LCOV - code coverage report
Current view: top level - src - rpa_gw.F (source / functions) Hit Total Coverage
Test: CP2K Regtests (git:32ddf85) Lines: 2308 2463 93.7 %
Date: 2025-05-17 08:08:58 Functions: 50 50 100.0 %

          Line data    Source code
       1             : !--------------------------------------------------------------------------------------------------!
       2             : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3             : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4             : !                                                                                                  !
       5             : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6             : !--------------------------------------------------------------------------------------------------!
       7             : 
       8             : ! **************************************************************************************************
       9             : !> \brief Routines for GW, continuous development [Jan Wilhelm]
      10             : !> \par History
      11             : !>      03.2019 created [Frederick Stein]
      12             : !>      12.2022 added periodic GW routines [Jan Wilhelm]
      13             : ! **************************************************************************************************
      14             : MODULE rpa_gw
      15             :    USE ai_overlap,                      ONLY: overlap
      16             :    USE atomic_kind_types,               ONLY: atomic_kind_type
      17             :    USE basis_set_types,                 ONLY: gto_basis_set_p_type,&
      18             :                                               gto_basis_set_type
      19             :    USE cell_types,                      ONLY: cell_type,&
      20             :                                               get_cell
      21             :    USE core_ppnl,                       ONLY: build_core_ppnl
      22             :    USE cp_cfm_basic_linalg,             ONLY: cp_cfm_scale,&
      23             :                                               cp_cfm_scale_and_add,&
      24             :                                               cp_cfm_scale_and_add_fm,&
      25             :                                               cp_cfm_transpose
      26             :    USE cp_cfm_diag,                     ONLY: cp_cfm_geeig_canon
      27             :    USE cp_cfm_types,                    ONLY: cp_cfm_create,&
      28             :                                               cp_cfm_get_info,&
      29             :                                               cp_cfm_release,&
      30             :                                               cp_cfm_set_all,&
      31             :                                               cp_cfm_to_fm,&
      32             :                                               cp_cfm_type,&
      33             :                                               cp_fm_to_cfm
      34             :    USE cp_control_types,                ONLY: dft_control_type
      35             :    USE cp_dbcsr_api,                    ONLY: &
      36             :         dbcsr_copy, dbcsr_create, dbcsr_desymmetrize, dbcsr_filter, dbcsr_get_info, dbcsr_init_p, &
      37             :         dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, dbcsr_iterator_start, &
      38             :         dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, dbcsr_p_type, dbcsr_release, &
      39             :         dbcsr_release_p, dbcsr_scale, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
      40             :         dbcsr_type_no_symmetry
      41             :    USE cp_dbcsr_contrib,                ONLY: dbcsr_add_on_diag
      42             :    USE cp_dbcsr_cp2k_link,              ONLY: cp_dbcsr_alloc_block_from_nbl
      43             :    USE cp_dbcsr_operations,             ONLY: copy_dbcsr_to_fm,&
      44             :                                               copy_fm_to_dbcsr,&
      45             :                                               dbcsr_allocate_matrix_set,&
      46             :                                               dbcsr_deallocate_matrix_set
      47             :    USE cp_files,                        ONLY: close_file,&
      48             :                                               open_file
      49             :    USE cp_fm_basic_linalg,              ONLY: cp_fm_scale_and_add,&
      50             :                                               cp_fm_uplo_to_full
      51             :    USE cp_fm_cholesky,                  ONLY: cp_fm_cholesky_decompose,&
      52             :                                               cp_fm_cholesky_invert
      53             :    USE cp_fm_diag,                      ONLY: cp_fm_syevd
      54             :    USE cp_fm_struct,                    ONLY: cp_fm_struct_create,&
      55             :                                               cp_fm_struct_release,&
      56             :                                               cp_fm_struct_type
      57             :    USE cp_fm_types,                     ONLY: &
      58             :         cp_fm_copy_general, cp_fm_create, cp_fm_get_diag, cp_fm_get_info, cp_fm_release, &
      59             :         cp_fm_set_all, cp_fm_to_fm, cp_fm_to_fm_submat, cp_fm_type
      60             :    USE cp_log_handling,                 ONLY: cp_get_default_logger,&
      61             :                                               cp_logger_get_default_unit_nr,&
      62             :                                               cp_logger_type
      63             :    USE cp_output_handling,              ONLY: cp_print_key_finished_output,&
      64             :                                               cp_print_key_unit_nr
      65             :    USE cp_realspace_grid_cube,          ONLY: cp_pw_to_cube
      66             :    USE dbt_api,                         ONLY: &
      67             :         dbt_batched_contract_finalize, dbt_batched_contract_init, dbt_clear, dbt_contract, &
      68             :         dbt_copy, dbt_copy_matrix_to_tensor, dbt_copy_tensor_to_matrix, dbt_create, dbt_destroy, &
      69             :         dbt_get_block, dbt_get_info, dbt_iterator_blocks_left, dbt_iterator_next_block, &
      70             :         dbt_iterator_start, dbt_iterator_stop, dbt_iterator_type, dbt_nblks_total, &
      71             :         dbt_pgrid_create, dbt_pgrid_destroy, dbt_pgrid_type, dbt_type
      72             :    USE hfx_types,                       ONLY: block_ind_type,&
      73             :                                               dealloc_containers,&
      74             :                                               hfx_compression_type
      75             :    USE input_constants,                 ONLY: gw_pade_approx,&
      76             :                                               gw_two_pole_model,&
      77             :                                               ri_rpa_g0w0_crossing_bisection,&
      78             :                                               ri_rpa_g0w0_crossing_newton,&
      79             :                                               ri_rpa_g0w0_crossing_z_shot,&
      80             :                                               soc_none
      81             :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      82             :                                               section_vals_type
      83             :    USE kinds,                           ONLY: default_path_length,&
      84             :                                               dp
      85             :    USE kpoint_methods,                  ONLY: kpoint_density_matrices,&
      86             :                                               kpoint_density_transform,&
      87             :                                               kpoint_init_cell_index
      88             :    USE kpoint_types,                    ONLY: get_kpoint_info,&
      89             :                                               kpoint_create,&
      90             :                                               kpoint_release,&
      91             :                                               kpoint_sym_create,&
      92             :                                               kpoint_type
      93             :    USE machine,                         ONLY: m_walltime
      94             :    USE mathconstants,                   ONLY: fourpi,&
      95             :                                               gaussi,&
      96             :                                               pi,&
      97             :                                               twopi,&
      98             :                                               z_one,&
      99             :                                               z_zero
     100             :    USE message_passing,                 ONLY: mp_para_env_type
     101             :    USE mp2_types,                       ONLY: mp2_type,&
     102             :                                               one_dim_real_array,&
     103             :                                               two_dim_int_array
     104             :    USE parallel_gemm_api,               ONLY: parallel_gemm
     105             :    USE particle_list_types,             ONLY: particle_list_type
     106             :    USE particle_types,                  ONLY: particle_type
     107             :    USE physcon,                         ONLY: evolt
     108             :    USE pw_env_types,                    ONLY: pw_env_get,&
     109             :                                               pw_env_type
     110             :    USE pw_methods,                      ONLY: pw_axpy,&
     111             :                                               pw_copy,&
     112             :                                               pw_scale,&
     113             :                                               pw_zero
     114             :    USE pw_pool_types,                   ONLY: pw_pool_type
     115             :    USE pw_types,                        ONLY: pw_c1d_gs_type,&
     116             :                                               pw_r3d_rs_type
     117             :    USE qs_band_structure,               ONLY: calculate_kp_orbitals
     118             :    USE qs_collocate_density,            ONLY: calculate_rho_elec
     119             :    USE qs_environment_types,            ONLY: get_qs_env,&
     120             :                                               qs_env_release,&
     121             :                                               qs_environment_type
     122             :    USE qs_force_types,                  ONLY: qs_force_type
     123             :    USE qs_gamma2kp,                     ONLY: create_kp_from_gamma
     124             :    USE qs_integral_utils,               ONLY: basis_set_list_setup
     125             :    USE qs_kind_types,                   ONLY: get_qs_kind,&
     126             :                                               qs_kind_type
     127             :    USE qs_ks_types,                     ONLY: qs_ks_env_type
     128             :    USE qs_mo_types,                     ONLY: get_mo_set
     129             :    USE qs_moments,                      ONLY: build_berry_moment_matrix
     130             :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
     131             :                                               release_neighbor_list_sets
     132             :    USE qs_neighbor_lists,               ONLY: setup_neighbor_list
     133             :    USE qs_overlap,                      ONLY: build_overlap_matrix_simple
     134             :    USE qs_scf_types,                    ONLY: qs_scf_env_type
     135             :    USE qs_subsys_types,                 ONLY: qs_subsys_get,&
     136             :                                               qs_subsys_type
     137             :    USE qs_tensors,                      ONLY: decompress_tensor
     138             :    USE qs_tensors_types,                ONLY: create_2c_tensor
     139             :    USE rpa_gw_ic,                       ONLY: apply_ic_corr
     140             :    USE rpa_gw_im_time_util,             ONLY: get_tensor_3c_overl_int_gw
     141             :    USE rpa_gw_kpoints_util,             ONLY: get_mat_cell_T_from_mat_gamma,&
     142             :                                               mat_kp_from_mat_gamma,&
     143             :                                               real_space_to_kpoint_transform_rpa
     144             :    USE rpa_im_time,                     ONLY: compute_periodic_dm
     145             :    USE scf_control_types,               ONLY: scf_control_type
     146             :    USE util,                            ONLY: sort
     147             :    USE virial_types,                    ONLY: virial_type
     148             : #include "./base/base_uses.f90"
     149             : 
     150             :    IMPLICIT NONE
     151             : 
     152             :    PRIVATE
     153             : 
     154             :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw'
     155             : 
     156             :    PUBLIC :: allocate_matrices_gw_im_time, allocate_matrices_gw, compute_GW_self_energy, compute_QP_energies, &
     157             :              deallocate_matrices_gw_im_time, deallocate_matrices_gw, compute_minus_vxc_kpoints, trafo_to_mo_and_kpoints, &
     158             :              get_fermi_level_offset, compute_W_cubic_GW, continuation_pade
     159             : 
     160             : CONTAINS
     161             : 
     162             : ! **************************************************************************************************
     163             : !> \brief ...
     164             : !> \param gw_corr_lev_occ ...
     165             : !> \param gw_corr_lev_virt ...
     166             : !> \param homo ...
     167             : !> \param nmo ...
     168             : !> \param num_integ_points ...
     169             : !> \param unit_nr ...
     170             : !> \param RI_blk_sizes ...
     171             : !> \param do_ic_model ...
     172             : !> \param para_env ...
     173             : !> \param fm_mat_W ...
     174             : !> \param fm_mat_Q ...
     175             : !> \param mo_coeff ...
     176             : !> \param t_3c_overl_int_ao_mo ...
     177             : !> \param t_3c_O_mo_compressed ...
     178             : !> \param t_3c_O_mo_ind ...
     179             : !> \param t_3c_overl_int_gw_RI ...
     180             : !> \param t_3c_overl_int_gw_AO ...
     181             : !> \param starts_array_mc ...
     182             : !> \param ends_array_mc ...
     183             : !> \param t_3c_overl_nnP_ic ...
     184             : !> \param t_3c_overl_nnP_ic_reflected ...
     185             : !> \param matrix_s ...
     186             : !> \param mat_W ...
     187             : !> \param t_3c_overl_int ...
     188             : !> \param t_3c_O_compressed ...
     189             : !> \param t_3c_O_ind ...
     190             : !> \param qs_env ...
