 
    4905             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_gw_energ, z_value, m_value
    4906             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4907             :                                                             Eigenval_last, Eigenval_scf
    4908             :       INTEGER, INTENT(IN) :: gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, crossing_search, &
    4909             :          homo, unit_nr, count_ev_sc_GW, count_sc_GW0, ikp, nkp_self_energy
    4910             :       TYPE(kpoint_type), INTENT(IN), POINTER             :: kpoints
    4911             :       INTEGER, INTENT(IN)                                :: ispin
    4912             :       REAL(KIND=dp), INTENT(INOUT), OPTIONAL             :: E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF
    4913             : 
    4914             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_and_update_for_ev_sc'
    4915             : 
    4916             :       CHARACTER(4)                                       :: occ_virt
    4917             :       INTEGER                                            :: handle, n_level_gw, n_level_gw_ref
    4918             :       LOGICAL                                            :: do_alpha, do_beta, do_closed_shell, &
    4919             :                                                             do_kpoints, is_energy_okay
    4920             :       REAL(KIND=dp)                                      :: E_GAP_GW, E_HOMO_GW, E_HOMO_SCF, &
    4921             :                                                             E_LUMO_GW, E_LUMO_SCF, new_energy
    4922             : 
    4923         290 :       CALL timeset(routineN, handle)
    4924             : 
    4925         290 :       do_alpha = (ispin == 1)
    4926         290 :       do_beta = (ispin == 2)
    4927         290 :       do_closed_shell = .NOT. (do_alpha .OR. do_beta)
    4928         290 :       do_kpoints = (nkp_self_energy > 1)
    4929             : 
    4930        6390 :       Eigenval_last(:) = Eigenval(:)
    4931             : 
    4932         290 :       IF (unit_nr > 0) THEN
    4933             : 
    4934         145 :          IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. ikp == 1) THEN
    4935             : 
    4936          42 :             WRITE (unit_nr, *) ' '
    4937             : 
    4938          42 :             IF (do_alpha .OR. do_closed_shell) THEN
    4939          35 :                WRITE (unit_nr, *) ' '
    4940          35 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4941          35 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4942          35 :                WRITE (unit_nr, '(T3,A)') '**                        GW QUASIPARTICLE ENERGIES                         **'
    4943          35 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4944          35 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4945          35 :                WRITE (unit_nr, '(T3,A)') ' '
    4946          35 :                WRITE (unit_nr, '(T3,A)') ' '
    4947          35 :                WRITE (unit_nr, '(T3,A)') 'The GW quasiparticle energies are calculated according to: '
    4948             : 
    4949          35 :                IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    4950          15 :                   WRITE (unit_nr, '(T3,A)') 'E_GW = E_SCF + Z * ( Sigc(E_SCF) + Sigx - vxc )'
    4951             :                ELSE
    4952          20 :                   WRITE (unit_nr, '(T3,A)') ' '
    4953          20 :                   WRITE (unit_nr, '(T3,A)') '                    E_GW = E_SCF + Sigc(E_GW) + Sigx - vxc '
    4954          20 :                   WRITE (unit_nr, '(T3,A)') ' '
    4955          20 :                   WRITE (unit_nr, '(T3,A)') 'Upper equation is solved self-consistently for E_GW, see Eq. (12) in J. Phys.'
    4956          20 :                   WRITE (unit_nr, '(T3,A)') 'Chem. Lett. 9, 306 (2018), doi: 10.1021/acs.jpclett.7b02740'
    4957             :                END IF
    4958          35 :                WRITE (unit_nr, *) ' '
    4959          35 :                WRITE (unit_nr, *) ' '
    4960          35 :                WRITE (unit_nr, '(T3,A)') '------------'
    4961          35 :                WRITE (unit_nr, '(T3,A)') 'G0W0 results'
    4962          35 :                WRITE (unit_nr, '(T3,A)') '------------'
    4963             : 
    4964             :             END IF
    4965             : 
    4966          42 :             IF (.NOT. do_kpoints) THEN
    4967          31 :                IF (do_alpha) THEN
    4968           5 :                   WRITE (unit_nr, *) ' '
    4969           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4970           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins'
    4971           5 :                   WRITE (unit_nr, '(T3,A)') '----------------------------------------'
    4972          26 :                ELSE IF (do_beta) THEN
    4973           5 :                   WRITE (unit_nr, *) ' '
    4974           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4975           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins'
    4976           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4977             :                END IF
    4978             :             END IF
    4979             : 
    4980             :          END IF
    4981             : 
    4982         145 :          IF (count_ev_sc_GW > 1) THEN
    4983          23 :             WRITE (unit_nr, *) ' '
    4984          23 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4985          23 :             WRITE (unit_nr, '(T3,A,I4)') 'Eigenvalue-selfconsistency cycle: ', count_ev_sc_GW
    4986          23 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4987             :          END IF
    4988             : 
    4989         145 :          IF (count_sc_GW0 > 1) THEN
    4990           8 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    4991           8 :             WRITE (unit_nr, '(T3,A,I4)') 'scGW0 selfconsistency cycle: ', count_sc_GW0
    4992           8 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    4993             :          END IF
    4994             : 
    4995         145 :          IF (do_kpoints) THEN
    4996          84 :             WRITE (unit_nr, *) ' '
    4997          84 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    4998          84 :                '   xkp =', kpoints%xkp(1, ikp), kpoints%xkp(2, ikp), kpoints%xkp(3, ikp), &
    4999         168 :                '  and  xkp =', -kpoints%xkp(1, ikp), -kpoints%xkp(2, ikp), -kpoints%xkp(3, ikp)
    5000          84 :             WRITE (unit_nr, '(T3,A72)') '(Relative Brillouin zone size: [-0.5, 0.5] x [-0.5, 0.5] x [-0.5, 0.5])'
    5001          84 :             WRITE (unit_nr, *) ' '
    5002          84 :             IF (do_alpha) THEN
    5003          16 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins:'
    5004          68 :             ELSE IF (do_beta) THEN
    5005          16 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins:'
    5006             :             END IF
    5007             :          END IF
    5008             : 
    5009             :       END IF
    5010             : 
    5011        2070 :       DO n_level_gw = 1, gw_corr_lev_tot
    5012             : 
    5013        1780 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5014             : 
    5015             :          new_energy = (Eigenval_scf(n_level_gw_ref) - &
    5016             :                        m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    5017             :                        vec_gw_energ(n_level_gw) + &
    5018             :                        vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    5019        1780 :                       z_value(n_level_gw)
    5020             : 
    5021        1780 :          is_energy_okay = .TRUE.
    5022             : 
    5023        1780 :          IF (n_level_gw_ref > homo .AND. new_energy < Eigenval(homo)) THEN
    5024             :             is_energy_okay = .FALSE.
    5025             :          END IF
    5026             : 
    5027         290 :          IF (is_energy_okay) THEN
    5028        1780 :             Eigenval(n_level_gw_ref) = new_energy
    5029             :          END IF
    5030             : 
    5031             :       END DO
    5032             : 
    5033         290 :       IF (unit_nr > 0) THEN
    5034         145 :          WRITE (unit_nr, '(T3,A)') ' '
    5035         145 :          IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5036          38 :             WRITE (unit_nr, '(T13,2A)') 'MO    E_SCF (eV)    Sigc (eV)   Sigx-vxc (eV)    Z         E_GW (eV)'
    5037             :          ELSE
    5038         107 :             WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_SCF (eV)       Sigc (eV)   Sigx-vxc (eV)       E_GW (eV)'
    5039             :          END IF
    5040             :       END IF
    5041             : 
    5042        2070 :       DO n_level_gw = 1, gw_corr_lev_tot
    5043        1780 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5044        1780 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    5045         566 :             occ_virt = 'occ'
    5046             :          ELSE
    5047        1214 :             occ_virt = 'vir'
    5048             :          END IF
    5049             : 
    5050        2070 :          IF (unit_nr > 0) THEN
    5051         890 :             IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5052             :                WRITE (unit_nr, '(T3,I4,3A,5F13.4)') &
    5053         526 :                   n_level_gw_ref, ' ( ', occ_virt, ') ', &
    5054         526 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5055         526 :                   vec_gw_energ(n_level_gw)*evolt, &
    5056         526 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5057         526 :                   z_value(n_level_gw), &
    5058        1052 :                   Eigenval(n_level_gw_ref)*evolt
    5059             :             ELSE
    5060             :                WRITE (unit_nr, '(T3,I4,3A,4F16.4)') &
    5061         364 :                   n_level_gw_ref, ' ( ', occ_virt, ')  ', &
    5062         364 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5063         364 :                   vec_gw_energ(n_level_gw)*evolt, &
    5064         364 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5065         728 :                   Eigenval(n_level_gw_ref)*evolt
    5066             :             END IF
    5067             :          END IF
    5068             :       END DO
    5069             : 
    5070        1146 :       E_HOMO_SCF = MAXVAL(Eigenval_last(homo - gw_corr_lev_occ + 1:homo))
    5071        1794 :       E_LUMO_SCF = MINVAL(Eigenval_last(homo + 1:homo + gw_corr_lev_virt))
    5072             : 
    5073        1146 :       E_HOMO_GW = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo))
    5074        1794 :       E_LUMO_GW = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt))
    5075         290 :       E_GAP_GW = E_LUMO_GW - E_HOMO_GW
    5076             : 
    5077             :       IF (PRESENT(E_VBM_SCF) .AND. PRESENT(E_CBM_SCF) .AND. &
    5078         290 :           PRESENT(E_VBM_GW) .AND. PRESENT(E_CBM_GW)) THEN
    5079         290 :          IF (E_HOMO_SCF > E_VBM_SCF) E_VBM_SCF = E_HOMO_SCF
    5080         290 :          IF (E_LUMO_SCF < E_CBM_SCF) E_CBM_SCF = E_LUMO_SCF
    5081         290 :          IF (E_HOMO_GW > E_VBM_GW) E_VBM_GW = E_HOMO_GW
    5082         290 :          IF (E_LUMO_GW < E_CBM_GW) E_CBM_GW = E_LUMO_GW
    5083             :       END IF
    5084             : 
    5085         290 :       IF (unit_nr > 0) THEN
    5086             : 
    5087         145 :          IF (do_kpoints) THEN
    5088          84 :             IF (do_closed_shell) THEN
    5089          52 :                WRITE (unit_nr, '(T3,A)') ' '
    5090          52 :                WRITE (unit_nr, '(T3,A,F42.4)') 'GW direct gap at current kpoint (eV)', E_GAP_GW*evolt
    5091          32 :             ELSE IF (do_alpha) THEN
    5092          16 :                WRITE (unit_nr, '(T3,A)') ' '
    5093          16 :                WRITE (unit_nr, '(T3,A,F36.4)') 'Alpha GW direct gap at current kpoint (eV)', E_GAP_GW*evolt
    5094          16 :             ELSE IF (do_beta) THEN
    5095          16 :                WRITE (unit_nr, '(T3,A)') ' '
    5096          16 :                WRITE (unit_nr, '(T3,A,F37.4)') 'Beta GW direct gap at current kpoint (eV)', E_GAP_GW*evolt
    5097             :             END IF
    5098             :          ELSE
    5099          61 :             IF (do_closed_shell) THEN
    5100          43 :                WRITE (unit_nr, '(T3,A)') ' '
    5101          43 :                WRITE (unit_nr, '(T3,A,F57.4)') 'GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5102          18 :             ELSE IF (do_alpha) THEN
    5103           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5104           9 :                WRITE (unit_nr, '(T3,A,F51.4)') 'Alpha GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5105           9 :             ELSE IF (do_beta) THEN
    5106           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5107           9 :                WRITE (unit_nr, '(T3,A,F52.4)') 'Beta GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5108             :             END IF
    5109             :          END IF
    5110             :       END IF
    5111             : 
    5112         290 :       IF (unit_nr > 0) THEN
    5113         145 :          WRITE (unit_nr, *) ' '
    5114         145 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    5115             :       END IF
    5116             : 
    5117         290 :       CALL timestop(handle)
    5118             : 
    5119         290 :    END SUBROUTINE print_and_update_for_ev_sc
    5120             : 
    5121             : ! **************************************************************************************************
    5122             : !> \brief ...
    5123             : !> \param Eigenval ...