     191             : ! **************************************************************************************************
     192          92 :    SUBROUTINE allocate_matrices_gw_im_time(gw_corr_lev_occ, gw_corr_lev_virt, homo, nmo, &
     193             :                                            num_integ_points, unit_nr, &
     194             :                                            RI_blk_sizes, do_ic_model, &
     195             :                                            para_env, fm_mat_W, fm_mat_Q, &
     196          46 :                                            mo_coeff, &
     197             :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     198             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     199          46 :                                            starts_array_mc, ends_array_mc, &
     200             :                                            t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, &
     201          46 :                                            matrix_s, mat_W, t_3c_overl_int, &
     202          46 :                                            t_3c_O_compressed, t_3c_O_ind, &
     203             :                                            qs_env)
     204             : 
     205             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     206             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_points, unit_nr
     207             :       INTEGER, DIMENSION(:), POINTER                     :: RI_blk_sizes
     208             :       LOGICAL, INTENT(IN)                                :: do_ic_model
     209             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     210             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     211             :          INTENT(OUT)                                     :: fm_mat_W
     212             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q
     213             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: mo_coeff
     214             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
     215             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     216             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     217             :       TYPE(two_dim_int_array), ALLOCATABLE, &
     218             :          DIMENSION(:), INTENT(OUT)                       :: t_3c_O_mo_ind
     219             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     220             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     221             :                                                             t_3c_overl_int_gw_AO
     222             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
     223             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     224             :          INTENT(INOUT)                                   :: t_3c_overl_nnP_ic, &
     225             :                                                             t_3c_overl_nnP_ic_reflected
     226             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
     227             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     228             :       TYPE(dbt_type), DIMENSION(:, :)                    :: t_3c_overl_int
     229             :       TYPE(hfx_compression_type), DIMENSION(:, :, :)     :: t_3c_O_compressed
     230             :       TYPE(block_ind_type), DIMENSION(:, :, :)           :: t_3c_O_ind
     231             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     232             : 
     233             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw_im_time'
     234             : 
     235             :       INTEGER                                            :: handle, jquad, nspins
     236             :       LOGICAL                                            :: my_open_shell
     237         414 :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo_beta
     238             : 
     239          46 :       CALL timeset(routineN, handle)
     240             : 
     241          46 :       nspins = SIZE(homo)
     242          46 :       my_open_shell = (nspins == 2)
     243             : 
     244           0 :       ALLOCATE (t_3c_O_mo_ind(nspins), t_3c_overl_int_gw_AO(nspins), t_3c_overl_int_gw_RI(nspins), &
     245       99592 :                 t_3c_overl_nnP_ic(nspins), t_3c_overl_nnP_ic_reflected(nspins), t_3c_O_mo_compressed(nspins))
     246             :       CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     247             :                                       t_3c_O_compressed, t_3c_O_ind, &
     248             :                                       t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(1), t_3c_O_mo_ind(1)%array, &
     249             :                                       t_3c_overl_int_gw_RI(1), t_3c_overl_int_gw_AO(1), &
     250             :                                       starts_array_mc, ends_array_mc, &
     251             :                                       mo_coeff(1), matrix_s, &
     252             :                                       gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), nmo, &
     253             :                                       para_env, &
     254             :                                       do_ic_model, &
     255             :                                       t_3c_overl_nnP_ic(1), t_3c_overl_nnP_ic_reflected(1), &
     256          46 :                                       qs_env, unit_nr, do_alpha=.TRUE.)
     257             : 
     258          46 :       IF (my_open_shell) THEN
     259             : 
     260             :          CALL get_tensor_3c_overl_int_gw(t_3c_overl_int, &
     261             :                                          t_3c_O_compressed, t_3c_O_ind, &
     262             :                                          t_3c_overl_int_ao_mo_beta, t_3c_O_mo_compressed(2), t_3c_O_mo_ind(2)%array, &
     263             :                                          t_3c_overl_int_gw_RI(2), t_3c_overl_int_gw_AO(2), &
     264             :                                          starts_array_mc, ends_array_mc, &
     265             :                                          mo_coeff(2), matrix_s, &
     266             :                                          gw_corr_lev_occ(2), gw_corr_lev_virt(2), homo(2), nmo, &
     267             :                                          para_env, &
     268             :                                          do_ic_model, &
     269             :                                          t_3c_overl_nnP_ic(2), t_3c_overl_nnP_ic_reflected(2), &
     270           8 :                                          qs_env, unit_nr, do_alpha=.FALSE.)
     271             : 
     272           8 :          IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     273           6 :             CALL dbt_destroy(t_3c_overl_int_ao_mo_beta)
     274             :          END IF
     275             : 
     276             :       END IF
     277             : 
     278         728 :       ALLOCATE (fm_mat_W(num_integ_points))
     279             : 
     280         636 :       DO jquad = 1, num_integ_points
     281             : 
     282         590 :          CALL cp_fm_create(fm_mat_W(jquad), fm_mat_Q%matrix_struct)
     283         590 :          CALL cp_fm_to_fm(fm_mat_Q, fm_mat_W(jquad))
     284         636 :          CALL cp_fm_set_all(fm_mat_W(jquad), 0.0_dp)
     285             : 
     286             :       END DO
     287             : 
     288          46 :       NULLIFY (mat_W)
     289          46 :       CALL dbcsr_init_p(mat_W)
     290             :       CALL dbcsr_create(matrix=mat_W, &
     291             :                         template=matrix_s(1)%matrix, &
     292             :                         matrix_type=dbcsr_type_no_symmetry, &
     293             :                         row_blk_size=RI_blk_sizes, &
     294          46 :                         col_blk_size=RI_blk_sizes)
     295             : 
     296          46 :       CALL timestop(handle)
     297             : 
     298          92 :    END SUBROUTINE allocate_matrices_gw_im_time
     299             : 
     300             : ! **************************************************************************************************
     301             : !> \brief ...
     302             : !> \param vec_Sigma_c_gw ...
     303             : !> \param color_rpa_group ...
     304             : !> \param dimen_nm_gw ...
     305             : !> \param gw_corr_lev_occ ...
     306             : !> \param gw_corr_lev_virt ...
     307             : !> \param homo ...
     308             : !> \param nmo ...
     309             : !> \param num_integ_group ...
     310             : !> \param num_integ_points ...
     311             : !> \param unit_nr ...
     312             : !> \param gw_corr_lev_tot ...
     313             : !> \param num_fit_points ...
     314             : !> \param omega_max_fit ...
     315             : !> \param do_minimax_quad ...
     316             : !> \param do_periodic ...
     317             : !> \param do_ri_Sigma_x ...
     318             : !> \param my_do_gw ...
     319             : !> \param first_cycle_periodic_correction ...
     320             : !> \param a_scaling ...
     321             : !> \param Eigenval ...
     322             : !> \param tj ...
     323             : !> \param vec_omega_fit_gw ...
     324             : !> \param vec_Sigma_x_gw ...
     325             : !> \param delta_corr ...
     326             : !> \param Eigenval_last ...
     327             : !> \param Eigenval_scf ...
     328             : !> \param vec_W_gw ...
     329             : !> \param fm_mat_S_gw ...
     330             : !> \param fm_mat_S_gw_work ...
     331             : !> \param para_env ...
     332             : !> \param mp2_env ...
     333             : !> \param kpoints ...
     334             : !> \param nkp ...
     335             : !> \param nkp_self_energy ...
     336             : !> \param do_kpoints_cubic_RPA ...
     337             : !> \param do_kpoints_from_Gamma ...
     338             : ! **************************************************************************************************
     339         104 :    SUBROUTINE allocate_matrices_gw(vec_Sigma_c_gw, color_rpa_group, dimen_nm_gw, &
     340         104 :                                    gw_corr_lev_occ, gw_corr_lev_virt, homo, &
     341             :                                    nmo, num_integ_group, num_integ_points, unit_nr, &
     342             :                                    gw_corr_lev_tot, num_fit_points, omega_max_fit, &
     343             :                                    do_minimax_quad, do_periodic, do_ri_Sigma_x, my_do_gw, &
     344             :                                    first_cycle_periodic_correction, &
     345             :                                    a_scaling, Eigenval, tj, vec_omega_fit_gw, vec_Sigma_x_gw, &
     346             :                                    delta_corr, Eigenval_last, Eigenval_scf, vec_W_gw, &
     347         104 :                                    fm_mat_S_gw, fm_mat_S_gw_work, &
     348             :                                    para_env, mp2_env, kpoints, nkp, nkp_self_energy, &
     349             :                                    do_kpoints_cubic_RPA, do_kpoints_from_Gamma)
     350             : 
     351             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     352             :          DIMENSION(:, :, :, :), INTENT(OUT)              :: vec_Sigma_c_gw
     353             :       INTEGER, INTENT(IN)                                :: color_rpa_group, dimen_nm_gw
     354             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     355             :       INTEGER, INTENT(IN)                                :: nmo, num_integ_group, num_integ_points, &
     356             :                                                             unit_nr
     357             :       INTEGER, INTENT(INOUT)                             :: gw_corr_lev_tot, num_fit_points
     358             :       REAL(KIND=dp)                                      :: omega_max_fit
     359             :       LOGICAL, INTENT(IN)                                :: do_minimax_quad, do_periodic, &
     360             :                                                             do_ri_Sigma_x, my_do_gw
     361             :       LOGICAL, INTENT(OUT) :: first_cycle_periodic_correction
     362             :       REAL(KIND=dp), INTENT(IN)                          :: a_scaling
     363             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     364             :          INTENT(INOUT)                                   :: Eigenval
     365             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     366             :          INTENT(IN)                                      :: tj
     367             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     368             :          INTENT(OUT)                                     :: vec_omega_fit_gw
     369             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     370             :          INTENT(OUT)                                     :: vec_Sigma_x_gw
     371             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     372             :          INTENT(INOUT)                                   :: delta_corr
     373             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     374             :          INTENT(OUT)                                     :: Eigenval_last, Eigenval_scf
     375             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     376             :          INTENT(OUT)                                     :: vec_W_gw
     377             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw
     378             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     379             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     380             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     381             :       TYPE(mp2_type)                                     :: mp2_env
     382             :       TYPE(kpoint_type), POINTER                         :: kpoints
     383             :       INTEGER, INTENT(OUT)                               :: nkp, nkp_self_energy
     384             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA, &
     385             :                                                             do_kpoints_from_Gamma
     386             : 
     387             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'allocate_matrices_gw'
     388             : 
     389             :       INTEGER                                            :: handle, iquad, ispin, jquad, nspins
     390             :       LOGICAL                                            :: my_open_shell
     391             :       REAL(KIND=dp)                                      :: omega
     392         104 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_gw
     393             : 
     394         104 :       CALL timeset(routineN, handle)
     395             : 
     396         104 :       nspins = SIZE(Eigenval, 3)
     397         104 :       my_open_shell = (nspins == 2)
     398             : 
     399         104 :       gw_corr_lev_tot = gw_corr_lev_occ(1) + gw_corr_lev_virt(1)
     400             : 
     401             :       ! fill the omega_frequency vector
     402         312 :       ALLOCATE (vec_omega_gw(num_integ_points))
     403        3914 :       vec_omega_gw = 0.0_dp
     404             : 
     405        3914 :       DO jquad = 1, num_integ_points
     406        3810 :          IF (do_minimax_quad) THEN
     407         590 :             omega = tj(jquad)
     408             :          ELSE
     409        3220 :             omega = a_scaling/TAN(tj(jquad))
     410             :          END IF
     411        3914 :          vec_omega_gw(jquad) = omega
     412             :       END DO
     413             : 
     414             :       ! determine number of fit points in the interval [0,w_max] for virt, or [-w_max,0] for occ
     415         104 :       num_fit_points = 0
     416             : 
     417        3914 :       DO jquad = 1, num_integ_points
     418        3914 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     419        3060 :             num_fit_points = num_fit_points + 1
     420             :          END IF
     421             :       END DO
     422             : 
     423         104 :       IF (mp2_env%ri_g0w0%analytic_continuation == gw_pade_approx) THEN
     424          68 :          IF (mp2_env%ri_g0w0%nparam_pade > num_fit_points) THEN
     425          32 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A)") &
     426          16 :                "Pade approximation: more parameters than data points. Reset # of parameters."
     427          32 :             mp2_env%ri_g0w0%nparam_pade = num_fit_points
     428          32 :             IF (unit_nr > 0) WRITE (UNIT=unit_nr, FMT="(T3,A,T74,I7)") &
     429          16 :                "Number of pade parameters:", mp2_env%ri_g0w0%nparam_pade
     430             :          END IF
     431             :       END IF
     432             : 
     433             :       ! create new arrays containing omega values at which we calculate vec_Sigma_c_gw
     434         312 :       ALLOCATE (vec_omega_fit_gw(num_fit_points))
     435             : 
     436             :       ! fill the omega vector with frequencies, where we calculate the self-energy
     437         104 :       iquad = 0
     438        3914 :       DO jquad = 1, num_integ_points
     439        3914 :          IF (vec_omega_gw(jquad) < omega_max_fit) THEN
     440        3060 :             iquad = iquad + 1
     441        3060 :             vec_omega_fit_gw(iquad) = vec_omega_gw(jquad)
     442             :          END IF
     443             :       END DO
     444             : 
     445         104 :       DEALLOCATE (vec_omega_gw)
     446             : 
     447         104 :       IF (do_kpoints_cubic_RPA) THEN
     448           0 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     449           0 :          IF (mp2_env%ri_g0w0%do_gamma_only_sigma) THEN
     450           0 :             nkp_self_energy = 1
     451             :          ELSE
     452           0 :             nkp_self_energy = nkp
     453             :          END IF
     454         104 :       ELSE IF (do_kpoints_from_Gamma) THEN
     455          16 :          CALL get_kpoint_info(kpoints, nkp=nkp)
     456          16 :          IF (mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     457          16 :             nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
     458             :          ELSE
     459           0 :             nkp_self_energy = 1
     460             :          END IF
     461             :       ELSE
     462          88 :          nkp = 1
     463          88 :          nkp_self_energy = 1
     464             :       END IF
     465         624 :       ALLOCATE (vec_Sigma_c_gw(gw_corr_lev_tot, num_fit_points, nkp_self_energy, nspins))
     466       53048 :       vec_Sigma_c_gw = z_zero
     467             : 
     468         520 :       ALLOCATE (Eigenval_scf(nmo, nkp_self_energy, nspins))
     469        5606 :       Eigenval_scf(:, :, :) = Eigenval(:, :, :)
     470             : 
     471         416 :       ALLOCATE (Eigenval_last(nmo, nkp_self_energy, nspins))
     472        5606 :       Eigenval_last(:, :, :) = Eigenval(:, :, :)
     473             : 
     474         104 :       IF (do_periodic) THEN
     475             : 
     476          18 :          ALLOCATE (delta_corr(1 + homo(1) - gw_corr_lev_occ(1):homo(1) + gw_corr_lev_virt(1)))
     477          70 :          delta_corr(:) = 0.0_dp
     478             : 
     479           6 :          first_cycle_periodic_correction = .TRUE.
     480             : 
     481             :       END IF
     482             : 
     483         416 :       ALLOCATE (vec_Sigma_x_gw(nmo, nkp_self_energy, nspins))
     484        5606 :       vec_Sigma_x_gw = 0.0_dp
     485             : 
     486         104 :       IF (my_do_gw) THEN
     487             : 
     488             :          ! minimax grids not implemented for O(N^4) GW
     489          58 :          CPASSERT(.NOT. do_minimax_quad)
     490             : 
     491             :          ! create temporary matrix to store B*([1+Q(iw')]^-1-1), has the same size as B
     492         236 :          ALLOCATE (fm_mat_S_gw_work(nspins))
     493         120 :          DO ispin = 1, nspins
     494          62 :             CALL cp_fm_create(fm_mat_S_gw_work(ispin), fm_mat_S_gw(ispin)%matrix_struct)
     495         120 :             CALL cp_fm_set_all(matrix=fm_mat_S_gw_work(ispin), alpha=0.0_dp)
     496             :          END DO
     497             : 
     498         232 :          ALLOCATE (vec_W_gw(dimen_nm_gw, nspins))
     499       20924 :          vec_W_gw = 0.0_dp
     500             : 
     501             :          ! in case we do RI for Sigma_x, we calculate Sigma_x right here
     502          58 :          IF (do_ri_Sigma_x) THEN
     503             : 
     504             :             CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 1), nmo, fm_mat_S_gw(1), para_env, num_integ_group, color_rpa_group, &
     505          40 :                                  homo(1), gw_corr_lev_occ(1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, 1))
     506             : 
     507          40 :             IF (my_open_shell) THEN
     508             :                CALL get_vec_sigma_x(vec_Sigma_x_gw(:, :, 2), nmo, fm_mat_S_gw(2), para_env, num_integ_group, &
     509             :                                     color_rpa_group, homo(2), gw_corr_lev_occ(2), &
     510           0 :                                     mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, 1))
     511             :             END IF
     512             : 
     513             :          END IF
     514             : 
     515             :       END IF
     516             : 
     517         104 :       CALL timestop(handle)
     518             : 
     519         104 :    END SUBROUTINE allocate_matrices_gw
     520             : 
     521             : ! **************************************************************************************************
     522             : !> \brief ...
     523             : !> \param vec_Sigma_x_gw ...
     524             : !> \param nmo ...
     525             : !> \param fm_mat_S_gw ...
     526             : !> \param para_env ...
     527             : !> \param num_integ_group ...
     528             : !> \param color_rpa_group ...
     529             : !> \param homo ...
     530             : !> \param gw_corr_lev_occ ...
     531             : !> \param vec_Sigma_x_minus_vxc_gw11 ...
     532             : ! **************************************************************************************************
     533          40 :    SUBROUTINE get_vec_sigma_x(vec_Sigma_x_gw, nmo, fm_mat_S_gw, para_env, num_integ_group, color_rpa_group, homo, &
     534          40 :                               gw_corr_lev_occ, vec_Sigma_x_minus_vxc_gw11)
     535             : 
     536             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
     537             :       INTEGER, INTENT(IN)                                :: nmo
     538             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_S_gw
     539             :       TYPE(mp_para_env_type), POINTER                    :: para_env
     540             :       INTEGER, INTENT(IN)                                :: num_integ_group, color_rpa_group, homo, &
     541             :                                                             gw_corr_lev_occ
     542             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw11
     543             : 
     544             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_vec_sigma_x'
     545             : 
     546             :       INTEGER                                            :: handle, iiB, m_global, n_global, &
     547             :                                                             ncol_local, nm_global, nrow_local
     548          40 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
     549             : 
     550          40 :       CALL timeset(routineN, handle)
     551             : 
     552             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
     553             :                           nrow_local=nrow_local, &
     554             :                           ncol_local=ncol_local, &
     555          40 :                           col_indices=col_indices)
     556             : 
     557          40 :       CALL para_env%sync()
     558             : 
     559             :       ! loop over (nm) index
     560       13816 :       DO iiB = 1, ncol_local
     561             : 
     562             :          ! this is needed for correct values within parallelization
     563       13776 :          IF (MODULO(1, num_integ_group) /= color_rpa_group) CYCLE
     564             : 
     565       12166 :          nm_global = col_indices(iiB)
     566             : 
     567             :          ! transform the index nm to n and m, formulae copied from Mauro's code
     568       12166 :          n_global = MAX(1, nm_global - 1)/nmo + 1
     569       12166 :          m_global = nm_global - (n_global - 1)*nmo
     570       12166 :          n_global = n_global + homo - gw_corr_lev_occ
     571             : 
     572       12206 :          IF (m_global <= homo) THEN
     573             : 
     574             :             ! Sigma_x_n = -sum_m^occ sum_P (B_(nm)^P)^2
     575             :             vec_Sigma_x_gw(n_global, 1) = &
     576             :                vec_Sigma_x_gw(n_global, 1) - &
     577      100112 :                DOT_PRODUCT(fm_mat_S_gw%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
     578             : 
     579             :          END IF
     580             : 
     581             :       END DO
     582             : 
     583          40 :       CALL para_env%sync()
     584             : 
     585        1924 :       CALL para_env%sum(vec_Sigma_x_gw)
     586             : 
     587             :       vec_Sigma_x_minus_vxc_gw11(:) = &
     588             :          vec_Sigma_x_minus_vxc_gw11(:) + &
     589         942 :          vec_Sigma_x_gw(:, 1)
     590             : 
     591          40 :       CALL timestop(handle)
     592             : 
     593          40 :    END SUBROUTINE get_vec_sigma_x
     594             : 
     595             : ! **************************************************************************************************
     596             : !> \brief ...
     597             : !> \param fm_mat_S_gw_work ...
     598             : !> \param vec_W_gw ...
     599             : !> \param vec_Sigma_c_gw ...
     600             : !> \param vec_omega_fit_gw ...
     601             : !> \param vec_Sigma_x_minus_vxc_gw ...
     602             : !> \param Eigenval_last ...
     603             : !> \param Eigenval_scf ...
     604             : !> \param do_periodic ...
     605             : !> \param matrix_berry_re_mo_mo ...
     606             : !> \param matrix_berry_im_mo_mo ...
     607             : !> \param kpoints ...
     608             : !> \param vec_Sigma_x_gw ...
     609             : !> \param my_do_gw ...
     610             : ! **************************************************************************************************
     611         104 :    SUBROUTINE deallocate_matrices_gw(fm_mat_S_gw_work, vec_W_gw, vec_Sigma_c_gw, vec_omega_fit_gw, &
     612             :                                      vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     613             :                                      Eigenval_scf, do_periodic, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, kpoints, &
     614             :                                      vec_Sigma_x_gw, my_do_gw)
     615             : 
     616             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     617             :          INTENT(INOUT)                                   :: fm_mat_S_gw_work
     618             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     619             :          INTENT(INOUT)                                   :: vec_W_gw
     620             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     621             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     622             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     623             :          INTENT(INOUT)                                   :: vec_omega_fit_gw
     624             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     625             :          INTENT(INOUT)                                   :: vec_Sigma_x_minus_vxc_gw, Eigenval_last, &
     626             :                                                             Eigenval_scf
     627             :       LOGICAL, INTENT(IN)                                :: do_periodic
     628             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
     629             :                                                             matrix_berry_im_mo_mo
     630             :       TYPE(kpoint_type), POINTER                         :: kpoints
     631             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
     632             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
     633             :       LOGICAL, INTENT(IN)                                :: my_do_gw
     634             : 
     635             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw'
     636             : 
     637             :       INTEGER                                            :: handle, nspins
     638             :       LOGICAL                                            :: my_open_shell
     639             : 
     640         104 :       CALL timeset(routineN, handle)
     641             : 
     642         104 :       nspins = SIZE(Eigenval_last, 3)
     643         104 :       my_open_shell = (nspins == 2)
     644             : 
     645         104 :       IF (my_do_gw) THEN
     646          58 :          CALL cp_fm_release(fm_mat_S_gw_work)
     647          58 :          DEALLOCATE (vec_Sigma_x_minus_vxc_gw)
     648          58 :          DEALLOCATE (vec_W_gw)
     649             :       END IF
     650             : 
     651         104 :       DEALLOCATE (vec_Sigma_c_gw)
     652         104 :       DEALLOCATE (vec_Sigma_x_gw)
     653         104 :       DEALLOCATE (vec_omega_fit_gw)
     654         104 :       DEALLOCATE (Eigenval_last)
     655         104 :       DEALLOCATE (Eigenval_scf)
     656             : 
     657         104 :       IF (do_periodic) THEN
     658           6 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_re_mo_mo)
     659           6 :          CALL dbcsr_deallocate_matrix_set(matrix_berry_im_mo_mo)
     660           6 :          CALL kpoint_release(kpoints)
     661             :       END IF
     662             : 
     663         104 :       CALL timestop(handle)
     664             : 
     665         104 :    END SUBROUTINE deallocate_matrices_gw
     666             : 
     667             : ! **************************************************************************************************
     668             : !> \brief ...
     669             : !> \param weights_cos_tf_w_to_t ...
     670             : !> \param weights_sin_tf_t_to_w ...
     671             : !> \param do_ic_model ...
     672             : !> \param do_kpoints_cubic_RPA ...
     673             : !> \param fm_mat_W ...
     674             : !> \param t_3c_overl_int_ao_mo ...
     675             : !> \param t_3c_O_mo_compressed ...
     676             : !> \param t_3c_O_mo_ind ...
     677             : !> \param t_3c_overl_int_gw_RI ...
     678             : !> \param t_3c_overl_int_gw_AO ...
     679             : !> \param t_3c_overl_nnP_ic ...
     680             : !> \param t_3c_overl_nnP_ic_reflected ...
     681             : !> \param mat_W ...
     682             : !> \param qs_env ...