    5124             : !> \param Eigenval_last ...
    5125             : !> \param gw_corr_lev_occ ...
    5126             : !> \param gw_corr_lev_virt ...
    5127             : !> \param homo ...
    5128             : !> \param nmo ...
    5129             : ! **************************************************************************************************
    5130         140 :    PURE SUBROUTINE shift_unshifted_levels(Eigenval, Eigenval_last, gw_corr_lev_occ, gw_corr_lev_virt, &
    5131             :                                           homo, nmo)
    5132             : 
    5133             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval, Eigenval_last
    5134             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5135             :                                                             nmo
    5136             : 
    5137             :       INTEGER                                            :: n_level_gw, n_level_gw_ref
    5138             :       REAL(KIND=dp)                                      :: eigen_diff
    5139             : 
    5140             :       ! for eigenvalue self-consistent GW, all eigenvalues have to be corrected
    5141             :       ! 1) the occupied; check if there are occupied MOs not being corrected by GW
    5142         140 :       IF (gw_corr_lev_occ < homo .AND. gw_corr_lev_occ > 0) THEN
    5143             : 
    5144             :          ! calculate average GW correction for occupied orbitals
    5145             :          eigen_diff = 0.0_dp
    5146             : 
    5147          80 :          DO n_level_gw = 1, gw_corr_lev_occ
    5148          40 :             n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5149          80 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5150             :          END DO
    5151          40 :          eigen_diff = eigen_diff/gw_corr_lev_occ
    5152             : 
    5153             :          ! correct the eigenvalues of the occupied orbitals which have not been corrected by GW
    5154         152 :          DO n_level_gw = 1, homo - gw_corr_lev_occ
    5155         152 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5156             :          END DO
    5157             : 
    5158             :       END IF
    5159             : 
    5160             :       ! 2) the virtual: check if there are virtual orbitals not being corrected by GW
    5161         140 :       IF (gw_corr_lev_virt < nmo - homo .AND. gw_corr_lev_virt > 0) THEN
    5162             : 
    5163             :          ! calculate average GW correction for virtual orbitals
    5164             :          eigen_diff = 0.0_dp
    5165        1106 :          DO n_level_gw = 1, gw_corr_lev_virt
    5166         970 :             n_level_gw_ref = n_level_gw + homo
    5167        1106 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5168             :          END DO
    5169         136 :          eigen_diff = eigen_diff/gw_corr_lev_virt
    5170             : 
    5171             :          ! correct the eigenvalues of the virtual orbitals which have not been corrected by GW
    5172        1750 :          DO n_level_gw = homo + gw_corr_lev_virt + 1, nmo
    5173        1750 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5174             :          END DO
    5175             : 
    5176             :       END IF
    5177             : 
    5178         140 :    END SUBROUTINE shift_unshifted_levels
    5179             : 
    5180             : ! **************************************************************************************************
    5181             : !> \brief Calculate the matrix mat_N_gw containing the second derivatives
    5182             : !>        with respect to the fitting parameters. The second derivatives are
    5183             : !>        calculated numerically by finite differences.
    5184             : !> \param N_ij matrix element
    5185             : !> \param Lambda fitting parameters
    5186             : !> \param Sigma_c ...
    5187             : !> \param vec_omega_fit_gw ...
    5188             : !> \param i ...
    5189             : !> \param j ...
    5190             : !> \param num_poles ...
    5191             : !> \param num_fit_points ...
    5192             : !> \param n_level_gw ...
    5193             : !> \param h  ...
    5194             : ! **************************************************************************************************
    5195       61380 :    SUBROUTINE calc_mat_N(N_ij, Lambda, Sigma_c, vec_omega_fit_gw, i, j, &
    5196             :                          num_poles, num_fit_points, n_level_gw, h)
    5197             :       REAL(KIND=dp), INTENT(OUT)                         :: N_ij
    5198             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5199             :          INTENT(IN)                                      :: Lambda
    5200             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5201             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5202             :          INTENT(IN)                                      :: vec_omega_fit_gw
    5203             :       INTEGER, INTENT(IN)                                :: i, j, num_poles, num_fit_points, &
    5204             :                                                             n_level_gw
    5205             :       REAL(KIND=dp), INTENT(IN)                          :: h
    5206             : 
    5207             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'calc_mat_N'
    5208             : 
    5209             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: Lambda_tmp
    5210             :       INTEGER                                            :: handle, num_var
    5211             :       REAL(KIND=dp)                                      :: chi2, chi2_sum
    5212             : 
    5213       61380 :       CALL timeset(routineN, handle)
    5214             : 
    5215       61380 :       num_var = 2*num_poles + 1
    5216      184140 :       ALLOCATE (Lambda_tmp(num_var))
    5217      368280 :       Lambda_tmp = z_zero
    5218       61380 :       chi2_sum = 0.0_dp
    5219             : 
    5220             :       !test
    5221      368280 :       Lambda_tmp(:) = Lambda(:)
    5222             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5223       61380 :                      num_fit_points, n_level_gw)
    5224             : 
    5225             :       ! Fitting parameters with offset h
    5226      368280 :       Lambda_tmp(:) = Lambda(:)
    5227       61380 :       IF (MODULO(i, 2) == 0) THEN
    5228       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + h*z_one
    5229             :       ELSE
    5230       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + h*gaussi
    5231             :       END IF
    5232       61380 :       IF (MODULO(j, 2) == 0) THEN
    5233       30690 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) + h*z_one
    5234             :       ELSE
    5235       30690 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) + h*gaussi
    5236             :       END IF
    5237             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5238       61380 :                      num_fit_points, n_level_gw)
    5239       61380 :       chi2_sum = chi2_sum + chi2
    5240             : 
    5241       61380 :       IF (MODULO(i, 2) == 0) THEN
    5242       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) - 2.0_dp*h*z_one
    5243             :       ELSE
    5244       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) - 2.0_dp*h*gaussi
    5245             :       END IF
    5246             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5247       61380 :                      num_fit_points, n_level_gw)
    5248       61380 :       chi2_sum = chi2_sum - chi2
    5249             : 
    5250       61380 :       IF (MODULO(j, 2) == 0) THEN
    5251       30690 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) - 2.0_dp*h*z_one
    5252             :       ELSE
    5253       30690 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) - 2.0_dp*h*gaussi
    5254             :       END IF
    5255             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5256       61380 :                      num_fit_points, n_level_gw)
    5257       61380 :       chi2_sum = chi2_sum + chi2
    5258             : 
    5259       61380 :       IF (MODULO(i, 2) == 0) THEN
    5260       30690 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + 2.0_dp*h*z_one
    5261             :       ELSE
    5262       30690 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + 2.0_dp*h*gaussi
    5263             :       END IF
    5264             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5265       61380 :                      num_fit_points, n_level_gw)
    5266       61380 :       chi2_sum = chi2_sum - chi2
    5267             : 
    5268             :       ! Second derivative with symmetric difference quotient
    5269       61380 :       N_ij = 1.0_dp/2.0_dp*chi2_sum/(4.0_dp*h*h)
    5270             : 
    5271       61380 :       DEALLOCATE (Lambda_tmp)
    5272             : 
    5273       61380 :       CALL timestop(handle)
    5274             : 
    5275       61380 :    END SUBROUTINE calc_mat_N
    5276             : 
    5277             : ! **************************************************************************************************
    5278             : !> \brief Calculate chi2
    5279             : !> \param chi2 ...
    5280             : !> \param Lambda fitting parameters
    5281             : !> \param Sigma_c ...
    5282             : !> \param vec_omega_fit_gw ...
    5283             : !> \param num_poles ...
    5284             : !> \param num_fit_points ...
    5285             : !> \param n_level_gw ...
    5286             : ! **************************************************************************************************
    5287     1378673 :    PURE SUBROUTINE calc_chi2(chi2, Lambda, Sigma_c, vec_omega_fit_gw, num_poles, &
    5288             :                              num_fit_points, n_level_gw)
    5289             :       REAL(KIND=dp), INTENT(OUT)                         :: chi2
    5290             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: Lambda
    5291             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5292             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    5293             :       INTEGER, INTENT(IN)                                :: num_poles, num_fit_points, n_level_gw
    5294             : 
    5295             :       COMPLEX(KIND=dp)                                   :: func_val
    5296             :       INTEGER                                            :: iii, jjj, kkk
    5297             : 
    5298     1378673 :       chi2 = 0.0_dp
    5299    15875699 :       DO kkk = 1, num_fit_points
    5300    14497026 :          func_val = Lambda(1)
    5301    43491078 :          DO iii = 1, num_poles
    5302    28994052 :             jjj = iii*2
    5303             :             ! calculate value of the fit function
    5304    43491078 :             func_val = func_val + Lambda(jjj)/(gaussi*vec_omega_fit_gw(kkk) - Lambda(jjj + 1))
    5305             :          END DO
    5306    15875699 :          chi2 = chi2 + (ABS(Sigma_c(n_level_gw, kkk) - func_val))**2
    5307             :       END DO
    5308             : 
    5309     1378673 :    END SUBROUTINE calc_chi2
    5310             : 
    5311             : ! **************************************************************************************************
    5312             : !> \brief ...
    5313             : !> \param num_integ_points ...
    5314             : !> \param nmo ...
    5315             : !> \param tau_tj ...
    5316             : !> \param tj ...
    5317             : !> \param matrix_s ...
    5318             : !> \param fm_mo_coeff_occ ...
    5319             : !> \param fm_mo_coeff_virt ...
    5320             : !> \param fm_mo_coeff_occ_scaled ...
    5321             : !> \param fm_mo_coeff_virt_scaled ...
    5322             : !> \param fm_scaled_dm_occ_tau ...
    5323             : !> \param fm_scaled_dm_virt_tau ...
    5324             : !> \param Eigenval ...
    5325             : !> \param eps_filter ...
    5326             : !> \param e_fermi ...
    5327             : !> \param fm_mat_W ...
    5328             : !> \param gw_corr_lev_tot ...
    5329             : !> \param gw_corr_lev_occ ...
    5330             : !> \param gw_corr_lev_virt ...
    5331             : !> \param homo ...
    5332             : !> \param count_ev_sc_GW ...
    5333             : !> \param count_sc_GW0 ...
    5334             : !> \param t_3c_overl_int_ao_mo ...
    5335             : !> \param t_3c_O_mo_compressed ...
    5336             : !> \param t_3c_O_mo_ind ...
    5337             : !> \param t_3c_overl_int_gw_RI ...
    5338             : !> \param t_3c_overl_int_gw_AO ...
    5339             : !> \param mat_W ...
    5340             : !> \param mat_MinvVMinv ...
    5341             : !> \param mat_dm ...
    5342             : !> \param weights_cos_tf_t_to_w ...
    5343             : !> \param weights_sin_tf_t_to_w ...
    5344             : !> \param vec_Sigma_c_gw ...
    5345             : !> \param do_periodic ...
    5346             : !> \param num_points_corr ...
    5347             : !> \param delta_corr ...
    5348             : !> \param qs_env ...
    5349             : !> \param para_env ...
    5350             : !> \param para_env_RPA ...
    5351             : !> \param mp2_env ...
    5352             : !> \param matrix_berry_re_mo_mo ...
    5353             : !> \param matrix_berry_im_mo_mo ...
    5354             : !> \param first_cycle_periodic_correction ...
    5355             : !> \param kpoints ...
    5356             : !> \param num_fit_points ...
    5357             : !> \param fm_mo_coeff ...
    5358             : !> \param do_ri_Sigma_x ...
    5359             : !> \param vec_Sigma_x_gw ...
    5360             : !> \param unit_nr ...
    5361             : !> \param ispin ...