     683             : ! **************************************************************************************************
     684          46 :    SUBROUTINE deallocate_matrices_gw_im_time(weights_cos_tf_w_to_t, weights_sin_tf_t_to_w, do_ic_model, do_kpoints_cubic_RPA, &
     685             :                                              fm_mat_W, &
     686             :                                              t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
     687             :                                              t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
     688             :                                              t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected, mat_W, &
     689             :                                              qs_env)
     690             : 
     691             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     692             :          INTENT(INOUT)                                   :: weights_cos_tf_w_to_t, &
     693             :                                                             weights_sin_tf_t_to_w
     694             :       LOGICAL, INTENT(IN)                                :: do_ic_model, do_kpoints_cubic_RPA
     695             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
     696             :          INTENT(INOUT)                                   :: fm_mat_W
     697             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_ao_mo
     698             :       TYPE(hfx_compression_type), ALLOCATABLE, &
     699             :          DIMENSION(:)                                    :: t_3c_O_mo_compressed
     700             :       TYPE(two_dim_int_array), ALLOCATABLE, DIMENSION(:) :: t_3c_O_mo_ind
     701             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:), &
     702             :          INTENT(INOUT)                                   :: t_3c_overl_int_gw_RI, &
     703             :                                                             t_3c_overl_int_gw_AO, &
     704             :                                                             t_3c_overl_nnP_ic, &
     705             :                                                             t_3c_overl_nnP_ic_reflected
     706             :       TYPE(dbcsr_type), POINTER                          :: mat_W
     707             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     708             : 
     709             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_matrices_gw_im_time'
     710             : 
     711             :       INTEGER                                            :: handle, ispin, nspins, unused
     712             :       LOGICAL                                            :: my_open_shell
     713             : 
     714          46 :       CALL timeset(routineN, handle)
     715             : 
     716          46 :       nspins = SIZE(t_3c_overl_int_gw_RI)
     717          46 :       my_open_shell = (nspins == 2)
     718             : 
     719          46 :       IF (ALLOCATED(weights_cos_tf_w_to_t)) DEALLOCATE (weights_cos_tf_w_to_t)
     720          46 :       IF (ALLOCATED(weights_sin_tf_t_to_w)) DEALLOCATE (weights_sin_tf_t_to_w)
     721             : 
     722          46 :       IF (.NOT. do_kpoints_cubic_RPA) THEN
     723          46 :          CALL cp_fm_release(fm_mat_W)
     724          46 :          CALL dbcsr_release_P(mat_W)
     725             :       END IF
     726             : 
     727         100 :       DO ispin = 1, nspins
     728          54 :          CALL dbt_destroy(t_3c_overl_int_gw_RI(ispin))
     729         100 :          CALL dbt_destroy(t_3c_overl_int_gw_AO(ispin))
     730             :       END DO
     731         154 :       DEALLOCATE (t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI)
     732          46 :       IF (do_ic_model) THEN
     733           4 :          DO ispin = 1, nspins
     734           2 :             CALL dbt_destroy(t_3c_overl_nnP_ic(ispin))
     735           4 :             CALL dbt_destroy(t_3c_overl_nnP_ic_reflected(ispin))
     736             :          END DO
     737           6 :          DEALLOCATE (t_3c_overl_nnP_ic, t_3c_overl_nnP_ic_reflected)
     738             :       END IF
     739             : 
     740          46 :       IF (.NOT. qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     741          66 :          DO ispin = 1, nspins
     742          36 :             DEALLOCATE (t_3c_O_mo_ind(ispin)%array)
     743          66 :             CALL dealloc_containers(t_3c_O_mo_compressed(ispin), unused)
     744             :          END DO
     745          66 :          DEALLOCATE (t_3c_O_mo_ind, t_3c_O_mo_compressed)
     746             : 
     747          30 :          CALL dbt_destroy(t_3c_overl_int_ao_mo)
     748             :       END IF
     749             : 
     750          46 :       IF (qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
     751          34 :          DO ispin = 1, nspins
     752          18 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     753          18 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix)
     754             : 
     755          18 :             CALL dbcsr_release(qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     756          34 :             DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix)
     757             :          END DO
     758          16 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc)
     759          16 :          DEALLOCATE (qs_env%mp2_env%ri_g0w0%matrix_ks)
     760             :       END IF
     761             : 
     762          46 :       CALL timestop(handle)
     763             : 
     764          46 :    END SUBROUTINE deallocate_matrices_gw_im_time
     765             : 
     766             : ! **************************************************************************************************
     767             : !> \brief ...
     768             : !> \param vec_Sigma_c_gw ...
     769             : !> \param dimen_nm_gw ...
     770             : !> \param dimen_RI ...
     771             : !> \param gw_corr_lev_occ ...
     772             : !> \param gw_corr_lev_virt ...
     773             : !> \param homo ...
     774             : !> \param jquad ...
     775             : !> \param nmo ...
     776             : !> \param num_fit_points ...
     777             : !> \param do_im_time ...
     778             : !> \param do_periodic ...
     779             : !> \param first_cycle_periodic_correction ...
     780             : !> \param fermi_level_offset ...
     781             : !> \param omega ...
     782             : !> \param Eigenval ...
     783             : !> \param delta_corr ...
     784             : !> \param vec_omega_fit_gw ...
     785             : !> \param vec_W_gw ...
     786             : !> \param wj ...
     787             : !> \param fm_mat_Q ...
     788             : !> \param fm_mat_R_gw ...
     789             : !> \param fm_mat_S_gw ...
     790             : !> \param fm_mat_S_gw_work ...
     791             : !> \param mo_coeff ...
     792             : !> \param para_env ...
     793             : !> \param para_env_RPA ...
     794             : !> \param matrix_berry_im_mo_mo ...
     795             : !> \param matrix_berry_re_mo_mo ...
     796             : !> \param kpoints ...
     797             : !> \param qs_env ...
     798             : !> \param mp2_env ...
     799             : ! **************************************************************************************************
     800       49450 :    SUBROUTINE compute_GW_self_energy(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
     801        9890 :                                      gw_corr_lev_virt, homo, jquad, nmo, num_fit_points, &
     802             :                                      do_im_time, do_periodic, &
     803             :                                      first_cycle_periodic_correction, fermi_level_offset, &
     804        9890 :                                      omega, Eigenval, delta_corr, vec_omega_fit_gw, vec_W_gw, wj, &
     805        9890 :                                      fm_mat_Q, fm_mat_R_gw, fm_mat_S_gw, &
     806        9890 :                                      fm_mat_S_gw_work, mo_coeff, para_env, &
     807             :                                      para_env_RPA, matrix_berry_im_mo_mo, matrix_berry_re_mo_mo, &
     808             :                                      kpoints, qs_env, mp2_env)
     809             : 
     810             :       COMPLEX(KIND=dp), ALLOCATABLE, &
     811             :          DIMENSION(:, :, :, :), INTENT(INOUT)            :: vec_Sigma_c_gw
     812             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI
     813             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
     814             :       INTEGER, INTENT(IN)                                :: jquad, nmo, num_fit_points
     815             :       LOGICAL, INTENT(IN)                                :: do_im_time, do_periodic
     816             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
     817             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset, omega
     818             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     819             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     820             :          INTENT(INOUT)                                   :: delta_corr
     821             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     822             :          INTENT(IN)                                      :: vec_omega_fit_gw
     823             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     824             :          INTENT(INOUT)                                   :: vec_W_gw
     825             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     826             :          INTENT(IN)                                      :: wj
     827             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_R_gw
     828             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_S_gw, fm_mat_S_gw_work
     829             :       TYPE(cp_fm_type), INTENT(IN)                       :: mo_coeff
     830             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
     831             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
     832             :                                                             matrix_berry_re_mo_mo
     833             :       TYPE(kpoint_type), POINTER                         :: kpoints
     834             :       TYPE(qs_environment_type), POINTER                 :: qs_env
     835             :       TYPE(mp2_type)                                     :: mp2_env
     836             : 
     837             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy'
     838             : 
     839             :       INTEGER                                            :: handle, i_global, iiB, ispin, j_global, &
     840             :                                                             jjB, ncol_local, nrow_local, nspins
     841        9890 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     842             : 
     843        9890 :       CALL timeset(routineN, handle)
     844             : 
     845        9890 :       nspins = SIZE(fm_mat_S_gw)
     846             : 
     847             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     848             :                           nrow_local=nrow_local, &
     849             :                           ncol_local=ncol_local, &
     850             :                           row_indices=row_indices, &
     851        9890 :                           col_indices=col_indices)
     852             : 
     853        9890 :       IF (.NOT. do_im_time) THEN
     854             :          ! calculate [1+Q(iw')]^-1
     855        9890 :          CALL cp_fm_cholesky_invert(fm_mat_Q)
     856             :          ! symmetrize the result, fm_mat_R_gw is only temporary work matrix
     857        9890 :          CALL cp_fm_uplo_to_full(fm_mat_Q, fm_mat_R_gw)
     858             : 
     859             :          ! periodic correction for GW (paper Phys. Rev. B 95, 235123 (2017))
     860        9890 :          IF (do_periodic) THEN
     861             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
     862             :                                           mp2_env%ri_g0w0%kp_grid, homo(1), nmo, gw_corr_lev_occ(1), &
     863             :                                           gw_corr_lev_virt(1), omega, mo_coeff, Eigenval(:, 1), &
     864             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
     865             :                                           first_cycle_periodic_correction, kpoints, &
     866             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
     867             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
     868             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
     869         240 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
     870             :          END IF
     871             : 
     872        9890 :          CALL para_env%sync()
     873             : 
     874             :          ! subtract 1 from the diagonal to get rid of exchange self-energy
     875             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     876        9890 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     877             :          DO jjB = 1, ncol_local
     878             :             j_global = col_indices(jjB)
     879             :             DO iiB = 1, nrow_local
     880             :                i_global = row_indices(iiB)
     881             :                IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     882             :                   fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
     883             :                END IF
     884             :             END DO
     885             :          END DO
     886             : 
     887        9890 :          CALL para_env%sync()
     888             : 
     889       19840 :          DO ispin = 1, nspins
     890             :             CALL compute_GW_self_energy_deep(vec_Sigma_c_gw(:, :, :, ispin), dimen_nm_gw, dimen_RI, &
     891             :                                              gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), &
     892             :                                              homo(ispin), jquad, nmo, &
     893             :                                              num_fit_points, do_periodic, fermi_level_offset, omega, &
     894             :                                              Eigenval(:, ispin), delta_corr, &
     895             :                                              vec_omega_fit_gw, vec_W_gw(:, ispin), wj, fm_mat_Q, &
     896       19840 :                                              fm_mat_S_gw(ispin), fm_mat_S_gw_work(ispin))
     897             :          END DO
     898             : 
     899             :       END IF ! GW
     900             : 
     901        9890 :       CALL timestop(handle)
     902             : 
     903        9890 :    END SUBROUTINE compute_GW_self_energy
     904             : 
     905             : ! **************************************************************************************************
     906             : !> \brief ...
     907             : !> \param fermi_level_offset ...
     908             : !> \param fermi_level_offset_input ...
     909             : !> \param Eigenval ...
     910             : !> \param homo ...
     911             : ! **************************************************************************************************
     912       10708 :    SUBROUTINE get_fermi_level_offset(fermi_level_offset, fermi_level_offset_input, Eigenval, homo)
     913             : 
     914             :       REAL(KIND=dp), INTENT(INOUT)                       :: fermi_level_offset
     915             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset_input
     916             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: Eigenval
     917             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: homo
     918             : 
     919             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_fermi_level_offset'
     920             : 
     921             :       INTEGER                                            :: handle, ispin, nspins
     922             : 
     923       10708 :       CALL timeset(routineN, handle)
     924             : 
     925       10708 :       nspins = SIZE(Eigenval, 2)
     926             : 
     927             :       ! Fermi level offset should have a maximum such that the Fermi level of occupied orbitals
     928             :       ! is always closer to occupied orbitals than to virtual orbitals and vice versa
     929             :       ! that means, the Fermi level offset is at most as big as half the bandgap
     930       10708 :       fermi_level_offset = fermi_level_offset_input
     931       21644 :       DO ispin = 1, nspins
     932       21644 :          fermi_level_offset = MIN(fermi_level_offset, (Eigenval(homo(ispin) + 1, ispin) - Eigenval(homo(ispin), ispin))*0.5_dp)
     933             :       END DO
     934             : 
     935       10708 :       CALL timestop(handle)
     936             : 
     937       10708 :    END SUBROUTINE get_fermi_level_offset
     938             : 
     939             : ! **************************************************************************************************
     940             : !> \brief ...
     941             : !> \param fm_mat_W ...
     942             : !> \param fm_mat_Q ...
     943             : !> \param fm_mat_work ...
     944             : !> \param dimen_RI ...
     945             : !> \param fm_mat_L ...
     946             : !> \param num_integ_points ...
     947             : !> \param tj ...
     948             : !> \param tau_tj ...
     949             : !> \param weights_cos_tf_w_to_t ...
     950             : !> \param jquad ...
     951             : !> \param omega ...
     952             : ! **************************************************************************************************
     953         722 :    SUBROUTINE compute_W_cubic_GW(fm_mat_W, fm_mat_Q, fm_mat_work, dimen_RI, fm_mat_L, num_integ_points, &
     954             :                                  tj, tau_tj, weights_cos_tf_w_to_t, jquad, omega)
     955             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
     956             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_work
     957             :       INTEGER, INTENT(IN)                                :: dimen_RI
     958             :       TYPE(cp_fm_type), DIMENSION(:, :), INTENT(IN)      :: fm_mat_L
     959             :       INTEGER, INTENT(IN)                                :: num_integ_points
     960             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
     961             :          INTENT(IN)                                      :: tj, tau_tj
     962             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
     963             :          INTENT(IN)                                      :: weights_cos_tf_w_to_t
     964             :       INTEGER, INTENT(IN)                                :: jquad
     965             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
     966             : 
     967             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_W_cubic_GW'
     968             : 
     969             :       INTEGER                                            :: handle, i_global, iiB, iquad, j_global, &
     970             :                                                             jjB, ncol_local, nrow_local
     971         722 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
     972             :       REAL(KIND=dp)                                      :: tau, weight
     973             : 
     974         722 :       CALL timeset(routineN, handle)
     975             : 
     976             :       CALL cp_fm_get_info(matrix=fm_mat_Q, &
     977             :                           nrow_local=nrow_local, &
     978             :                           ncol_local=ncol_local, &
     979             :                           row_indices=row_indices, &
     980         722 :                           col_indices=col_indices)
     981             :       ! calculate [1+Q(iw')]^-1
     982         722 :       CALL cp_fm_cholesky_invert(fm_mat_Q)
     983             : 
     984             :       ! symmetrize the result
     985         722 :       CALL cp_fm_uplo_to_full(fm_mat_Q, fm_mat_work)
     986             : 
     987             :       ! subtract 1 from the diagonal to get rid of exchange self-energy
     988             : !$OMP           PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
     989         722 : !$OMP                       SHARED(ncol_local,nrow_local,col_indices,row_indices,fm_mat_Q,dimen_RI)
     990             :       DO jjB = 1, ncol_local
     991             :          j_global = col_indices(jjB)
     992             :          DO iiB = 1, nrow_local
     993             :             i_global = row_indices(iiB)
     994             :             IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
     995             :                fm_mat_Q%local_data(iiB, jjB) = fm_mat_Q%local_data(iiB, jjB) - 1.0_dp
     996             :             END IF
     997             :          END DO
     998             :       END DO
     999             : 
    1000             :       ! multiply with L from the left and the right to get the screened Coulomb interaction
    1001             :       CALL parallel_gemm('T', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_L(1, 1), fm_mat_Q, &
    1002         722 :                          0.0_dp, fm_mat_work)
    1003             : 
    1004             :       CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_mat_work, fm_mat_L(1, 1), &
    1005         722 :                          0.0_dp, fm_mat_Q)
    1006             : 
    1007             :       ! Fourier transform from w to t
    1008       17528 :       DO iquad = 1, num_integ_points
    1009             : 
    1010       16806 :          omega = tj(jquad)
    1011       16806 :          tau = tau_tj(iquad)
    1012       16806 :          weight = weights_cos_tf_w_to_t(iquad, jquad)*COS(tau*omega)
    1013             : 
    1014       16806 :          IF (jquad == 1) THEN
    1015             : 
    1016         722 :             CALL cp_fm_set_all(matrix=fm_mat_W(iquad), alpha=0.0_dp)
    1017             : 
    1018             :          END IF
    1019             : 
    1020       17528 :          CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_mat_W(iquad), beta=weight, matrix_b=fm_mat_Q)
    1021             : 
    1022             :       END DO
    1023             : 
    1024         722 :       CALL timestop(handle)
    1025         722 :    END SUBROUTINE compute_W_cubic_GW
    1026             : 
    1027             : ! **************************************************************************************************
    1028             : !> \brief ...
    1029             : !> \param vec_Sigma_c_gw ...
    1030             : !> \param dimen_nm_gw ...
    1031             : !> \param dimen_RI ...
    1032             : !> \param gw_corr_lev_occ ...
    1033             : !> \param gw_corr_lev_virt ...
    1034             : !> \param homo ...
    1035             : !> \param jquad ...
    1036             : !> \param nmo ...
    1037             : !> \param num_fit_points ...
    1038             : !> \param do_periodic ...
    1039             : !> \param fermi_level_offset ...
    1040             : !> \param omega ...
    1041             : !> \param Eigenval ...
    1042             : !> \param delta_corr ...
    1043             : !> \param vec_omega_fit_gw ...
    1044             : !> \param vec_W_gw ...
    1045             : !> \param wj ...
    1046             : !> \param fm_mat_Q ...
    1047             : !> \param fm_mat_S_gw ...
    1048             : !> \param fm_mat_S_gw_work ...
    1049             : ! **************************************************************************************************
    1050       49750 :    SUBROUTINE compute_GW_self_energy_deep(vec_Sigma_c_gw, dimen_nm_gw, dimen_RI, &
    1051             :                                           gw_corr_lev_occ, gw_corr_lev_virt, &
    1052             :                                           homo, jquad, nmo, num_fit_points, &
    1053       19900 :                                           do_periodic, fermi_level_offset, omega, Eigenval, &
    1054       14805 :                                           delta_corr, vec_omega_fit_gw, vec_W_gw, &
    1055        9950 :                                           wj, fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work)
    1056             : 
    1057             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    1058             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    1059             :       INTEGER, INTENT(IN)                                :: dimen_nm_gw, dimen_RI, gw_corr_lev_occ, &
    1060             :                                                             gw_corr_lev_virt, homo, jquad, nmo, &
    1061             :                                                             num_fit_points
    1062             :       LOGICAL, INTENT(IN)                                :: do_periodic
    1063             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    1064             :       REAL(KIND=dp), INTENT(INOUT)                       :: omega
    1065             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval
    1066             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: delta_corr, vec_omega_fit_gw
    1067             :       REAL(KIND=dp), DIMENSION(:), INTENT(OUT)           :: vec_W_gw
    1068             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: wj
    1069             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mat_Q, fm_mat_S_gw, fm_mat_S_gw_work
    1070             : 
    1071             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_GW_self_energy_deep'
    1072             : 
    1073             :       INTEGER                                            :: handle, iiB, iquad, m_global, n_global, &
    1074             :                                                             ncol_local, nm_global
    1075        9950 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1076             :       REAL(KIND=dp)                                      :: delta_corr_nn, e_fermi, omega_i, &
    1077             :                                                             sign_occ_virt
    1078             : 
    1079        9950 :       CALL timeset(routineN, handle)
    1080             : 
    1081             :       ! S_work_(nm)Q = B_(nm)P * ([1+Q]^-1-1)_PQ
    1082             :       CALL parallel_gemm(transa="N", transb="N", m=dimen_RI, n=dimen_nm_gw, k=dimen_RI, alpha=1.0_dp, &
    1083             :                          matrix_a=fm_mat_Q, matrix_b=fm_mat_S_gw, beta=0.0_dp, &
    1084        9950 :                          matrix_c=fm_mat_S_gw_work)
    1085             : 
    1086             :       CALL cp_fm_get_info(matrix=fm_mat_S_gw, &
    1087             :                           ncol_local=ncol_local, &
    1088             :                           row_indices=row_indices, &
    1089        9950 :                           col_indices=col_indices)
    1090             : 
    1091             :       ! vector W_(nm) = S_work_(nm)Q * [B_(nm)Q]^T
    1092             : 
    1093     3673450 :       vec_W_gw = 0.0_dp
    1094             : 
    1095     3673450 :       DO iiB = 1, ncol_local
    1096     3663500 :          nm_global = col_indices(iiB)
    1097             :          vec_W_gw(nm_global) = vec_W_gw(nm_global) + &
    1098   160486400 :                                DOT_PRODUCT(fm_mat_S_gw_work%local_data(:, iiB), fm_mat_S_gw%local_data(:, iiB))
    1099             : 
    1100             :          ! transform the index nm of vec_W_gw back to n and m, formulae copied from Mauro's code
    1101     3663500 :          n_global = MAX(1, nm_global - 1)/nmo + 1
    1102     3663500 :          m_global = nm_global - (n_global - 1)*nmo
    1103     3663500 :          n_global = n_global + homo - gw_corr_lev_occ
    1104             : 
    1105             :          ! compute self-energy for imaginary frequencies
    1106   294260950 :          DO iquad = 1, num_fit_points
    1107             : 
    1108             :             ! for occ orbitals, we compute the self-energy for negative frequencies
    1109   290587500 :             IF (n_global <= homo) THEN
    1110             :                sign_occ_virt = -1.0_dp
    1111             :             ELSE
    1112   217788860 :                sign_occ_virt = 1.0_dp
    1113             :             END IF
    1114             : 
    1115   290587500 :             omega_i = vec_omega_fit_gw(iquad)*sign_occ_virt
    1116             : 
    1117             :             ! set the Fermi energy for occ orbitals slightly above the HOMO and
    1118             :             ! for virt orbitals slightly below the LUMO
    1119   290587500 :             IF (n_global <= homo) THEN
    1120   436648440 :                e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    1121             :             ELSE
    1122  3039549560 :                e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt)) - fermi_level_offset
    1123             :             END IF
    1124             : 
    1125             :             ! add here the periodic correction
    1126   290587500 :             IF (do_periodic .AND. row_indices(1) == 1 .AND. n_global == m_global) THEN
    1127       57120 :                delta_corr_nn = delta_corr(n_global)
    1128             :             ELSE
    1129             :                delta_corr_nn = 0.0_dp
    1130             :             END IF
    1131             : 
    1132             :             ! update the self-energy (use that vec_W_gw(iw) is symmetric), divide the integration
    1133             :             ! weight by 2, because the integration is from -infty to +infty and not just 0 to +infty
    1134             :             ! as for RPA, also we need for virtual orbitals a complex conjugate
    1135             :             vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) = &
    1136             :                vec_Sigma_c_gw(n_global - homo + gw_corr_lev_occ, iquad, 1) - &
    1137             :                0.5_dp/pi*wj(jquad)/2.0_dp*(vec_W_gw(nm_global) + delta_corr_nn)* &
    1138             :                (1.0_dp/(gaussi*(omega + omega_i) + e_fermi - Eigenval(m_global)) + &
    1139   294251000 :                 1.0_dp/(gaussi*(-omega + omega_i) + e_fermi - Eigenval(m_global)))
    1140             :          END DO
    1141             : 
    1142             :       END DO
    1143             : 
    1144        9950 :       CALL timestop(handle)
    1145             : 
    1146        9950 :    END SUBROUTINE compute_GW_self_energy_deep
    1147             : 
    1148             : ! **************************************************************************************************
    1149             : !> \brief ...
    1150             : !> \param vec_Sigma_c_gw ...
    1151             : !> \param count_ev_sc_GW ...
    1152             : !> \param gw_corr_lev_occ ...
    1153             : !> \param gw_corr_lev_tot ...
    1154             : !> \param gw_corr_lev_virt ...
    1155             : !> \param homo ...
    1156             : !> \param nmo ...
    1157             : !> \param num_fit_points ...
    1158             : !> \param num_integ_points ...
    1159             : !> \param unit_nr ...
    1160             : !> \param do_apply_ic_corr_to_gw ...
    1161             : !> \param do_im_time ...
    1162             : !> \param do_periodic ...
    1163             : !> \param do_ri_Sigma_x ...
    1164             : !> \param first_cycle_periodic_correction ...
    1165             : !> \param e_fermi ...
    1166             : !> \param eps_filter ...
    1167             : !> \param fermi_level_offset ...
    1168             : !> \param delta_corr ...
    1169             : !> \param Eigenval ...
    1170             : !> \param Eigenval_last ...
    1171             : !> \param Eigenval_scf ...
    1172             : !> \param iter_sc_GW0 ...
    1173             : !> \param exit_ev_gw ...
    1174             : !> \param tau_tj ...
    1175             : !> \param tj ...
    1176             : !> \param vec_omega_fit_gw ...
    1177             : !> \param vec_Sigma_x_gw ...
    1178             : !> \param ic_corr_list ...
    1179             : !> \param weights_cos_tf_t_to_w ...
    1180             : !> \param weights_sin_tf_t_to_w ...
    1181             : !> \param fm_mo_coeff_occ_scaled ...
    1182             : !> \param fm_mo_coeff_virt_scaled ...
    1183             : !> \param fm_mo_coeff_occ ...
    1184             : !> \param fm_mo_coeff_virt ...
    1185             : !> \param fm_scaled_dm_occ_tau ...
    1186             : !> \param fm_scaled_dm_virt_tau ...
    1187             : !> \param mo_coeff ...
    1188             : !> \param fm_mat_W ...
    1189             : !> \param para_env ...
    1190             : !> \param para_env_RPA ...
    1191             : !> \param mat_dm ...
    1192             : !> \param mat_MinvVMinv ...
    1193             : !> \param t_3c_O ...
    1194             : !> \param t_3c_M ...
    1195             : !> \param t_3c_overl_int_ao_mo ...
    1196             : !> \param t_3c_O_compressed ...