    5362             : ! **************************************************************************************************
    5363          56 :    SUBROUTINE compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    5364          56 :                                            matrix_s, fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5365             :                                            fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    5366         112 :                                            fm_scaled_dm_virt_tau, Eigenval, eps_filter, &
    5367          56 :                                            e_fermi, fm_mat_W, &
    5368             :                                            gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5369             :                                            count_ev_sc_GW, count_sc_GW0, &
    5370          56 :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
    5371             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
    5372             :                                            mat_W, mat_MinvVMinv, mat_dm, &
    5373         112 :                                            weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5374             :                                            do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    5375             :                                            mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5376             :                                            first_cycle_periodic_correction, kpoints, num_fit_points, fm_mo_coeff, &
    5377          56 :                                            do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, ispin)
    5378             :       INTEGER, INTENT(IN)                                :: num_integ_points, nmo
    5379             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5380             :          INTENT(IN)                                      :: tau_tj, tj
    5381             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5382             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5383             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    5384             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    5385             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5386             :       REAL(KIND=dp), INTENT(INOUT)                       :: e_fermi
    5387             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5388             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot, gw_corr_lev_occ, &
    5389             :                                                             gw_corr_lev_virt, homo, &
    5390             :                                                             count_ev_sc_GW, count_sc_GW0
    5391             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
    5392             :       TYPE(hfx_compression_type)                         :: t_3c_O_mo_compressed
    5393             :       INTEGER, DIMENSION(:, :)                           :: t_3c_O_mo_ind
    5394             :       TYPE(dbt_type)                                     :: t_3c_overl_int_gw_RI, &
    5395             :                                                             t_3c_overl_int_gw_AO
    5396             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5397             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv, mat_dm
    5398             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5399             :                                                             weights_sin_tf_t_to_w
    5400             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), INTENT(OUT)  :: vec_Sigma_c_gw
    5401             :       LOGICAL, INTENT(IN)                                :: do_periodic
    5402             :       INTEGER, INTENT(IN)                                :: num_points_corr
    5403             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5404             :          INTENT(INOUT)                                   :: delta_corr
    5405             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5406             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    5407             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5408             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    5409             :                                                             matrix_berry_im_mo_mo
    5410             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    5411             :       TYPE(kpoint_type), POINTER                         :: kpoints
    5412             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5413             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5414             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5415             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
    5416             :       INTEGER, INTENT(IN)                                :: unit_nr, ispin
    5417             : 
    5418             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw'
    5419             : 
    5420          56 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: delta_corr_omega
    5421             :       INTEGER :: gw_lev_end, gw_lev_start, handle, handle3, i, iblk_mo, iquad, jquad, mo_end, &
    5422             :          mo_start, n_level_gw, n_level_gw_ref, nblk_mo, unit_nr_prv
    5423          56 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_range_mo, dist1, dist2, mo_bsizes, &
    5424         112 :                                                             mo_offsets, sizes_AO, sizes_RI
    5425             :       INTEGER, DIMENSION(2)                              :: mo_bounds, pdims_2d
    5426             :       LOGICAL                                            :: memory_info
    5427             :       REAL(KIND=dp)                                      :: ext_scaling, omega, omega_i, omega_sign, &
    5428             :                                                             sign_occ_virt, t_i_Clenshaw, tau, &
    5429             :                                                             weight_cos, weight_i, weight_sin
    5430          56 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: vec_Sigma_c_gw_cos_omega, &
    5431          56 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5432          56 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5433             :       TYPE(dbcsr_type), TARGET                           :: mat_greens_fct_occ, mat_greens_fct_virt
    5434         168 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5435        1064 :       TYPE(dbt_type)                                     :: t_3c_ctr_AO, t_3c_ctr_RI, t_AO_tmp, &
    5436         728 :                                                             t_dm, t_greens_fct_occ, &
    5437         728 :                                                             t_greens_fct_virt, t_RI_tmp, &
    5438         728 :                                                             t_SinvVSinv, t_W
    5439             : 
    5440          56 :       CALL timeset(routineN, handle)
    5441             : 
    5442             :       CALL decompress_tensor(t_3c_overl_int_ao_mo, t_3c_O_mo_ind, t_3c_O_mo_compressed, &
    5443          56 :                              mp2_env%ri_rpa_im_time%eps_compress)
    5444             : 
    5445          56 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_RI)
    5446          56 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_AO, order=[2, 1, 3], move_data=.TRUE.)
    5447             : 
    5448          56 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5449          56 :       IF (memory_info) THEN
    5450           0 :          unit_nr_prv = unit_nr
    5451             :       ELSE
    5452          56 :          unit_nr_prv = 0
    5453             :       END IF
    5454             : 
    5455          56 :       mo_start = homo - gw_corr_lev_occ + 1
    5456          56 :       mo_end = homo + gw_corr_lev_virt
    5457          56 :       CPASSERT(mo_end - mo_start + 1 == gw_corr_lev_tot)
    5458             : 
    5459        4378 :       vec_Sigma_c_gw = z_zero
    5460         224 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points))
    5461        8096 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5462         224 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points))
    5463        8096 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5464         224 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points))
    5465        8096 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5466         224 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points))
    5467        8096 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5468             : 
    5469         224 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points))
    5470        8096 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5471         224 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points))
    5472        8096 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5473             : 
    5474         224 :       ALLOCATE (delta_corr_omega(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt, num_integ_points))
    5475        8096 :       delta_corr_omega(:, :) = z_zero
    5476             : 
    5477             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5478             :                         template=matrix_s(1)%matrix, &
    5479          56 :                         matrix_type=dbcsr_type_no_symmetry)
    5480             : 
    5481             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5482             :                         template=matrix_s(1)%matrix, &
    5483          56 :                         matrix_type=dbcsr_type_no_symmetry)
    5484             : 
    5485          56 :       e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    5486             : 
    5487          56 :       nblk_mo = dbt_nblks_total(t_3c_overl_int_gw_AO, 3)
    5488         168 :       ALLOCATE (mo_offsets(nblk_mo))
    5489         168 :       ALLOCATE (mo_bsizes(nblk_mo))
    5490         168 :       ALLOCATE (batch_range_mo(nblk_mo - 1))
    5491          56 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_offset_3=mo_offsets, blk_size_3=mo_bsizes)
    5492             : 
    5493          56 :       pdims_2d = 0
    5494          56 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5495         168 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_overl_int_gw_RI, 1)))
    5496          56 :       CALL dbt_get_info(t_3c_overl_int_gw_RI, blk_size_1=sizes_RI)
    5497             : 
    5498             :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5499             : 
    5500          56 :       DEALLOCATE (dist1, dist2)
    5501             : 
    5502          56 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5503             : 
    5504          56 :       CALL dbt_create(t_3c_overl_int_gw_RI, t_3c_ctr_RI)
    5505          56 :       CALL dbt_create(t_3c_overl_int_gw_AO, t_3c_ctr_AO)
    5506             : 
    5507         168 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_overl_int_gw_AO, 1)))
    5508          56 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_size_1=sizes_AO)
    5509             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5510          56 :       DEALLOCATE (dist1, dist2)
    5511             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5512          56 :       DEALLOCATE (dist1, dist2)
    5513             : 
    5514         696 :       DO jquad = 1, num_integ_points
    5515             : 
    5516             :          CALL compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, &
    5517             :                                            fm_mo_coeff_occ, fm_mo_coeff_virt, &
    5518             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    5519             :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, &
    5520         640 :                                            nmo, eps_filter, e_fermi, tau_tj(jquad), para_env)
    5521             : 
    5522         640 :          CALL dbcsr_set(mat_W, 0.0_dp)
    5523         640 :          CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    5524             : 
    5525         640 :          IF (jquad == 1) CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5526             : 
    5527         640 :          CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    5528         640 :          CALL dbt_copy(t_RI_tmp, t_W)
    5529         640 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    5530         640 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    5531         640 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    5532         640 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    5533             : 
    5534        3200 :          batch_range_mo(:) = [(i, i=2, nblk_mo)]
    5535         640 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5536         640 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5537         640 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5538         640 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5539         640 :          CALL dbt_batched_contract_init(t_W)
    5540         640 :          CALL dbt_batched_contract_init(t_greens_fct_occ)
    5541         640 :          CALL dbt_batched_contract_init(t_greens_fct_virt)
    5542             : 
    5543             :          ! in iteration over MO blocks skip first and last block because they correspond to the MO s
    5544             :          ! outside of the GW range of required MOs
    5545        1280 :          DO iblk_mo = 2, nblk_mo - 1
    5546        1920 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5547             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5548             :                                    t_greens_fct_occ, t_W, [1.0_dp, -1.0_dp], &
    5549             :                                    mo_bounds, unit_nr_prv, &
    5550         640 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5551         640 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_neg_tau(:, jquad), mo_start, mo_bounds, para_env)
    5552             : 
    5553             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5554             :                                    t_greens_fct_virt, t_W, [1.0_dp, 1.0_dp], &
    5555             :                                    mo_bounds, unit_nr_prv, &
    5556         640 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.FALSE.)
    5557             : 
    5558        1280 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_pos_tau(:, jquad), mo_start, mo_bounds, para_env)
    5559             :          END DO
    5560         640 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5561         640 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5562         640 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5563         640 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5564         640 :          CALL dbt_batched_contract_finalize(t_W)
    5565         640 :          CALL dbt_batched_contract_finalize(t_greens_fct_occ)
    5566         640 :          CALL dbt_batched_contract_finalize(t_greens_fct_virt)
    5567             : 
    5568         640 :          CALL dbt_clear(t_3c_ctr_AO)
    5569         640 :          CALL dbt_clear(t_3c_ctr_RI)
    5570             : 
    5571             :          vec_Sigma_c_gw_cos_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) + &
    5572        8040 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5573             : 
    5574             :          vec_Sigma_c_gw_sin_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) - &
    5575        8096 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5576             : 
    5577             :       END DO ! jquad (tau)
    5578          56 :       CALL dbt_destroy(t_W)
    5579             : 
    5580          56 :       CALL dbt_destroy(t_greens_fct_occ)
    5581          56 :       CALL dbt_destroy(t_greens_fct_virt)
    5582             : 
    5583             :       ! Fourier transform from time to frequency
    5584         382 :       DO jquad = 1, num_fit_points
    5585             : 
    5586        6282 :          DO iquad = 1, num_integ_points
    5587             : 
    5588        5900 :             omega = tj(jquad)
    5589        5900 :             tau = tau_tj(iquad)
    5590        5900 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    5591        5900 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    5592             : 
    5593             :             vec_Sigma_c_gw_cos_omega(:, jquad) = vec_Sigma_c_gw_cos_omega(:, jquad) + &
    5594       85140 :                                                  weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad)
    5595             : 
    5596             :             vec_Sigma_c_gw_sin_omega(:, jquad) = vec_Sigma_c_gw_sin_omega(:, jquad) + &
    5597       85466 :                                                  weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad)
    5598             : 
    5599             :          END DO
    5600             : 
    5601             :       END DO
    5602             : 
    5603             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    5604             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    5605        2776 :       vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :) = -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :)
    5606             : 
    5607             :       vec_Sigma_c_gw(:, 1:num_fit_points, 1) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points) + &
    5608        4322 :                                                gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points)
    5609             : 
    5610          56 :       CALL dbcsr_release(mat_greens_fct_occ)
    5611          56 :       CALL dbcsr_release(mat_greens_fct_virt)
    5612             : 
    5613          60 :       IF (do_ri_Sigma_x .AND. count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    5614             : 
    5615           2 :          CALL timeset(routineN//"_RI_HFX_operation_1", handle3)
    5616             : 
    5617             :          ! get density matrix
    5618             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    5619             :                             matrix_a=fm_mo_coeff_occ, matrix_b=fm_mo_coeff_occ, beta=0.0_dp, &
    5620           2 :                             matrix_c=fm_scaled_dm_occ_tau)
    5621             : 
    5622           2 :          CALL timestop(handle3)
    5623             : 
    5624           2 :          CALL timeset(routineN//"_RI_HFX_operation_2", handle3)
    5625             : 
    5626             :          CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    5627             :                                mat_dm%matrix, &
    5628           2 :                                keep_sparsity=.FALSE.)