    1197             : !> \param t_3c_O_mo_compressed ...
    1198             : !> \param t_3c_O_ind ...
    1199             : !> \param t_3c_O_mo_ind ...
    1200             : !> \param t_3c_overl_int_gw_RI ...
    1201             : !> \param t_3c_overl_int_gw_AO ...
    1202             : !> \param matrix_berry_im_mo_mo ...
    1203             : !> \param matrix_berry_re_mo_mo ...
    1204             : !> \param mat_W ...
    1205             : !> \param matrix_s ...
    1206             : !> \param kpoints ...
    1207             : !> \param mp2_env ...
    1208             : !> \param qs_env ...
    1209             : !> \param nkp_self_energy ...
    1210             : !> \param do_kpoints_cubic_RPA ...
    1211             : !> \param starts_array_mc ...
    1212             : !> \param ends_array_mc ...
    1213             : ! **************************************************************************************************
    1214        1160 :    SUBROUTINE compute_QP_energies(vec_Sigma_c_gw, count_ev_sc_GW, gw_corr_lev_occ, &
    1215         464 :                                   gw_corr_lev_tot, gw_corr_lev_virt, homo, &
    1216             :                                   nmo, num_fit_points, num_integ_points, &
    1217             :                                   unit_nr, do_apply_ic_corr_to_gw, do_im_time, &
    1218             :                                   do_periodic, do_ri_Sigma_x, &
    1219         232 :                                   first_cycle_periodic_correction, e_fermi, eps_filter, &
    1220         232 :                                   fermi_level_offset, delta_corr, Eigenval, &
    1221             :                                   Eigenval_last, Eigenval_scf, iter_sc_GW0, exit_ev_gw, tau_tj, tj, &
    1222             :                                   vec_omega_fit_gw, vec_Sigma_x_gw, ic_corr_list, &
    1223             :                                   weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, &
    1224         232 :                                   fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, fm_mo_coeff_occ, &
    1225         335 :                                   fm_mo_coeff_virt, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, &
    1226             :                                   mo_coeff, fm_mat_W, para_env, para_env_RPA, mat_dm, mat_MinvVMinv, &
    1227             :                                   t_3c_O, t_3c_M, t_3c_overl_int_ao_mo, &
    1228         232 :                                   t_3c_O_compressed, t_3c_O_mo_compressed, &
    1229         232 :                                   t_3c_O_ind, t_3c_O_mo_ind, &
    1230         580 :                                   t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, matrix_berry_im_mo_mo, &
    1231             :                                   matrix_berry_re_mo_mo, mat_W, matrix_s, &
    1232             :                                   kpoints, mp2_env, qs_env, nkp_self_energy, do_kpoints_cubic_RPA, &
    1233         234 :                                   starts_array_mc, ends_array_mc)
    1234             : 
    1235             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    1236             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    1237             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    1238             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ
    1239             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    1240             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_virt, homo
    1241             :       INTEGER, INTENT(IN)                                :: nmo, num_fit_points, num_integ_points, &
    1242             :                                                             unit_nr
    1243             :       LOGICAL, INTENT(IN)                                :: do_apply_ic_corr_to_gw, do_im_time, &
    1244             :                                                             do_periodic, do_ri_Sigma_x
    1245             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    1246             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    1247             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, fermi_level_offset
    1248             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1249             :          INTENT(INOUT)                                   :: delta_corr
    1250             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: Eigenval
    1251             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1252             :          INTENT(INOUT)                                   :: Eigenval_last, Eigenval_scf
    1253             :       INTEGER, INTENT(IN)                                :: iter_sc_GW0
    1254             :       LOGICAL, INTENT(INOUT)                             :: exit_ev_gw
    1255             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    1256             :          INTENT(INOUT)                                   :: tau_tj, tj, vec_omega_fit_gw
    1257             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    1258             :          INTENT(INOUT)                                   :: vec_Sigma_x_gw
    1259             :       TYPE(one_dim_real_array), DIMENSION(2), INTENT(IN) :: ic_corr_list
    1260             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
    1261             :          INTENT(IN)                                      :: weights_cos_tf_t_to_w, &
    1262             :                                                             weights_sin_tf_t_to_w
    1263             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff_occ_scaled, &
    1264             :                                                             fm_mo_coeff_virt_scaled
    1265             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mo_coeff_occ, fm_mo_coeff_virt
    1266             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_scaled_dm_occ_tau, &
    1267             :                                                             fm_scaled_dm_virt_tau, mo_coeff
    1268             :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
    1269             :          INTENT(IN)                                      :: fm_mat_W
    1270             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    1271             :       TYPE(dbcsr_p_type), INTENT(IN)                     :: mat_dm, mat_MinvVMinv
    1272             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    1273             :       TYPE(dbt_type)                                     :: t_3c_M, t_3c_overl_int_ao_mo
    1274             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    1275             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_compressed
    1276             :       TYPE(hfx_compression_type), DIMENSION(:)           :: t_3c_O_mo_compressed
    1277             :       TYPE(block_ind_type), ALLOCATABLE, &
    1278             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    1279             :       TYPE(two_dim_int_array), DIMENSION(:)              :: t_3c_O_mo_ind
    1280             :       TYPE(dbt_type), DIMENSION(:)                       :: t_3c_overl_int_gw_RI, &
    1281             :                                                             t_3c_overl_int_gw_AO
    1282             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_im_mo_mo, &
    1283             :                                                             matrix_berry_re_mo_mo
    1284             :       TYPE(dbcsr_type), POINTER                          :: mat_W
    1285             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    1286             :       TYPE(kpoint_type), POINTER                         :: kpoints
    1287             :       TYPE(mp2_type)                                     :: mp2_env
    1288             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1289             :       INTEGER, INTENT(IN)                                :: nkp_self_energy
    1290             :       LOGICAL, INTENT(IN)                                :: do_kpoints_cubic_RPA
    1291             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    1292             : 
    1293             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_QP_energies'
    1294             : 
    1295             :       INTEGER :: count_ev_sc_GW_print, count_sc_GW0, count_sc_GW0_print, crossing_search, handle, &
    1296             :          idos, ikp, ispin, iunit, n_level_gw, ndos, nspins, num_points_corr, num_poles
    1297             :       LOGICAL                                            :: do_kpoints_Sigma, my_open_shell
    1298             :       REAL(KIND=dp) :: dos_lower_bound, dos_precision, dos_upper_bound, E_CBM_GW, E_CBM_GW_beta, &
    1299             :          E_CBM_SCF, E_CBM_SCF_beta, E_VBM_GW, E_VBM_GW_beta, E_VBM_SCF, E_VBM_SCF_beta, stop_crit
    1300         232 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_gw_dos
    1301         232 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: m_value, vec_gw_energ, z_value
    1302             :       TYPE(cp_logger_type), POINTER                      :: logger
    1303             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1304             : 
    1305         232 :       CALL timeset(routineN, handle)
    1306             : 
    1307         232 :       nspins = SIZE(homo)
    1308         232 :       my_open_shell = (nspins == 2)
    1309             : 
    1310         232 :       do_kpoints_Sigma = mp2_env%ri_g0w0%do_kpoints_Sigma
    1311             : 
    1312         300 :       DO count_sc_GW0 = 1, iter_sc_GW0
    1313             : 
    1314             :          ! postprocessing for cubic scaling GW calculation
    1315         246 :          IF (do_im_time .AND. .NOT. do_kpoints_cubic_RPA .AND. .NOT. do_kpoints_Sigma) THEN
    1316          56 :             num_points_corr = mp2_env%ri_g0w0%num_omega_points
    1317             : 
    1318         118 :             DO ispin = 1, nspins
    1319             :                CALL compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    1320             :                                                  matrix_s, fm_mo_coeff_occ(ispin), &
    1321             :                                                  fm_mo_coeff_virt(ispin), fm_mo_coeff_occ_scaled, &
    1322             :                                                  fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    1323             :                                                  fm_scaled_dm_virt_tau, Eigenval(:, 1, ispin), eps_filter, &
    1324             :                                                  e_fermi(ispin), fm_mat_W, &
    1325             :                                                  gw_corr_lev_tot, gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), homo(ispin), &
    1326             :                                                  count_ev_sc_GW, count_sc_GW0, &
    1327             :                                                  t_3c_overl_int_ao_mo, t_3c_O_mo_compressed(ispin), &
    1328             :                                                  t_3c_O_mo_ind(ispin)%array, &
    1329             :                                                  t_3c_overl_int_gw_RI(ispin), t_3c_overl_int_gw_AO(ispin), &
    1330             :                                                  mat_W, mat_MinvVMinv, mat_dm, &
    1331             :                                                  weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, ispin), &
    1332             :                                                  do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    1333             :                                                  mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    1334             :                                                  first_cycle_periodic_correction, kpoints, num_fit_points, mo_coeff, &
    1335         118 :                                                  do_ri_Sigma_x, vec_Sigma_x_gw(:, :, ispin), unit_nr, ispin)
    1336             :             END DO
    1337             : 
    1338             :          END IF
    1339             : 
    1340         230 :          IF (do_kpoints_Sigma) THEN
    1341             :             CALL compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    1342             :                                                       matrix_s, Eigenval(:, :, :), e_fermi, fm_mat_W, &
    1343             :                                                       gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    1344             :                                                       count_ev_sc_GW, count_sc_GW0, &
    1345             :                                                       t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    1346             :                                                       mat_W, mat_MinvVMinv, &
    1347             :                                                       weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw(:, :, :, :), &
    1348             :                                                       qs_env, para_env, &
    1349             :                                                       mp2_env, num_fit_points, mo_coeff, &
    1350             :                                                       do_ri_Sigma_x, vec_Sigma_x_gw(:, :, :), unit_nr, nspins, &
    1351          16 :                                                       starts_array_mc, ends_array_mc, eps_filter)
    1352             : 
    1353             :          END IF
    1354             : 
    1355         246 :          IF (do_periodic .AND. mp2_env%ri_g0w0%do_average_deg_levels) THEN
    1356             : 
    1357          20 :             DO ispin = 1, nspins
    1358             :                CALL average_degenerate_levels(vec_Sigma_c_gw(:, :, :, ispin), &
    1359             :                                               Eigenval(1 + homo(ispin) - gw_corr_lev_occ(ispin): &
    1360             :                                                        homo(ispin) + gw_corr_lev_virt(ispin), 1, ispin), &
    1361          20 :                                               mp2_env%ri_g0w0%eps_eigenval)
    1362             :             END DO
    1363             :          END IF
    1364             : 
    1365         246 :          IF (.NOT. do_im_time) THEN
    1366      294370 :             CALL para_env%sum(vec_Sigma_c_gw)
    1367             :          END IF
    1368             : 
    1369         246 :          CALL para_env%sync()
    1370             : 
    1371         246 :          stop_crit = 1.0e-7
    1372         246 :          num_poles = mp2_env%ri_g0w0%num_poles
    1373         246 :          crossing_search = mp2_env%ri_g0w0%crossing_search
    1374             : 
    1375             :          ! arrays storing the correlation self-energy, stat. error and z-shot value
    1376        1230 :          ALLOCATE (vec_gw_energ(gw_corr_lev_tot, nkp_self_energy, nspins))
    1377        4458 :          vec_gw_energ = 0.0_dp
    1378         984 :          ALLOCATE (z_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1379        4458 :          z_value = 0.0_dp
    1380         984 :          ALLOCATE (m_value(gw_corr_lev_tot, nkp_self_energy, nspins))
    1381        4458 :          m_value = 0.0_dp
    1382         246 :          E_VBM_GW = -1.0E3
    1383         246 :          E_CBM_GW = 1.0E3
    1384         246 :          E_VBM_SCF = -1.0E3
    1385         246 :          E_CBM_SCF = 1.0E3
    1386         246 :          E_VBM_GW_beta = -1.0E3
    1387         246 :          E_CBM_GW_beta = 1.0E3
    1388         246 :          E_VBM_SCF_beta = -1.0E3
    1389         246 :          E_CBM_SCF_beta = 1.0E3
    1390             : 
    1391         246 :          ndos = 0
    1392         246 :          dos_precision = mp2_env%ri_g0w0%dos_prec
    1393         246 :          dos_upper_bound = mp2_env%ri_g0w0%dos_upper
    1394         246 :          dos_lower_bound = mp2_env%ri_g0w0%dos_lower
    1395             : 
    1396         246 :          IF (dos_lower_bound >= dos_upper_bound) THEN
    1397           0 :             CALL cp_abort(__LOCATION__, "Invalid settings for GW_DOS calculation!")
    1398             :          END IF
    1399             : 
    1400         246 :          IF (dos_precision /= 0) THEN
    1401           0 :             ndos = INT((dos_upper_bound - dos_lower_bound)/dos_precision)
    1402           0 :             ALLOCATE (vec_gw_dos(ndos))
    1403           0 :             vec_gw_dos = 0.0_dp
    1404             :          END IF
    1405             : 
    1406             :          ! for the normal code for molecules or Gamma only: nkp = 1
    1407         596 :          DO ikp = 1, nkp_self_energy
    1408             : 
    1409         350 :             kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1410             : 
    1411             :             ! fit the self-energy on imaginary frequency axis and evaluate the fit on the MO energy of the SCF
    1412        3628 :             DO n_level_gw = 1, gw_corr_lev_tot
    1413             :                ! processes perform different fits
    1414        3278 :                IF (MODULO(n_level_gw, para_env%num_pe) /= para_env%mepos) CYCLE
    1415             : 
    1416        2081 :                SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1417             :                CASE (gw_two_pole_model)
    1418             :                   CALL fit_and_continuation_2pole(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1419             :                                                   z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1420             :                                                   mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1421             :                                                   Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), n_level_gw, &
    1422             :                                                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), num_poles, &
    1423             :                                                   num_fit_points, crossing_search, homo(1), stop_crit, &
    1424         442 :                                                   fermi_level_offset, do_im_time)
    1425             : 
    1426             :                CASE (gw_pade_approx)
    1427             :                   CALL continuation_pade(vec_gw_energ(:, ikp, 1), vec_omega_fit_gw, &
    1428             :                                          z_value(:, ikp, 1), m_value(:, ikp, 1), vec_Sigma_c_gw(:, :, ikp, 1), &
    1429             :                                          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1430             :                                          Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1431             :                                          mp2_env%ri_g0w0%do_hedin_shift, n_level_gw, &
    1432             :                                          gw_corr_lev_occ(1), gw_corr_lev_virt(1), mp2_env%ri_g0w0%nparam_pade, &
    1433             :                                          num_fit_points, crossing_search, homo(1), fermi_level_offset, &
    1434             :                                          do_im_time, mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1435             :                                          vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1436             :                                          mp2_env%ri_g0w0%min_level_self_energy, &
    1437             :                                          mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1438        1197 :                                          mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1439             :                CASE DEFAULT
    1440        1639 :                   CPABORT("Only two-model and Pade approximation are implemented.")
    1441             :                END SELECT
    1442             : 
    1443        1989 :                IF (my_open_shell) THEN
    1444         268 :                   SELECT CASE (mp2_env%ri_g0w0%analytic_continuation)
    1445             :                   CASE (gw_two_pole_model)
    1446             :                      CALL fit_and_continuation_2pole( &
    1447             :                         vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1448             :                         z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1449             :                         mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1450             :                         Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), n_level_gw, &
    1451             :                         gw_corr_lev_occ(2), gw_corr_lev_virt(2), num_poles, &
    1452             :                         num_fit_points, crossing_search, homo(2), stop_crit, &
    1453         126 :                         fermi_level_offset, do_im_time)
    1454             :                   CASE (gw_pade_approx)
    1455             :                      CALL continuation_pade(vec_gw_energ(:, ikp, 2), vec_omega_fit_gw, &
    1456             :                                             z_value(:, ikp, 2), m_value(:, ikp, 2), vec_Sigma_c_gw(:, :, ikp, 2), &
    1457             :                                             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1458             :                                             Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), &
    1459             :                                             mp2_env%ri_g0w0%do_hedin_shift, n_level_gw, &
    1460             :                                             gw_corr_lev_occ(2), gw_corr_lev_virt(2), mp2_env%ri_g0w0%nparam_pade, &
    1461             :                                             num_fit_points, crossing_search, homo(2), &
    1462             :                                             fermi_level_offset, do_im_time, &
    1463             :                                             mp2_env%ri_g0w0%print_self_energy, count_ev_sc_GW, &
    1464             :                                             vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    1465             :                                             mp2_env%ri_g0w0%min_level_self_energy, &
    1466             :                                             mp2_env%ri_g0w0%max_level_self_energy, mp2_env%ri_g0w0%dos_eta, &
    1467          16 :                                             mp2_env%ri_g0w0%dos_min, mp2_env%ri_g0w0%dos_max)
    1468             :                   CASE DEFAULT
    1469         142 :                      CPABORT("Only two-pole model and Pade approximation are implemented.")
    1470             :                   END SELECT
    1471             : 
    1472             :                END IF
    1473             : 
    1474             :             END DO ! n_level_gw
    1475             : 
    1476         350 :             CALL para_env%sum(vec_gw_energ)
    1477         350 :             CALL para_env%sum(z_value)
    1478         350 :             CALL para_env%sum(m_value)
    1479             : 
    1480         350 :             IF (dos_precision /= 0.0_dp) THEN
    1481           0 :                CALL para_env%sum(vec_gw_dos)
    1482             :             END IF
    1483             : 
    1484         350 :             CALL check_NaN(vec_gw_energ, 0.0_dp)
    1485         350 :             CALL check_NaN(z_value, 1.0_dp)
    1486         350 :             CALL check_NaN(m_value, 0.0_dp)
    1487             : 
    1488         350 :             IF (do_im_time .OR. mp2_env%ri_g0w0%iter_sc_GW0 == 1) THEN
    1489         276 :                count_ev_sc_GW_print = count_ev_sc_GW
    1490         276 :                count_sc_GW0_print = count_sc_GW0
    1491             :             ELSE
    1492          74 :                count_ev_sc_GW_print = count_sc_GW0
    1493          74 :                count_sc_GW0_print = count_ev_sc_GW
    1494             :             END IF
    1495             : 
    1496             :             ! print the quasiparticle energies and update Eigenval in case you do eigenvalue self-consistent GW
    1497         596 :             IF (my_open_shell) THEN
    1498             : 
    1499             :                CALL print_and_update_for_ev_sc( &
    1500             :                   vec_gw_energ(:, ikp, 1), &
    1501             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1502             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1503             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1504             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1505          34 :                   ikp, nkp_self_energy, kpoints_Sigma, 1, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1506             : 
    1507             :                CALL print_and_update_for_ev_sc( &
    1508             :                   vec_gw_energ(:, ikp, 2), &
    1509             :                   z_value(:, ikp, 2), m_value(:, ikp, 2), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 2, ikp), &
    1510             :                   Eigenval(:, ikp, 2), Eigenval_last(:, ikp, 2), Eigenval_scf(:, ikp, 2), &
    1511             :                   gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1512             :                   crossing_search, homo(2), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1513          34 :                   ikp, nkp_self_energy, kpoints_Sigma, 2, E_VBM_GW_beta, E_CBM_GW_beta, E_VBM_SCF_beta, E_CBM_SCF_beta)
    1514             : 
    1515          34 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1516             : 
    1517             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1518             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1519           0 :                                      homo(1), nmo, unit_nr, do_alpha=.TRUE.)
    1520             : 
    1521             :                   CALL apply_ic_corr(Eigenval(:, ikp, 2), Eigenval_scf(:, ikp, 2), ic_corr_list(2)%array, &
    1522             :                                      gw_corr_lev_occ(2), gw_corr_lev_virt(2), gw_corr_lev_tot, &
    1523           0 :                                      homo(2), nmo, unit_nr, do_beta=.TRUE.)
    1524             : 
    1525             :                END IF
    1526             : 
    1527             :             ELSE
    1528             : 
    1529             :                CALL print_and_update_for_ev_sc( &
    1530             :                   vec_gw_energ(:, ikp, 1), &
    1531             :                   z_value(:, ikp, 1), m_value(:, ikp, 1), mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, 1, ikp), &
    1532             :                   Eigenval(:, ikp, 1), Eigenval_last(:, ikp, 1), Eigenval_scf(:, ikp, 1), &
    1533             :                   gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1534             :                   crossing_search, homo(1), unit_nr, count_ev_sc_GW_print, count_sc_GW0_print, &
    1535         316 :                   ikp, nkp_self_energy, kpoints_Sigma, 0, E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF)
    1536             : 
    1537         316 :                IF (do_apply_ic_corr_to_gw .AND. count_ev_sc_GW == 1) THEN
    1538             : 
    1539             :                   CALL apply_ic_corr(Eigenval(:, ikp, 1), Eigenval_scf(:, ikp, 1), ic_corr_list(1)%array, &
    1540             :                                      gw_corr_lev_occ(1), gw_corr_lev_virt(1), gw_corr_lev_tot, &
    1541           0 :                                      homo(1), nmo, unit_nr)
    1542             : 
    1543             :                END IF
    1544             : 
    1545             :             END IF
    1546             : 
    1547             :          END DO ! ikp
    1548             : 
    1549         246 :          IF (nkp_self_energy > 1 .AND. unit_nr > 0) THEN
    1550             : 
    1551             :             CALL print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    1552           8 :                             E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    1553             : 
    1554             :          END IF
    1555             : 
    1556             :          ! Decide whether to add spin-orbit splitting of bands, spin-orbit coupling strength comes from
    1557             :          ! Hartwigsen parametrization (1999) of GTH pseudopotentials
    1558         246 :          IF (mp2_env%ri_g0w0%soc_type /= soc_none) THEN
    1559             :             CALL calculate_and_print_soc(qs_env, Eigenval_scf, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1560           2 :                                          homo, unit_nr, do_soc_gw=.FALSE., do_soc_scf=.TRUE.)
    1561             :             CALL calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1562           2 :                                          homo, unit_nr, do_soc_gw=.TRUE., do_soc_scf=.FALSE.)
    1563             :          END IF
    1564             : 
    1565         246 :          logger => cp_get_default_logger()
    1566         246 :          IF (logger%para_env%is_source()) THEN
    1567         243 :             iunit = cp_logger_get_default_unit_nr()
    1568             :          ELSE
    1569           3 :             iunit = -1
    1570             :          END IF
    1571             : 
    1572         246 :          IF (dos_precision /= 0.0_dp) THEN
    1573           0 :             IF (iunit > 0) THEN
    1574           0 :                CALL open_file('spectral.dat', unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    1575           0 :                DO idos = 1, ndos
    1576             :                   ! 1/pi
    1577             :                   ! [1/Hartree] -> [1/evolt]
    1578           0 :                   WRITE (iunit, '(E17.10, E17.10)') (dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision)*evolt, &
    1579           0 :                      vec_gw_dos(idos)/evolt/pi
    1580             :                END DO
    1581           0 :                CALL close_file(iunit)
    1582             :             END IF
    1583           0 :             DEALLOCATE (vec_gw_dos)
    1584             :          END IF
    1585             : 
    1586         246 :          DEALLOCATE (z_value)
    1587         246 :          DEALLOCATE (m_value)
    1588         246 :          DEALLOCATE (vec_gw_energ)
    1589             : 
    1590         246 :          exit_ev_gw = .FALSE.
    1591             : 
    1592             :          ! if HOMO-LUMO gap differs by less than mp2_env%ri_g0w0%eps_sc_iter, exit ev sc GW loop
    1593         246 :          IF (ABS(Eigenval(homo(1), 1, 1) - Eigenval_last(homo(1), 1, 1) - &
    1594             :                  Eigenval(homo(1) + 1, 1, 1) + Eigenval_last(homo(1) + 1, 1, 1)) &
    1595             :              < mp2_env%ri_g0w0%eps_iter) THEN
    1596          22 :             IF (count_sc_GW0 == 1) exit_ev_gw = .TRUE.
    1597             :             EXIT
    1598             :          END IF
    1599             : 
    1600         468 :          DO ispin = 1, nspins
    1601             :             CALL shift_unshifted_levels(Eigenval(:, 1, ispin), Eigenval_last(:, 1, ispin), gw_corr_lev_occ(ispin), &
    1602         468 :                                         gw_corr_lev_virt(ispin), homo(ispin), nmo)
    1603             :          END DO
    1604             : 
    1605         224 :          IF (do_im_time .AND. do_kpoints_Sigma .AND. mp2_env%ri_g0w0%print_local_bandgap) THEN
    1606           2 :             CALL print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "GW")
    1607           2 :             CALL print_local_bandgap(qs_env, Eigenval_scf, gw_corr_lev_occ(1), gw_corr_lev_virt(1), homo(1), "DFT")
    1608             :          END IF
    1609             : 
    1610             :          ! in case of N^4 scaling GW, the scGW0 cycle is the eigenvalue sc cycle
    1611         278 :          IF (.NOT. do_im_time) EXIT
    1612             : 
    1613             :       END DO ! scGW0
    1614             : 
    1615         232 :       CALL timestop(handle)
    1616             : 
    1617         232 :    END SUBROUTINE compute_QP_energies
    1618             : 
    1619             : ! **************************************************************************************************
    1620             : !> \brief ...