    5629             : 
    5630           2 :          CALL timestop(handle3)
    5631             : 
    5632             :          CALL create_2c_tensor(t_dm, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5633           2 :          DEALLOCATE (dist1, dist2)
    5634             : 
    5635           2 :          CALL dbt_copy_matrix_to_tensor(mat_dm%matrix, t_AO_tmp)
    5636           2 :          CALL dbt_copy(t_AO_tmp, t_dm)
    5637             : 
    5638             :          CALL create_2c_tensor(t_SinvVSinv, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5639           2 :          DEALLOCATE (dist1, dist2)
    5640             : 
    5641           2 :          CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    5642           2 :          CALL dbt_copy(t_RI_tmp, t_SinvVSinv)
    5643             : 
    5644           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5645           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5646           2 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5647           2 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5648           2 :          CALL dbt_batched_contract_init(t_dm)
    5649           2 :          CALL dbt_batched_contract_init(t_SinvVSinv)
    5650             : 
    5651           4 :          DO iblk_mo = 2, nblk_mo - 1
    5652           6 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5653             : 
    5654             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5655             :                                    t_dm, t_SinvVSinv, [1.0_dp, -1.0_dp], &
    5656             :                                    mo_bounds, unit_nr_prv, &
    5657           2 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5658             : 
    5659           4 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_x_gw(mo_start:mo_end, 1), mo_start, mo_bounds, para_env)
    5660             :          END DO
    5661           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5662           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5663           2 :          CALL dbt_batched_contract_finalize(t_dm)
    5664           2 :          CALL dbt_batched_contract_finalize(t_SinvVSinv)
    5665           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5666           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5667             : 
    5668           2 :          CALL dbt_destroy(t_dm)
    5669           2 :          CALL dbt_destroy(t_SinvVSinv)
    5670             : 
    5671             :          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) = &
    5672             :             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) + &
    5673          48 :             vec_Sigma_x_gw(:, 1)
    5674             : 
    5675             :       END IF
    5676             : 
    5677          56 :       CALL dbt_pgrid_destroy(pgrid_2d)
    5678             : 
    5679          56 :       CALL dbt_destroy(t_3c_ctr_RI)
    5680          56 :       CALL dbt_destroy(t_3c_ctr_AO)
    5681          56 :       CALL dbt_destroy(t_AO_tmp)
    5682          56 :       CALL dbt_destroy(t_RI_tmp)
    5683             : 
    5684             :       ! compute and add the periodic correction
    5685          56 :       IF (do_periodic) THEN
    5686             : 
    5687           2 :          ext_scaling = 0.2_dp
    5688             : 
    5689             :          ! loop over omega' (integration)
    5690          12 :          DO iquad = 1, num_points_corr
    5691             : 
    5692             :             ! use the Clenshaw-grid
    5693          10 :             t_i_Clenshaw = iquad*pi/(2.0_dp*num_points_corr)
    5694          10 :             omega_i = ext_scaling/TAN(t_i_Clenshaw)
    5695             : 
    5696          10 :             IF (iquad < num_points_corr) THEN
    5697           8 :                weight_i = ext_scaling*pi/(num_points_corr*SIN(t_i_Clenshaw)**2)
    5698             :             ELSE
    5699           2 :                weight_i = ext_scaling*pi/(2.0_dp*num_points_corr*SIN(t_i_Clenshaw)**2)
    5700             :             END IF
    5701             : 
    5702             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
    5703             :                                           mp2_env%ri_g0w0%kp_grid, homo, nmo, gw_corr_lev_occ, &
    5704             :                                           gw_corr_lev_virt, omega_i, fm_mo_coeff, Eigenval, &
    5705             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5706             :                                           first_cycle_periodic_correction, kpoints, &
    5707             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
    5708             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
    5709             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
    5710          10 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
    5711             : 
    5712          92 :             DO n_level_gw = 1, gw_corr_lev_tot
    5713             : 
    5714          80 :                n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5715             : 
    5716          80 :                IF (n_level_gw <= gw_corr_lev_occ) THEN
    5717             :                   sign_occ_virt = -1.0_dp
    5718             :                ELSE
    5719          40 :                   sign_occ_virt = 1.0_dp
    5720             :                END IF
    5721             : 
    5722         890 :                DO jquad = 1, num_integ_points
    5723             : 
    5724         800 :                   omega_sign = tj(jquad)*sign_occ_virt
    5725             : 
    5726             :                   delta_corr_omega(n_level_gw_ref, jquad) = &
    5727             :                      delta_corr_omega(n_level_gw_ref, jquad) - &
    5728             :                      0.5_dp/pi*weight_i/2.0_dp*delta_corr(n_level_gw_ref)* &
    5729             :                      (1.0_dp/(gaussi*(omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)) + &
    5730         880 :                       1.0_dp/(gaussi*(-omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)))
    5731             : 
    5732             :                END DO
    5733             : 
    5734             :             END DO
    5735             : 
    5736             :          END DO
    5737             : 
    5738           2 :          gw_lev_start = 1 + homo - gw_corr_lev_occ
    5739           2 :          gw_lev_end = homo + gw_corr_lev_virt
    5740             : 
    5741             :          ! add the periodic correction
    5742             :          vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) = vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) + &
    5743          74 :                                                    delta_corr_omega(gw_lev_start:gw_lev_end, 1:num_fit_points)
    5744             : 
    5745             :       END IF
    5746             : 
    5747          56 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    5748          56 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    5749          56 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    5750          56 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    5751          56 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    5752          56 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    5753          56 :       DEALLOCATE (delta_corr_omega)
    5754             : 
    5755          56 :       CALL timestop(handle)
    5756             : 
    5757         336 :    END SUBROUTINE compute_self_energy_cubic_gw
    5758             : 
    5759             : ! **************************************************************************************************
    5760             : !> \brief ...
    5761             : !> \param num_integ_points ...
    5762             : !> \param tau_tj ...
    5763             : !> \param tj ...
    5764             : !> \param matrix_s ...
    5765             : !> \param Eigenval ...
    5766             : !> \param e_fermi ...
    5767             : !> \param fm_mat_W ...
    5768             : !> \param gw_corr_lev_tot ...
    5769             : !> \param gw_corr_lev_occ ...
    5770             : !> \param gw_corr_lev_virt ...
    5771             : !> \param homo ...
    5772             : !> \param count_ev_sc_GW ...
    5773             : !> \param count_sc_GW0 ...
    5774             : !> \param t_3c_O ...
    5775             : !> \param t_3c_M ...
    5776             : !> \param t_3c_O_compressed ...
    5777             : !> \param t_3c_O_ind ...
    5778             : !> \param mat_W ...
    5779             : !> \param mat_MinvVMinv ...
    5780             : !> \param weights_cos_tf_t_to_w ...
    5781             : !> \param weights_sin_tf_t_to_w ...
    5782             : !> \param vec_Sigma_c_gw ...
    5783             : !> \param qs_env ...
    5784             : !> \param para_env ...
    5785             : !> \param mp2_env ...
    5786             : !> \param num_fit_points ...
    5787             : !> \param fm_mo_coeff ...
    5788             : !> \param do_ri_Sigma_x ...
    5789             : !> \param vec_Sigma_x_gw ...
    5790             : !> \param unit_nr ...
    5791             : !> \param nspins ...
    5792             : !> \param starts_array_mc ...
    5793             : !> \param ends_array_mc ...
    5794             : !> \param eps_filter ...
    5795             : ! **************************************************************************************************
    5796          18 :    SUBROUTINE compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    5797          18 :                                                    matrix_s, Eigenval, e_fermi, fm_mat_W, &
    5798          18 :                                                    gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5799             :                                                    count_ev_sc_GW, count_sc_GW0, &
    5800             :                                                    t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    5801             :                                                    mat_W, mat_MinvVMinv, &
    5802          36 :                                                    weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5803             :                                                    qs_env, para_env, &
    5804             :                                                    mp2_env, num_fit_points, fm_mo_coeff, &
    5805          18 :                                                    do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, nspins, &
    5806          18 :                                                    starts_array_mc, ends_array_mc, eps_filter)
    5807             : 
    5808             :       INTEGER, INTENT(IN)                                :: num_integ_points
    5809             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5810             :          INTENT(IN)                                      :: tau_tj, tj
    5811             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5812             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    5813             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    5814             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5815             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    5816             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    5817             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW, count_sc_GW0
    5818             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    5819             :       TYPE(dbt_type)                                     :: t_3c_M
    5820             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    5821             :          DIMENSION(:, :, :)                              :: t_3c_O_compressed
    5822             :       TYPE(block_ind_type), ALLOCATABLE, &
    5823             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    5824             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5825             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv
    5826             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5827             :                                                             weights_sin_tf_t_to_w
    5828             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    5829             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    5830             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5831             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    5832             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5833             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5834             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5835             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5836             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: vec_Sigma_x_gw
    5837             :       INTEGER, INTENT(IN)                                :: unit_nr, nspins
    5838             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    5839             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5840             : 
    5841             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw_kpoints'
    5842             : 
    5843             :       INTEGER                                            :: cut_memory, handle, handle2, i_mem, &
    5844             :                                                             iquad, ispin, j_mem, jquad, &
    5845             :                                                             nkp_self_energy, num_points, &
    5846             :                                                             unit_nr_prv
    5847          36 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist1, dist2, sizes_AO, sizes_RI
    5848             :       INTEGER, DIMENSION(2)                              :: mo_end, mo_start, pdims_2d
    5849             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    5850             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    5851             :       INTEGER, DIMENSION(3)                              :: dims_3c
    5852             :       LOGICAL                                            :: memory_info
    5853             :       REAL(KIND=dp)                                      :: omega, t1, t2, tau, weight_cos, &
    5854             :                                                             weight_sin
    5855          18 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :, :) :: vec_Sigma_c_gw_cos_omega, &
    5856          18 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5857          18 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5858          18 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_p_greens_fct_occ, &
    5859          18 :                                                             mat_p_greens_fct_virt
    5860             :       TYPE(dbcsr_type), TARGET :: mat_greens_fct_occ, mat_greens_fct_virt, mat_mo_coeff, &
    5861             :          mat_self_energy_ao_ao_neg_tau, mat_self_energy_ao_ao_pos_tau
    5862          54 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5863         342 :       TYPE(dbt_type)                                     :: t_3c_M_W_tmp, t_3c_O_all, t_3c_O_W, &
    5864         234 :                                                             t_AO_tmp, t_greens_fct_occ, &
    5865         342 :                                                             t_greens_fct_virt, t_RI_tmp, t_W
    5866             : 
    5867          18 :       CALL timeset(routineN, handle)
    5868             : 
    5869          18 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5870          18 :       IF (memory_info) THEN
    5871           0 :          unit_nr_prv = unit_nr
    5872             :       ELSE
    5873          18 :          unit_nr_prv = 0
    5874             :       END IF
    5875             : 
    5876          18 :       cut_memory = mp2_env%ri_rpa_im_time%cut_memory
    5877             : 
    5878          40 :       DO ispin = 1, nspins
    5879          22 :          mo_start(ispin) = homo(ispin) - gw_corr_lev_occ(ispin) + 1
    5880          22 :          mo_end(ispin) = homo(ispin) + gw_corr_lev_virt(ispin)
    5881          40 :          CPASSERT(mo_end(ispin) - mo_start(ispin) + 1 == gw_corr_lev_tot)
    5882             :       END DO
    5883             : 
    5884          18 :       nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
    5885             : 
    5886        1672 :       vec_Sigma_c_gw = z_zero
    5887         108 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5888        3232 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5889         108 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5890        3232 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5891         108 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5892        3232 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5893         108 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5894        3232 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5895             : 
    5896         108 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5897        3232 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5898         108 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5899        3232 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5900             : 
    5901             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5902             :                         template=matrix_s(1)%matrix, &
    5903          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5904             : 
    5905             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5906             :                         template=matrix_s(1)%matrix, &
    5907          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5908             : 
    5909             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_neg_tau, &
    5910             :                         template=matrix_s(1)%matrix, &
    5911          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5912             : 
    5913             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_pos_tau, &
    5914             :                         template=matrix_s(1)%matrix, &
    5915          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5916             : 
    5917             :       CALL dbcsr_create(matrix=mat_mo_coeff, &
    5918             :                         template=matrix_s(1)%matrix, &
    5919          18 :                         matrix_type=dbcsr_type_no_symmetry)
    5920             : 
    5921          18 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff, keep_sparsity=.FALSE.)
    5922             : 
    5923          40 :       DO ispin = 1, nspins
    5924         870 :          e_fermi(ispin) = 0.5_dp*(MAXVAL(Eigenval(homo, :, ispin)) + MINVAL(Eigenval(homo + 1, :, ispin)))
    5925             :       END DO
    5926             : 
    5927          18 :       pdims_2d = 0
    5928          18 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5929          54 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_O(1, 1), 1)))
    5930          18 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_1=sizes_RI)
    5931             : 
    5932          18 :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5933          18 :       DEALLOCATE (dist1, dist2)
    5934             : 
    5935          18 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5936             : 
    5937          54 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_O(1, 1), 2)))
    5938          18 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_2=sizes_AO)
    5939             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5940             : 
    5941          18 :       DEALLOCATE (dist1, dist2)
    5942             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5943          18 :       DEALLOCATE (dist1, dist2)
    5944             : 
    5945          18 :       CALL dbt_get_info(t_3c_M, nfull_total=dims_3c)
    5946             : 
    5947          18 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_all, name="O (RI AO | AO)")
    5948             : 
    5949             :       ! get full 3c tensor
    5950          82 :       DO i_mem = 1, cut_memory
    5951             :          CALL decompress_tensor(t_3c_O(1, 1), &
    5952             :                                 t_3c_O_ind(1, 1, i_mem)%ind, &
    5953             :                                 t_3c_O_compressed(1, 1, i_mem), &
    5954          64 :                                 mp2_env%ri_rpa_im_time%eps_compress)
    5955          82 :          CALL dbt_copy(t_3c_O(1, 1), t_3c_O_all, summation=.TRUE., move_data=.TRUE.)
    5956             :       END DO
    5957             : 
    5958          18 :       CALL dbt_create(t_3c_M, t_3c_M_W_tmp, name="M W (RI | AO AO)")
    5959          18 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_W, name="M W (RI AO | AO)")
    5960             : 
    5961          18 :       CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5962             : 
    5963          18 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. do_ri_Sigma_x) THEN
    5964          14 :          num_points = num_integ_points + 1
    5965             :       ELSE
    5966           4 :          num_points = num_integ_points
    5967             :       END IF
    5968             : 
    5969         140 :       DO jquad = 1, num_points
    5970             : 
    5971         122 :          t1 = m_walltime()
    5972             : 
    5973         122 :          IF (jquad <= num_integ_points) THEN
    5974         108 :             tau = tau_tj(jquad)
    5975             : 
    5976         108 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    5977          54 :                'GW_INFO| Computing self-energy time point', jquad
    5978             :          ELSE
    5979          14 :             tau = 0.0_dp
    5980             : 
    5981          14 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    5982           7 :                'GW_INFO| Computing exchange self-energy'
    5983             :          END IF
    5984             : 
    5985         122 :          IF (jquad <= num_integ_points) THEN
    5986         108 :             CALL dbcsr_set(mat_W, 0.0_dp)
    5987         108 :             CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    5988         108 :             CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    5989             :          ELSE
    5990          14 :             CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    5991             :          END IF
    5992             : 
    5993         122 :          CALL dbt_copy(t_RI_tmp, t_W)
    5994             : 
    5995         272 :          DO ispin = 1, nspins
    5996             : 
    5997             :             CALL compute_periodic_dm(mat_p_greens_fct_occ, qs_env, &
    5998             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    5999             :                                      remove_occ=.FALSE., remove_virt=.TRUE., &
    6000         282 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6001             : 
    6002             :             CALL compute_periodic_dm(mat_p_greens_fct_virt, qs_env, &
    6003             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    6004             :                                      remove_occ=.TRUE., remove_virt=.FALSE., &
    6005         282 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6006             : 
    6007         150 :             CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6008         150 :             CALL dbcsr_copy(mat_greens_fct_occ, mat_p_greens_fct_occ(jquad, 1)%matrix)
    6009             : 
    6010         150 :             CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6011         150 :             CALL dbcsr_copy(mat_greens_fct_virt, mat_p_greens_fct_virt(jquad, 1)%matrix)
    6012             : 
    6013         150 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    6014         150 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    6015             : 
    6016         150 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    6017         150 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    6018             : 
    6019         150 :             CALL dbcsr_set(mat_self_energy_ao_ao_neg_tau, 0.0_dp)
    6020         150 :             CALL dbcsr_set(mat_self_energy_ao_ao_pos_tau, 0.0_dp)
    6021             : 
    6022         150 :             CALL dbt_copy(t_3c_O_all, t_3c_M)
    6023             : 
    6024         150 :             CALL dbt_batched_contract_init(t_3c_O_W)
    6025             :             !         CALL dbt_batched_contract_init(t_3c_O_G)
    6026             :             !         CALL dbt_batched_contract_init(t_self_energy)
    6027             : 
    6028         666 :             DO i_mem = 1, cut_memory ! memory cut for RI index
    6029             : 
    6030             :                !            CALL dbt_batched_contract_init(t_W)
    6031             :                !            CALL dbt_batched_contract_init(t_3c_M)
    6032             :                !            CALL dbt_batched_contract_init(t_3c_M_W_tmp)
    6033             : 
    6034             :                bounds_RI_i(:, 1) = [qs_env%mp2_env%ri_rpa_im_time%starts_array_mc_RI(i_mem), &
    6035        1548 :                                     qs_env%mp2_env%ri_rpa_im_time%ends_array_mc_RI(i_mem)]
    6036             : 
    6037        2506 :                DO j_mem = 1, cut_memory ! memory cut for ao index
    6038             : 
    6039        5520 :                   bounds_ao_ao_j(:, 1) = [starts_array_mc(j_mem), ends_array_mc(j_mem)]
    6040        5520 :                   bounds_ao_ao_j(:, 2) = [1, dims_3c(3)]
    6041             : 
    6042        1840 :                   CALL timeset("tensor_operation_3c_W", handle2)
    6043             : 
    6044             :                   CALL dbt_contract(1.0_dp, t_W, t_3c_M, 0.0_dp, &
    6045             :                                     t_3c_M_W_tmp, &
    6046             :                                     contract_1=[2], notcontract_1=[1], &
    6047             :                                     contract_2=[1], notcontract_2=[2, 3], &
    6048             :                                     map_1=[1], map_2=[2, 3], &
    6049             :                                     bounds_2=bounds_RI_i, &
    6050             :                                     bounds_3=bounds_ao_ao_j, &
    6051             :                                     filter_eps=eps_filter, &
    6052        1840 :                                     unit_nr=unit_nr_prv)
    6053             : 
    6054        1840 :                   CALL dbt_copy(t_3c_M_W_tmp, t_3c_O_W, order=[1, 2, 3], move_data=.TRUE.)
    6055             : 
    6056        1840 :                   CALL timestop(handle2)
    6057             : 
    6058             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_occ, t_3c_O_W, &
    6059             :                                                mat_self_energy_ao_ao_neg_tau, &
    6060             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6061        1840 :                                                eps_filter, do_occ=.TRUE., do_virt=.FALSE.)
    6062             : 
    6063             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_virt, t_3c_O_W, &
    6064             :                                                mat_self_energy_ao_ao_pos_tau, &
    6065             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6066        4196 :                                                eps_filter, do_occ=.FALSE., do_virt=.TRUE.)
    6067             : 
    6068             :                END DO ! j_mem
    6069             : 
    6070             :                !            CALL dbt_batched_contract_finalize(t_W)
    6071             :                !            CALL dbt_batched_contract_finalize(t_3c_M)
    6072             :                !            CALL dbt_batched_contract_finalize(t_3c_M_W_tmp)
    6073             : 
    6074             :             END DO ! i_mem
    6075             : 
    6076         150 :             CALL dbt_batched_contract_finalize(t_3c_O_W)
    6077             :             !         CALL dbt_batched_contract_finalize(t_3c_O_G)
    6078             :             !         CALL dbt_batched_contract_finalize(t_self_energy)
    6079             : 
    6080         272 :             IF (jquad <= num_integ_points) THEN
    6081             : 
    6082             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin), &
    6083         132 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6084             : 
    6085             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_pos_tau, vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin), &
    6086         132 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6087             : 
    6088             :                vec_Sigma_c_gw_cos_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) + &
    6089        3156 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6090             : 
    6091             :                vec_Sigma_c_gw_sin_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) - &
    6092        3156 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6093             :             ELSE
    6094             : 
    6095             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, &
    6096             :                                             vec_Sigma_x_gw(mo_start(ispin):mo_end(ispin), :, ispin), &
    6097          18 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6098             : 
    6099             :             END IF
    6100             : 
    6101             :          END DO ! spins
    6102             : 
    6103         122 :          t2 = m_walltime()
    6104             : 
    6105         140 :          IF (unit_nr > 0) WRITE (unit_nr, '(T6,A,T56,F25.1)') 'Execution time (s):', t2 - t1
    6106             : 
    6107             :       END DO ! jquad (tau)
    6108             : 
    6109          18 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    6110             : 
    6111          18 :          CALL compute_minus_vxc_kpoints(qs_env)
    6112             : 
    6113          18 :          IF (do_ri_Sigma_x) THEN
    6114          32 :             DO ispin = 1, nspins
    6115             :                mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) = mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) + &
    6116        2672 :                                                                        vec_Sigma_x_gw(:, :, ispin)
    6117             :             END DO
    6118             :          END IF
    6119             : 
    6120             :       END IF
    6121             : 
    6122             :       ! Fourier transform from time to frequency
    6123          70 :       DO jquad = 1, num_fit_points
    6124             : 
    6125         382 :          DO iquad = 1, num_integ_points
    6126             : 
    6127         312 :             omega = tj(jquad)
    6128         312 :             tau = tau_tj(iquad)
    6129         312 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    6130         312 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    6131             : 
    6132             :             vec_Sigma_c_gw_cos_omega(:, jquad, :, :) = vec_Sigma_c_gw_cos_omega(:, jquad, :, :) + &
    6133        9480 :                                                        weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad, :, :)
    6134             : 
    6135             :             vec_Sigma_c_gw_sin_omega(:, jquad, :, :) = vec_Sigma_c_gw_sin_omega(:, jquad, :, :) + &
    6136        9532 :                                                        weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad, :, :)
    6137             : 
    6138             :          END DO
    6139             : 
    6140             :       END DO
    6141             : 
    6142             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    6143             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    6144          40 :       DO ispin = 1, nspins
    6145             :          vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin) = &
    6146        2224 :             -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin)
    6147             :       END DO
    6148             : 
    6149             :       vec_Sigma_c_gw(:, 1:num_fit_points, :, :) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points, :, :) + &
    6150        1672 :                                                   gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points, :, :)
    6151             : 
    6152          18 :       CALL dbt_pgrid_destroy(pgrid_2d)
    6153             : 
    6154          18 :       CALL dbcsr_release(mat_greens_fct_occ)
    6155          18 :       CALL dbcsr_release(mat_greens_fct_virt)
    6156          18 :       CALL dbcsr_release(mat_self_energy_ao_ao_neg_tau)
    6157          18 :       CALL dbcsr_release(mat_self_energy_ao_ao_pos_tau)
    6158          18 :       CALL dbcsr_release(mat_mo_coeff)
    6159             : 
    6160          18 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_occ)
    6161          18 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_virt)
    6162             : 
    6163          18 :       CALL dbt_destroy(t_W)
    6164          18 :       CALL dbt_destroy(t_RI_tmp)
    6165          18 :       CALL dbt_destroy(t_greens_fct_occ)
    6166          18 :       CALL dbt_destroy(t_greens_fct_virt)
    6167          18 :       CALL dbt_destroy(t_AO_tmp)
    6168          18 :       CALL dbt_destroy(t_3c_O_all)
    6169          18 :       CALL dbt_destroy(t_3c_M_W_tmp)
    6170          18 :       CALL dbt_destroy(t_3c_O_W)
    6171             : 
    6172          18 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    6173          18 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    6174          18 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    6175          18 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    6176          18 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    6177          18 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    6178             : 
    6179          18 :       CALL timestop(handle)
    6180             : 
    6181         108 :    END SUBROUTINE compute_self_energy_cubic_gw_kpoints
    6182             : 
    6183             : ! **************************************************************************************************
    6184             : !> \brief ...
    6185             : !> \param qs_env ...
    6186             : ! **************************************************************************************************
    6187          18 :    SUBROUTINE compute_minus_vxc_kpoints(qs_env)
    6188             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6189             : 
    6190             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_minus_vxc_kpoints'
    6191             : 
    6192             :       INTEGER                                            :: handle, ikp, ispin, nkp_self_energy, &
    6193             :                                                             nmo, nspins
    6194             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_Sigma_x_minus_vxc_mo_mo
    6195             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, ks_mat_ao_ao, &
    6196             :                                                             ks_mat_no_xc_ao_ao, vxc_ao_ao, &
    6197             :                                                             vxc_ao_mo, vxc_mo_mo
    6198             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6199             :       TYPE(cp_fm_type)                                   :: fm_dummy, fm_Sigma_x_minus_vxc_mo_mo, &
    6200             :                                                             fm_tmp_im, fm_tmp_re
    6201             :       TYPE(dft_control_type), POINTER                    :: dft_control
    6202             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma, kpoints_Sigma_no_xc
    6203             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6204             : 
    6205          18 :       CALL timeset(routineN, handle)
    6206             : 
    6207          18 :       CALL get_qs_env(qs_env, para_env=para_env, dft_control=dft_control)
    6208             : 
    6209          18 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6210             : 
    6211          18 :       kpoints_Sigma_no_xc => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma_no_xc
    6212             : 
    6213          18 :       nkp_self_energy = kpoints_Sigma%nkp
    6214             : 
    6215          18 :       nspins = dft_control%nspins
    6216             : 
    6217          18 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%wmat(1, 1)%matrix_struct
    6218             : 
    6219          18 :       CALL cp_cfm_create(ks_mat_ao_ao, matrix_struct)
    6220          18 :       CALL cp_cfm_create(ks_mat_no_xc_ao_ao, matrix_struct)
    6221          18 :       CALL cp_cfm_create(vxc_ao_ao, matrix_struct)
    6222          18 :       CALL cp_cfm_create(vxc_ao_mo, matrix_struct)
    6223          18 :       CALL cp_cfm_create(vxc_mo_mo, matrix_struct)
    6224          18 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6225          18 :       CALL cp_fm_create(fm_Sigma_x_minus_vxc_mo_mo, matrix_struct)
    6226          18 :       CALL cp_fm_create(fm_tmp_re, matrix_struct)
    6227          18 :       CALL cp_fm_create(fm_tmp_im, matrix_struct)
    6228             : 
    6229          18 :       CALL cp_cfm_get_info(cfm_mo_coeff, nrow_global=nmo)
    6230          54 :       ALLOCATE (diag_Sigma_x_minus_vxc_mo_mo(nmo))
    6231             : 
    6232          18 :       DEALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw)
    6233             : 
    6234          72 :       ALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(nmo, 2, nkp_self_energy))
    6235             : 
    6236         154 :       DO ikp = 1, nkp_self_energy
    6237             : 
    6238         322 :          DO ispin = 1, nspins
    6239             : 
    6240             :             ASSOCIATE (mos => kpoints_Sigma%kp_env(ikp)%kpoint_env%mos)
    6241         168 :             IF (ASSOCIATED(mos(1, ispin)%mo_coeff)) THEN
    6242         168 :                CALL cp_fm_copy_general(mos(1, ispin)%mo_coeff, fm_tmp_re, para_env)
    6243             :             ELSE
    6244           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6245             :             END IF
    6246         336 :             IF (ASSOCIATED(mos(2, ispin)%mo_coeff)) THEN
    6247         168 :                CALL cp_fm_copy_general(mos(2, ispin)%mo_coeff, fm_tmp_im, para_env)
    6248             :             ELSE
    6249           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6250             :             END IF
    6251             :             END ASSOCIATE
    6252             : 
    6253         168 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, cfm_mo_coeff)
    6254             : 
    6255             :             CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(1, ispin), &
    6256         168 :                               kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(2, ispin), ks_mat_ao_ao)
    6257             :             ASSOCIATE (wmat => kpoints_Sigma_no_xc%kp_env(ikp)%kpoint_env%wmat)
    6258         168 :             IF (ASSOCIATED(wmat(1, ispin)%matrix_struct)) THEN
    6259         168 :                CALL cp_fm_copy_general(wmat(1, ispin), fm_tmp_re, para_env)
    6260             :             ELSE
    6261           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6262             :             END IF
    6263         336 :             IF (ASSOCIATED(wmat(2, ispin)%matrix_struct)) THEN
    6264         168 :                CALL cp_fm_copy_general(wmat(2, ispin), fm_tmp_im, para_env)
    6265             :             ELSE
    6266           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6267             :             END IF
    6268             :             END ASSOCIATE
    6269             : 
    6270         168 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, vxc_ao_ao)
    6271             : 
    6272         168 :             CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, vxc_ao_ao, cfm_mo_coeff, z_zero, vxc_ao_mo)
    6273         168 :             CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, vxc_ao_mo, z_zero, vxc_mo_mo)
    6274             : 
    6275         168 :             CALL cp_cfm_to_fm(vxc_mo_mo, fm_Sigma_x_minus_vxc_mo_mo)
    6276             : 
    6277         168 :             CALL cp_fm_get_diag(fm_Sigma_x_minus_vxc_mo_mo, diag_Sigma_x_minus_vxc_mo_mo)
    6278             : 
    6279        3544 :             qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, ikp) = diag_Sigma_x_minus_vxc_mo_mo(:)
    6280             : 
    6281             :          END DO
    6282             : 
    6283             :       END DO
    6284             : 
    6285          18 :       CALL cp_cfm_release(ks_mat_ao_ao)
    6286          18 :       CALL cp_cfm_release(ks_mat_no_xc_ao_ao)
    6287          18 :       CALL cp_cfm_release(vxc_ao_ao)
    6288          18 :       CALL cp_cfm_release(vxc_ao_mo)
    6289          18 :       CALL cp_cfm_release(vxc_mo_mo)
    6290          18 :       CALL cp_cfm_release(cfm_mo_coeff)
    6291          18 :       CALL cp_fm_release(fm_Sigma_x_minus_vxc_mo_mo)
    6292          18 :       CALL cp_fm_release(fm_tmp_re)
    6293          18 :       CALL cp_fm_release(fm_tmp_im)
    6294             : 
    6295          18 :       DEALLOCATE (diag_Sigma_x_minus_vxc_mo_mo)
    6296             : 
    6297          18 :       CALL timestop(handle)
    6298             : 
    6299          36 :    END SUBROUTINE compute_minus_vxc_kpoints
    6300             : 
    6301             : ! **************************************************************************************************
    6302             : !> \brief ...
    6303             : !> \param qs_env ...
    6304             : !> \param mat_self_energy_ao_ao ...
    6305             : !> \param vec_Sigma ...
    6306             : !> \param homo ...
    6307             : !> \param gw_corr_lev_occ ...
    6308             : !> \param gw_corr_lev_virt ...
    6309             : !> \param ispin ...
    6310             : ! **************************************************************************************************
    6311         282 :    SUBROUTINE trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao, vec_Sigma, &
    6312             :                                       homo, gw_corr_lev_occ, gw_corr_lev_virt, ispin)
    6313             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6314             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6315             :       REAL(KIND=dp), DIMENSION(:, :)                     :: vec_Sigma
    6316             :       INTEGER                                            :: homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    6317             :                                                             ispin
    6318             : 
    6319             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_to_mo_and_kpoints'
    6320             : 
    6321             :       INTEGER                                            :: handle, ikp, nkp_self_energy, nmo, &
    6322             :                                                             periodic(3), size_real_space
    6323             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_self_energy
    6324             :       TYPE(cell_type), POINTER                           :: cell
    6325             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, cfm_self_energy_ao_ao, &
    6326             :                                                             cfm_self_energy_ao_mo, &
    6327             :                                                             cfm_self_energy_mo_mo
    6328             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6329             :       TYPE(cp_fm_type)                                   :: fm_self_energy_mo_mo
    6330         282 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_self_energy_ao_ao_kp_im, &
    6331         282 :          mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_real_space
    6332             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    6333             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6334             : 
    6335         282 :       CALL timeset(routineN, handle)
    6336             : 
    6337         282 :       CALL get_qs_env(qs_env, cell=cell, para_env=para_env)
    6338         282 :       CALL get_cell(cell=cell, periodic=periodic)
    6339             : 
    6340         282 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    6341             : 
    6342         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_real_space, size_real_space, mat_self_energy_ao_ao)
    6343             : 
    6344         282 :       CALL dbcsr_copy(mat_self_energy_ao_ao_real_space(1)%matrix, mat_self_energy_ao_ao)
    6345             : 
    6346         282 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6347             : 
    6348         282 :       CALL get_mat_cell_T_from_mat_gamma(mat_self_energy_ao_ao_real_space, qs_env, kpoints_Sigma, 0, 0)
    6349             : 
    6350         282 :       nkp_self_energy = kpoints_Sigma%nkp
    6351             : 
    6352         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_re, nkp_self_energy, mat_self_energy_ao_ao)
    6353         282 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_im, nkp_self_energy, mat_self_energy_ao_ao)
    6354             : 
    6355             :       CALL real_space_to_kpoint_transform_rpa(mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_kp_im, &
    6356         282 :                                               mat_self_energy_ao_ao_real_space, kpoints_Sigma, 1.0E-50_dp)
    6357             : 
    6358         282 :       CALL dbcsr_get_info(mat_self_energy_ao_ao, nfullrows_total=nmo)
    6359         846 :       ALLOCATE (diag_self_energy(nmo))
    6360             : 
    6361         282 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    6362             : 
    6363         282 :       CALL cp_cfm_create(cfm_self_energy_ao_ao, matrix_struct)
    6364         282 :       CALL cp_cfm_create(cfm_self_energy_ao_mo, matrix_struct)
    6365         282 :       CALL cp_cfm_create(cfm_self_energy_mo_mo, matrix_struct)
    6366         282 :       CALL cp_cfm_set_all(cfm_self_energy_ao_ao, z_zero)
    6367         282 :       CALL cp_cfm_set_all(cfm_self_energy_ao_mo, z_zero)
    6368         282 :       CALL cp_cfm_set_all(cfm_self_energy_mo_mo, z_zero)
    6369             : 
    6370         282 :       CALL cp_fm_create(fm_self_energy_mo_mo, matrix_struct)
    6371         282 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6372             : 
    6373        2434 :       DO ikp = 1, nkp_self_energy
    6374             : 
    6375             :          CALL dbcsr_to_cfm(mat_self_energy_ao_ao_kp_re(ikp)%matrix, &
    6376        2152 :                            mat_self_energy_ao_ao_kp_im(ikp)%matrix, cfm_self_energy_ao_ao)
    6377             : 
    6378             :          CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, ispin)%mo_coeff, &
    6379        2152 :                            kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, ispin)%mo_coeff, cfm_mo_coeff)
    6380             : 
    6381             :          CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_self_energy_ao_ao, cfm_mo_coeff, &
    6382        2152 :                             z_zero, cfm_self_energy_ao_mo)
    6383             : 
    6384             :          CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, cfm_self_energy_ao_mo, &
    6385        2152 :                             z_zero, cfm_self_energy_mo_mo)
    6386             : 
    6387        2152 :          CALL cp_cfm_to_fm(cfm_self_energy_mo_mo, fm_self_energy_mo_mo)
    6388             : 
    6389        2152 :          CALL cp_fm_get_diag(fm_self_energy_mo_mo, diag_self_energy)
    6390             : 
    6391        6738 :          vec_Sigma(:, ikp) = diag_self_energy(homo - gw_corr_lev_occ + 1:homo + gw_corr_lev_virt)
    6392             : 
    6393             :       END DO
    6394             : 
    6395         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_real_space)
    6396         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_re)
    6397         282 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_im)
    6398             : 
    6399         282 :       CALL cp_cfm_release(cfm_self_energy_ao_ao)
    6400         282 :       CALL cp_cfm_release(cfm_self_energy_ao_mo)
    6401         282 :       CALL cp_cfm_release(cfm_self_energy_mo_mo)
    6402         282 :       CALL cp_cfm_release(cfm_mo_coeff)
    6403         282 :       CALL cp_fm_release(fm_self_energy_mo_mo)
    6404             : 
    6405         282 :       DEALLOCATE (diag_self_energy)
    6406             : 
    6407         282 :       CALL timestop(handle)
    6408             : 
    6409         564 :    END SUBROUTINE trafo_to_mo_and_kpoints
    6410             : 
    6411             : ! **************************************************************************************************
    6412             : !> \brief ...
    6413             : !> \param dbcsr_re ...
    6414             : !> \param dbcsr_im ...
    6415             : !> \param cfm_mat ...
    6416             : ! **************************************************************************************************
    6417        2152 :    SUBROUTINE dbcsr_to_cfm(dbcsr_re, dbcsr_im, cfm_mat)
    6418             : 
    6419             :       TYPE(dbcsr_type), POINTER                          :: dbcsr_re, dbcsr_im
    6420             :       TYPE(cp_cfm_type), INTENT(IN)                      :: cfm_mat
    6421             : 
    6422             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'dbcsr_to_cfm'
    6423             : 
    6424             :       INTEGER                                            :: handle
    6425             :       TYPE(cp_fm_type)                                   :: fm_mat_im, fm_mat_re
    6426             : 
    6427        2152 :       CALL timeset(routineN, handle)
    6428             : 
    6429        2152 :       CALL cp_fm_create(fm_mat_re, cfm_mat%matrix_struct)
    6430        2152 :       CALL cp_fm_create(fm_mat_im, cfm_mat%matrix_struct)
    6431        2152 :       CALL cp_fm_set_all(fm_mat_re, 0.0_dp)
    6432        2152 :       CALL cp_fm_set_all(fm_mat_im, 0.0_dp)
    6433             : 
    6434        2152 :       CALL copy_dbcsr_to_fm(dbcsr_re, fm_mat_re)
    6435        2152 :       CALL copy_dbcsr_to_fm(dbcsr_im, fm_mat_im)
    6436             : 
    6437        2152 :       CALL cp_fm_to_cfm(fm_mat_re, fm_mat_im, cfm_mat)
    6438             : 
    6439        2152 :       CALL cp_fm_release(fm_mat_re)
    6440        2152 :       CALL cp_fm_release(fm_mat_im)
    6441             : 
    6442        2152 :       CALL timestop(handle)
    6443             : 
    6444        2152 :    END SUBROUTINE dbcsr_to_cfm
    6445             : 
    6446             : ! **************************************************************************************************
    6447             : !> \brief ...
    6448             : !> \param mat_set ...
    6449             : !> \param mat_size ...
    6450             : !> \param template ...
    6451             : !> \param explicitly_no_symmetry ...
    6452             : ! **************************************************************************************************
    6453         846 :    SUBROUTINE alloc_mat_set(mat_set, mat_size, template, explicitly_no_symmetry)
    6454             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_set
    6455             :       INTEGER, INTENT(IN)                                :: mat_size
    6456             :       TYPE(dbcsr_type), TARGET                           :: template
    6457             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6458             : 
    6459             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set'
    6460             : 
    6461             :       INTEGER                                            :: handle, i_size
    6462             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6463             : 
    6464         846 :       CALL timeset(routineN, handle)
    6465             : 
    6466         846 :       my_explicitly_no_symmetry = .FALSE.
    6467         846 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6468             : 
    6469         846 :       NULLIFY (mat_set)
    6470         846 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size)
    6471        7688 :       DO i_size = 1, mat_size
    6472        6842 :          ALLOCATE (mat_set(i_size)%matrix)
    6473        6842 :          IF (my_explicitly_no_symmetry) THEN
    6474             :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template, &
    6475           0 :                               matrix_type=dbcsr_type_no_symmetry)
    6476             :          ELSE
    6477        6842 :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template)
    6478             :          END IF
    6479        6842 :          CALL dbcsr_copy(mat_set(i_size)%matrix, template)
    6480        7688 :          CALL dbcsr_set(mat_set(i_size)%matrix, 0.0_dp)
    6481             :       END DO
    6482             : 
    6483         846 :       CALL timestop(handle)
    6484             : 
    6485         846 :    END SUBROUTINE alloc_mat_set
    6486             : 
    6487             : ! **************************************************************************************************
    6488             : !> \brief ...
    6489             : !> \param mat_set ...
    6490             : !> \param mat_size_1 ...
    6491             : !> \param mat_size_2 ...
    6492             : !> \param template ...
    6493             : !> \param explicitly_no_symmetry ...
    6494             : ! **************************************************************************************************
    6495           4 :    SUBROUTINE alloc_mat_set_2d(mat_set, mat_size_1, mat_size_2, template, explicitly_no_symmetry)
    6496             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_set
    6497             :       INTEGER, INTENT(IN)                                :: mat_size_1, mat_size_2
    6498             :       TYPE(dbcsr_type), TARGET                           :: template
    6499             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6500             : 
    6501             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set_2d'
    6502             : 
    6503             :       INTEGER                                            :: handle, i_size, j_size
    6504             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6505             : 
    6506           4 :       CALL timeset(routineN, handle)
    6507             : 
    6508           4 :       my_explicitly_no_symmetry = .FALSE.
    6509           4 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6510             : 
    6511           4 :       NULLIFY (mat_set)
    6512           4 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size_1, mat_size_2)
    6513          16 :       DO i_size = 1, mat_size_1
    6514         124 :          DO j_size = 1, mat_size_2
    6515         108 :             ALLOCATE (mat_set(i_size, j_size)%matrix)
    6516         108 :             IF (my_explicitly_no_symmetry) THEN
    6517             :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template, &
    6518         108 :                                  matrix_type=dbcsr_type_no_symmetry)
    6519             :             ELSE
    6520           0 :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template)
    6521             :             END IF
    6522         108 :             CALL dbcsr_copy(mat_set(i_size, j_size)%matrix, template)
    6523         120 :             CALL dbcsr_set(mat_set(i_size, j_size)%matrix, 0.0_dp)
    6524             :          END DO
    6525             :       END DO
    6526             : 
    6527           4 :       CALL timestop(handle)
    6528             : 
    6529           4 :    END SUBROUTINE alloc_mat_set_2d
    6530             : 
    6531             : ! **************************************************************************************************
    6532             : !> \brief ...
    6533             : !> \param t_3c_O_all ...
    6534             : !> \param t_greens_fct ...
    6535             : !> \param t_3c_O_W ...
    6536             : !> \param mat_self_energy_ao_ao ...
    6537             : !> \param bounds_ao_ao_j ...
    6538             : !> \param bounds_RI_i ...
    6539             : !> \param unit_nr ...
    6540             : !> \param eps_filter ...
    6541             : !> \param do_occ ...
    6542             : !> \param do_virt ...
    6543             : ! **************************************************************************************************
    6544        3680 :    SUBROUTINE contract_to_self_energy(t_3c_O_all, t_greens_fct, t_3c_O_W, &
    6545             :                                       mat_self_energy_ao_ao, bounds_ao_ao_j, bounds_RI_i, &
    6546             :                                       unit_nr, eps_filter, do_occ, do_virt)
    6547             : 
    6548             :       TYPE(dbt_type)                                     :: t_3c_O_all, t_greens_fct, t_3c_O_W
    6549             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6550             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    6551             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    6552             :       INTEGER                                            :: unit_nr
    6553             :       REAL(KIND=dp)                                      :: eps_filter
    6554             :       LOGICAL                                            :: do_occ, do_virt
    6555             : 
    6556             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'contract_to_self_energy'
    6557             : 
    6558             :       INTEGER                                            :: handle
    6559             :       INTEGER, DIMENSION(2, 1)                           :: bounds_ao_j
    6560             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_all_RI_i, bounds_RI_i_ao_j
    6561             :       REAL(KIND=dp)                                      :: sign_self_energy
    6562       92000 :       TYPE(dbt_type)                                     :: t_3c_O_G, t_3c_O_G_tmp, t_self_energy, &
    6563       33120 :                                                             t_self_energy_tmp
    6564             : 
    6565        3680 :       CALL timeset(routineN, handle)
    6566             : 
    6567        3680 :       CPASSERT(do_occ .EQV. (.NOT. do_virt))
    6568             : 
    6569        3680 :       CALL dbt_create(t_3c_O_all, t_3c_O_G, name="M occ (RI AO | AO)")
    6570        3680 :       CALL dbt_create(t_3c_O_all, t_3c_O_G_tmp, name="M occ (RI AO | AO)")
    6571        3680 :       CALL dbt_create(t_greens_fct, t_self_energy, name="(AO|AO)")
    6572        3680 :       CALL dbt_create(mat_self_energy_ao_ao, t_self_energy_tmp)
    6573             : 
    6574       11040 :       bounds_ao_j(:, 1) = bounds_ao_ao_j(:, 1)
    6575       11040 :       bounds_ao_all_RI_i(:, 1) = bounds_RI_i(:, 1)
    6576       11040 :       bounds_ao_all_RI_i(:, 2) = bounds_ao_ao_j(:, 2)
    6577             : 
    6578             :       CALL dbt_contract(1.0_dp, t_greens_fct, t_3c_O_all, 0.0_dp, &
    6579             :                         t_3c_O_G_tmp, &
    6580             :                         contract_1=[2], notcontract_1=[1], &
    6581             :                         contract_2=[3], notcontract_2=[1, 2], &
    6582             :                         map_1=[3], map_2=[1, 2], &
    6583             :                         bounds_2=bounds_ao_j, &
    6584             :                         bounds_3=bounds_ao_all_RI_i, &
    6585             :                         filter_eps=eps_filter, &
    6586        3680 :                         unit_nr=unit_nr)
    6587             : 
    6588        3680 :       CALL dbt_copy(t_3c_O_G_tmp, t_3c_O_G, order=[1, 3, 2], move_data=.TRUE.)
    6589             : 
    6590        3680 :       IF (do_occ) sign_self_energy = -1.0_dp
    6591        3680 :       IF (do_virt) sign_self_energy = 1.0_dp
    6592             : 
    6593       11040 :       bounds_RI_i_ao_j(:, 1) = bounds_RI_i(:, 1)
    6594       11040 :       bounds_RI_i_ao_j(:, 2) = bounds_ao_ao_j(:, 1)
    6595             : 
    6596             :       CALL dbt_contract(sign_self_energy, t_3c_O_W, t_3c_O_G, 0.0_dp, &
    6597             :                         t_self_energy, &
    6598             :                         contract_1=[1, 2], notcontract_1=[3], &
    6599             :                         contract_2=[1, 2], notcontract_2=[3], &
    6600             :                         map_1=[1], map_2=[2], &
    6601             :                         bounds_1=bounds_RI_i_ao_j, &
    6602             :                         filter_eps=eps_filter, &
    6603        3680 :                         unit_nr=unit_nr)
    6604             : 
    6605        3680 :       CALL dbt_copy(t_self_energy, t_self_energy_tmp)
    6606        3680 :       CALL dbt_clear(t_self_energy)
    6607             : 
    6608        3680 :       CALL dbt_copy_tensor_to_matrix(t_self_energy_tmp, mat_self_energy_ao_ao, summation=.TRUE.)
    6609             : 
    6610        3680 :       CALL dbt_destroy(t_3c_O_G)
    6611        3680 :       CALL dbt_destroy(t_3c_O_G_tmp)
    6612        3680 :       CALL dbt_destroy(t_self_energy)
    6613        3680 :       CALL dbt_destroy(t_self_energy_tmp)
    6614             : 
    6615        3680 :       CALL timestop(handle)
    6616             : 
    6617        3680 :    END SUBROUTINE contract_to_self_energy
    6618             : 
    6619             : ! **************************************************************************************************
    6620             : !> \brief ...
    6621             : !> \param t_3c_overl_int_gw_AO ...
    6622             : !> \param t_3c_overl_int_gw_RI ...
    6623             : !> \param t_AO ...
    6624             : !> \param t_RI ...
    6625             : !> \param prefac ...
    6626             : !> \param mo_bounds ...
    6627             : !> \param unit_nr ...
    6628             : !> \param t_3c_ctr_RI ...
    6629             : !> \param t_3c_ctr_AO ...
    6630             : !> \param calculate_ctr_RI ...
    6631             : ! **************************************************************************************************
    6632        1282 :    SUBROUTINE contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    6633             :                                 t_AO, t_RI, prefac, &
    6634             :                                 mo_bounds, unit_nr, &
    6635             :                                 t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_RI)
    6636             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_gw_AO, &
    6637             :                                                             t_3c_overl_int_gw_RI, t_AO, t_RI
    6638             :       REAL(dp), DIMENSION(2), INTENT(IN)                 :: prefac
    6639             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6640             :       INTEGER, INTENT(IN)                                :: unit_nr
    6641             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_ctr_RI, t_3c_ctr_AO
    6642             :       LOGICAL, INTENT(IN)                                :: calculate_ctr_RI
    6643             : 
    6644             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'contract_cubic_gw'
    6645             : 
    6646             :       INTEGER                                            :: handle
    6647             :       INTEGER, DIMENSION(2, 2)                           :: ctr_bounds_mo
    6648             :       INTEGER, DIMENSION(3)                              :: bounds_3c
    6649             : 
    6650        1282 :       CALL timeset(routineN, handle)
    6651             : 
    6652        1282 :       IF (calculate_ctr_RI) THEN
    6653         642 :          CALL dbt_get_info(t_3c_overl_int_gw_RI, nfull_total=bounds_3c)
    6654        1926 :          ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6655        1926 :          ctr_bounds_mo(:, 2) = mo_bounds
    6656             : 
    6657             :          CALL dbt_contract(prefac(1), t_RI, t_3c_overl_int_gw_RI, 0.0_dp, &
    6658             :                            t_3c_ctr_RI, &
    6659             :                            contract_1=[2], notcontract_1=[1], &
    6660             :                            contract_2=[1], notcontract_2=[2, 3], &
    6661             :                            map_1=[1], map_2=[2, 3], &
    6662             :                            bounds_3=ctr_bounds_mo, &
    6663         642 :                            unit_nr=unit_nr)
    6664             : 
    6665             :       END IF
    6666             : 
    6667        1282 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, nfull_total=bounds_3c)
    6668        3846 :       ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6669        3846 :       ctr_bounds_mo(:, 2) = mo_bounds
    6670             : 
    6671             :       CALL dbt_contract(prefac(2), t_AO, t_3c_overl_int_gw_AO, 0.0_dp, &
    6672             :                         t_3c_ctr_AO, &
    6673             :                         contract_1=[2], notcontract_1=[1], &
    6674             :                         contract_2=[1], notcontract_2=[2, 3], &
    6675             :                         map_1=[1], map_2=[2, 3], &
    6676             :                         bounds_3=ctr_bounds_mo, &
    6677        1282 :                         unit_nr=unit_nr)
    6678             : 
    6679        1282 :       CALL timestop(handle)
    6680             : 
    6681        1282 :    END SUBROUTINE
    6682             : 
    6683             : ! **************************************************************************************************
    6684             : !> \brief ...
    6685             : !> \param t3c_1 ...
    6686             : !> \param t3c_2 ...
    6687             : !> \param vec_sigma ...
    6688             : !> \param mo_offset ...
    6689             : !> \param mo_bounds ...
    6690             : !> \param para_env ...
    6691             : ! **************************************************************************************************
    6692        1282 :    SUBROUTINE trace_sigma_gw(t3c_1, t3c_2, vec_sigma, mo_offset, mo_bounds, para_env)
    6693             :       TYPE(dbt_type), INTENT(INOUT)                      :: t3c_1, t3c_2
    6694             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma
    6695             :       INTEGER, INTENT(IN)                                :: mo_offset
    6696             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6697             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6698             : 
    6699             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'trace_sigma_gw'
    6700             : 
    6701             :       INTEGER                                            :: handle, n, n_end, n_end_block, n_start, &
    6702             :                                                             n_start_block
    6703             :       INTEGER, DIMENSION(1)                              :: trace_shape
    6704             :       INTEGER, DIMENSION(2)                              :: mo_bounds_off
    6705             :       INTEGER, DIMENSION(3)                              :: boff, bsize, ind
    6706             :       LOGICAL                                            :: found
    6707        1282 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: block_1, block_2
    6708             :       REAL(KIND=dp), &
    6709        2564 :          DIMENSION(mo_bounds(2)-mo_bounds(1)+1)          :: vec_Sigma_prv
    6710             :       TYPE(dbt_iterator_type)                            :: iter
    6711       11538 :       TYPE(dbt_type)                                     :: t3c_1_redist
    6712             : 
    6713        1282 :       CALL timeset(routineN, handle)
    6714             : 
    6715        1282 :       CALL dbt_create(t3c_2, t3c_1_redist)
    6716        1282 :       CALL dbt_copy(t3c_1, t3c_1_redist, order=[2, 1, 3], move_data=.TRUE.)
    6717             : 
    6718       16086 :       vec_Sigma_prv = 0.0_dp
    6719             : 
    6720             : !$OMP PARALLEL DEFAULT(NONE) REDUCTION(+:vec_Sigma_prv) &
    6721             : !$OMP SHARED(t3c_1_redist,t3c_2,mo_bounds) &
    6722             : !$OMP PRIVATE(iter,ind,bsize,boff,block_1,block_2,found) &
    6723        1282 : !$OMP PRIVATE(n_start_block,n_start,n_end_block,n_end,trace_shape)
    6724             :       CALL dbt_iterator_start(iter, t3c_1_redist)
    6725             :       DO WHILE (dbt_iterator_blocks_left(iter))
    6726             :          CALL dbt_iterator_next_block(iter, ind, blk_size=bsize, blk_offset=boff)
    6727             :          CALL dbt_get_block(t3c_1_redist, ind, block_1, found)
    6728             :          CPASSERT(found)
    6729             :          CALL dbt_get_block(t3c_2, ind, block_2, found)
    6730             :          IF (.NOT. found) CYCLE
    6731             : 
    6732             :          IF (boff(3) < mo_bounds(1)) THEN
    6733             :             n_start_block = mo_bounds(1) - boff(3) + 1
    6734             :             n_start = 1
    6735             :          ELSE
    6736             :             n_start_block = 1
    6737             :             n_start = boff(3) - mo_bounds(1) + 1
    6738             :          END IF
    6739             : 
    6740             :          IF (boff(3) + bsize(3) - 1 > mo_bounds(2)) THEN
    6741             :             n_end_block = mo_bounds(2) - boff(3) + 1
    6742             :             n_end = mo_bounds(2) - mo_bounds(1) + 1
    6743             :          ELSE
    6744             :             n_end_block = bsize(3)
    6745             :             n_end = boff(3) + bsize(3) - mo_bounds(1)
    6746             :          END IF
    6747             : 
    6748             :          trace_shape(1) = SIZE(block_1, 1)*SIZE(block_1, 2)
    6749             :          vec_Sigma_prv(n_start:n_end) = &
    6750             :             vec_Sigma_prv(n_start:n_end) + &
    6751             :             (/(DOT_PRODUCT(RESHAPE(block_1(:, :, n), trace_shape), &
    6752             :                            RESHAPE(block_2(:, :, n), trace_shape)), &
    6753             :                n=n_start_block, n_end_block)/)
    6754             :          DEALLOCATE (block_1, block_2)
    6755             :       END DO
    6756             :       CALL dbt_iterator_stop(iter)
    6757             : !$OMP END PARALLEL
    6758             : 
    6759        1282 :       CALL dbt_destroy(t3c_1_redist)
    6760             : 
    6761        1282 :       CALL para_env%sum(vec_Sigma_prv)
    6762             : 
    6763        3846 :       mo_bounds_off = mo_bounds - mo_offset + 1
    6764             :       vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) = &
    6765       16086 :          vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) + vec_Sigma_prv
    6766             : 
    6767        1282 :       CALL timestop(handle)
    6768        2564 :    END SUBROUTINE
    6769             : 
    6770             : ! **************************************************************************************************
    6771             : !> \brief ...
    6772             : !> \param mat_greens_fct_occ ...
    6773             : !> \param mat_greens_fct_virt ...
    6774             : !> \param fm_mo_coeff_occ ...
    6775             : !> \param fm_mo_coeff_virt ...
    6776             : !> \param fm_mo_coeff_occ_scaled ...
    6777             : !> \param fm_mo_coeff_virt_scaled ...
    6778             : !> \param fm_scaled_dm_occ_tau ...
    6779             : !> \param fm_scaled_dm_virt_tau ...
    6780             : !> \param Eigenval ...
    6781             : !> \param nmo ...
    6782             : !> \param eps_filter ...
    6783             : !> \param e_fermi ...
    6784             : !> \param tau ...
    6785             : !> \param para_env ...
    6786             : ! **************************************************************************************************
    6787        1920 :    SUBROUTINE compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, fm_mo_coeff_occ, fm_mo_coeff_virt, &
    6788             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    6789         640 :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, nmo, &
    6790             :                                            eps_filter, e_fermi, tau, para_env)
    6791             : 
    6792             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: mat_greens_fct_occ, mat_greens_fct_virt
    6793             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    6794             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    6795             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    6796             :       INTEGER, INTENT(IN)                                :: nmo
    6797             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, e_fermi, tau
    6798             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6799             : 
    6800             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Greens_function_time'
    6801             : 
    6802             :       INTEGER                                            :: handle, i_global, iiB, jjB, ncol_local, &
    6803             :                                                             nrow_local
    6804         640 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    6805             :       REAL(KIND=dp)                                      :: stabilize_exp
    6806             : 
    6807         640 :       CALL timeset(routineN, handle)
    6808             : 
    6809         640 :       CALL para_env%sync()
    6810             : 
    6811             :       ! get info of fm_mo_coeff_occ
    6812             :       CALL cp_fm_get_info(matrix=fm_mo_coeff_occ, &
    6813             :                           nrow_local=nrow_local, &
    6814             :                           ncol_local=ncol_local, &
    6815             :                           row_indices=row_indices, &
    6816         640 :                           col_indices=col_indices)
    6817             : 
    6818             :       ! Multiply the occupied and the virtual MO coefficients with the factor exp((-e_i-e_F)*tau/2).
    6819             :       ! Then, we simply get the sum over all occ states and virt. states by a simple matrix-matrix
    6820             :       ! multiplication.
    6821             : 
    6822         640 :       stabilize_exp = 70.0_dp
    6823             : 
    6824             :       ! first, the occ
    6825        9390 :       DO jjB = 1, nrow_local
    6826      315220 :          DO iiB = 1, ncol_local
    6827      305830 :             i_global = col_indices(iiB)
    6828             : 
    6829      314580 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6830             :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = &
    6831      239614 :                   fm_mo_coeff_occ%local_data(jjB, iiB)*EXP(tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6832             :             ELSE
    6833       66216 :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = 0.0_dp
    6834             :             END IF
    6835             : 
    6836             :          END DO
    6837             :       END DO
    6838             : 
    6839             :       ! the same for virt
    6840        9390 :       DO jjB = 1, nrow_local
    6841      315220 :          DO iiB = 1, ncol_local
    6842      305830 :             i_global = col_indices(iiB)
    6843             : 
    6844      314580 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6845             :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = &
    6846      239614 :                   fm_mo_coeff_virt%local_data(jjB, iiB)*EXP(-tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6847             :             ELSE
    6848       66216 :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = 0.0_dp
    6849             :             END IF
    6850             : 
    6851             :          END DO
    6852             :       END DO
    6853             : 
    6854         640 :       CALL para_env%sync()
    6855             : 
    6856             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6857             :                          matrix_a=fm_mo_coeff_occ_scaled, matrix_b=fm_mo_coeff_occ_scaled, beta=0.0_dp, &
    6858         640 :                          matrix_c=fm_scaled_dm_occ_tau)
    6859             : 
    6860             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6861             :                          matrix_a=fm_mo_coeff_virt_scaled, matrix_b=fm_mo_coeff_virt_scaled, beta=0.0_dp, &
    6862         640 :                          matrix_c=fm_scaled_dm_virt_tau)
    6863             : 
    6864         640 :       CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6865             : 
    6866             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    6867             :                             mat_greens_fct_occ, &
    6868         640 :                             keep_sparsity=.FALSE.)
    6869             : 
    6870         640 :       CALL dbcsr_filter(mat_greens_fct_occ, eps_filter)
    6871             : 
    6872         640 :       CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6873             : 
    6874             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_virt_tau, &
    6875             :                             mat_greens_fct_virt, &
    6876         640 :                             keep_sparsity=.FALSE.)
    6877             : 
    6878         640 :       CALL dbcsr_filter(mat_greens_fct_virt, eps_filter)
    6879             : 
    6880         640 :       CALL timestop(handle)
    6881             : 
    6882         640 :    END SUBROUTINE compute_Greens_function_time
    6883             : 
    6884             : END MODULE rpa_gw
    6885             : 

Generated by: LCOV version 1.15