    1621             : !> \param qs_env ...
    1622             : !> \param Eigenval ...
    1623             : !> \param Eigenval_scf ...
    1624             : !> \param gw_corr_lev_occ ...
    1625             : !> \param gw_corr_lev_virt ...
    1626             : !> \param homo ...
    1627             : !> \param unit_nr ...
    1628             : !> \param do_soc_gw ...
    1629             : !> \param do_soc_scf ...
    1630             : ! **************************************************************************************************
    1631           4 :    SUBROUTINE calculate_and_print_soc(qs_env, Eigenval, Eigenval_scf, gw_corr_lev_occ, gw_corr_lev_virt, &
    1632           4 :                                       homo, unit_nr, do_soc_gw, do_soc_scf)
    1633             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1634             :       REAL(KIND=dp), DIMENSION(:, :, :)                  :: Eigenval, Eigenval_scf
    1635             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    1636             :       INTEGER                                            :: unit_nr
    1637             :       LOGICAL                                            :: do_soc_gw, do_soc_scf
    1638             : 
    1639             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_and_print_soc'
    1640             : 
    1641             :       INTEGER :: handle, i_dim, i_glob, i_row, ikp, j_col, j_glob, n_level_gw, nao, ncol_local, &
    1642             :          nder, nkind, nkp_self_energy, nrow_local, periodic(3), size_real_space
    1643           4 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: index0
    1644           4 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    1645             :       LOGICAL                                            :: calculate_forces, use_virial
    1646             :       REAL(KIND=dp) :: avg_occ_QP_shift, avg_virt_QP_shift, E_CBM_GW_SOC, E_GAP_GW_SOC, E_HOMO, &
    1647             :          E_HOMO_GW_SOC, E_i, E_j, E_LUMO, E_LUMO_GW_SOC, E_VBM_GW_SOC, E_window, eps_ppnl
    1648           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eigenvalues_without_soc_sorted
    1649           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: eigenvalues
    1650           4 :       TYPE(atomic_kind_type), DIMENSION(:), POINTER      :: atomic_kind_set
    1651             :       TYPE(cell_type), POINTER                           :: cell
    1652             :       TYPE(cp_cfm_type)                                  :: cfm_mat_h_double, cfm_mat_h_ks, &
    1653             :                                                             cfm_mat_s_double, cfm_mat_work_double, &
    1654             :                                                             cfm_mo_coeff, cfm_mo_coeff_double
    1655             :       TYPE(cp_fm_type), POINTER                          :: imos, rmos
    1656           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_desymm
    1657           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_VSOC_l_nosymm, mat_VSOC_lx_kp, &
    1658           4 :                                                             mat_VSOC_ly_kp, mat_VSOC_lz_kp, &
    1659           4 :                                                             matrix_dummy, matrix_l, &
    1660           4 :                                                             matrix_pot_dummy
    1661             :       TYPE(dft_control_type), POINTER                    :: dft_control
    1662             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    1663             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1664             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    1665           4 :          POINTER                                         :: sab_orb, sap_ppnl
    1666           4 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1667           4 :       TYPE(qs_force_type), DIMENSION(:), POINTER         :: force
    1668           4 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1669             :       TYPE(scf_control_type), POINTER                    :: scf_control
    1670             :       TYPE(virial_type), POINTER                         :: virial
    1671             : 
    1672           4 :       CALL timeset(routineN, handle)
    1673             : 
    1674           4 :       CPASSERT(do_soc_gw .NEQV. do_soc_scf)
    1675             : 
    1676             :       CALL get_qs_env(qs_env=qs_env, &
    1677             :                       matrix_s=matrix_s, &
    1678             :                       para_env=para_env, &
    1679             :                       qs_kind_set=qs_kind_set, &
    1680             :                       sab_orb=sab_orb, &
    1681             :                       atomic_kind_set=atomic_kind_set, &
    1682             :                       particle_set=particle_set, &
    1683             :                       sap_ppnl=sap_ppnl, &
    1684             :                       dft_control=dft_control, &
    1685             :                       cell=cell, &
    1686             :                       nkind=nkind, &
    1687           4 :                       scf_control=scf_control)
    1688             : 
    1689           4 :       calculate_forces = .FALSE.
    1690           4 :       use_virial = .FALSE.
    1691           4 :       nder = 0
    1692           4 :       eps_ppnl = dft_control%qs_control%eps_ppnl
    1693             : 
    1694           4 :       CALL get_cell(cell=cell, periodic=periodic)
    1695             : 
    1696           4 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    1697             : 
    1698           4 :       NULLIFY (matrix_l)
    1699           4 :       CALL dbcsr_allocate_matrix_set(matrix_l, 3, 1)
    1700          16 :       DO i_dim = 1, 3
    1701          12 :          ALLOCATE (matrix_l(i_dim, 1)%matrix)
    1702             :          CALL dbcsr_create(matrix_l(i_dim, 1)%matrix, template=matrix_s(1)%matrix, &
    1703          12 :                            matrix_type=dbcsr_type_antisymmetric)
    1704          12 :          CALL cp_dbcsr_alloc_block_from_nbl(matrix_l(i_dim, 1)%matrix, sab_orb)
    1705          16 :          CALL dbcsr_set(matrix_l(i_dim, 1)%matrix, 0.0_dp)
    1706             :       END DO
    1707             : 
    1708           4 :       NULLIFY (matrix_pot_dummy)
    1709           4 :       CALL dbcsr_allocate_matrix_set(matrix_pot_dummy, 1, 1)
    1710           4 :       ALLOCATE (matrix_pot_dummy(1, 1)%matrix)
    1711           4 :       CALL dbcsr_create(matrix_pot_dummy(1, 1)%matrix, template=matrix_s(1)%matrix)
    1712           4 :       CALL cp_dbcsr_alloc_block_from_nbl(matrix_pot_dummy(1, 1)%matrix, sab_orb)
    1713           4 :       CALL dbcsr_set(matrix_pot_dummy(1, 1)%matrix, 0.0_dp)
    1714             : 
    1715             :       CALL build_core_ppnl(matrix_pot_dummy, matrix_dummy, force, virial, calculate_forces, use_virial, nder, &
    1716             :                            qs_kind_set, atomic_kind_set, particle_set, sab_orb, sap_ppnl, eps_ppnl, &
    1717           4 :                            nimages=1, basis_type="ORB", matrix_l=matrix_l)
    1718             : 
    1719           4 :       CALL alloc_mat_set_2d(mat_VSOC_l_nosymm, 3, size_real_space, matrix_s(1)%matrix, explicitly_no_symmetry=.TRUE.)
    1720          16 :       DO i_dim = 1, 3
    1721          16 :          CALL dbcsr_desymmetrize(matrix_l(i_dim, 1)%matrix, mat_VSOC_l_nosymm(i_dim, 1)%matrix)
    1722             :       END DO
    1723             : 
    1724           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    1725             : 
    1726           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lx_kp, mat_VSOC_l_nosymm(1, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1727           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_ly_kp, mat_VSOC_l_nosymm(2, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1728           4 :       CALL mat_kp_from_mat_gamma(qs_env, mat_VSOC_lz_kp, mat_VSOC_l_nosymm(3, 1)%matrix, kpoints_Sigma, 1, .FALSE.)
    1729             : 
    1730           4 :       nkp_self_energy = kpoints_Sigma%nkp
    1731             : 
    1732           4 :       CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1733             : 
    1734           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_h_double)
    1735           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_s_double)
    1736           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mo_coeff_double)
    1737           4 :       CALL create_cfm_double_row_col_size(rmos, cfm_mat_work_double)
    1738             : 
    1739           4 :       CALL cp_cfm_set_all(cfm_mo_coeff_double, z_zero)
    1740             : 
    1741           4 :       CALL cp_cfm_create(cfm_mo_coeff, rmos%matrix_struct)
    1742           4 :       CALL cp_cfm_create(cfm_mat_h_ks, rmos%matrix_struct)
    1743             : 
    1744           4 :       CALL cp_fm_get_info(matrix=rmos, nrow_global=nao)
    1745             : 
    1746           4 :       NULLIFY (matrix_s_desymm)
    1747           4 :       CALL dbcsr_allocate_matrix_set(matrix_s_desymm, 1)
    1748           4 :       ALLOCATE (matrix_s_desymm(1)%matrix)
    1749             :       CALL dbcsr_create(matrix=matrix_s_desymm(1)%matrix, template=matrix_s(1)%matrix, &
    1750           4 :                         matrix_type=dbcsr_type_no_symmetry)
    1751           4 :       CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_s_desymm(1)%matrix)
    1752             : 
    1753          12 :       ALLOCATE (eigenvalues(2*nao))
    1754          76 :       eigenvalues = 0.0_dp
    1755           8 :       ALLOCATE (eigenvalues_without_soc_sorted(2*nao))
    1756             : 
    1757           4 :       E_window = qs_env%mp2_env%ri_g0w0%soc_energy_window
    1758           4 :       IF (unit_nr > 0) THEN
    1759           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1760           2 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1761           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1762           2 :          WRITE (unit_nr, '(T3,A,F42.1)') 'GW_SOC_INFO | SOC energy window (eV)', E_window*evolt
    1763             :       END IF
    1764             : 
    1765           4 :       E_VBM_GW_SOC = -1000.0_dp
    1766           4 :       E_CBM_GW_SOC = 1000.0_dp
    1767             : 
    1768          20 :       DO ikp = 1, nkp_self_energy
    1769             : 
    1770          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), mo_coeff=rmos)
    1771          16 :          CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, 1), mo_coeff=imos)
    1772          16 :          CALL cp_fm_to_cfm(rmos, imos, cfm_mo_coeff)
    1773             : 
    1774             :          ! ispin = 1
    1775             :          avg_occ_QP_shift = SUM(Eigenval(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1) - &
    1776          32 :                                 Eigenval_scf(homo(1) - gw_corr_lev_occ(1) + 1:homo(1), ikp, 1))/gw_corr_lev_occ(1)
    1777             :          avg_virt_QP_shift = SUM(Eigenval(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1) - &
    1778          48 :                                  Eigenval_scf(homo(1):homo(1) + gw_corr_lev_virt(1), ikp, 1))/gw_corr_lev_virt(1)
    1779             : 
    1780          16 :          IF (gw_corr_lev_occ(1) < homo(1)) THEN
    1781             :             Eigenval(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) = Eigenval_scf(1:homo(1) - gw_corr_lev_occ(1), ikp, 1) &
    1782          64 :                                                                + avg_occ_QP_shift
    1783             :          END IF
    1784          16 :          IF (gw_corr_lev_virt(1) < nao - homo(1) + 1) THEN
    1785             :             Eigenval(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) = Eigenval_scf(homo(1) + gw_corr_lev_virt(1) + 1:nao, ikp, 1) &
    1786          80 :                                                                       + avg_virt_QP_shift
    1787             :          END IF
    1788             : 
    1789          16 :          CALL cp_cfm_set_all(cfm_mat_h_double, z_zero)
    1790          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lx_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, z_one, .TRUE.)
    1791          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_ly_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, 1, gaussi, .TRUE.)
    1792          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, 1, 1, z_one, .FALSE.)
    1793          16 :          CALL add_dbcsr_submatrix(cfm_mat_h_double, mat_VSOC_lz_kp(ikp, 1:2), cfm_mat_h_ks, nao + 1, nao + 1, -z_one, .FALSE.)
    1794             : 
    1795             :          ! trafo to MO basis
    1796        2896 :          cfm_mo_coeff_double%local_data = z_zero
    1797          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, 1, 1)
    1798          16 :          CALL add_cfm_submatrix(cfm_mo_coeff_double, cfm_mo_coeff, nao + 1, nao + 1)
    1799             : 
    1800             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1801             :                               nrow_local=nrow_local, &
    1802             :                               ncol_local=ncol_local, &
    1803             :                               row_indices=row_indices, &
    1804          16 :                               col_indices=col_indices)
    1805             : 
    1806             :          CALL parallel_gemm(transa="N", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1807             :                             matrix_a=cfm_mat_h_double, matrix_b=cfm_mo_coeff_double, beta=z_zero, &
    1808          16 :                             matrix_c=cfm_mat_work_double)
    1809             : 
    1810             :          CALL parallel_gemm(transa="C", transb="N", m=2*nao, n=2*nao, k=2*nao, alpha=z_one, &
    1811             :                             matrix_a=cfm_mo_coeff_double, matrix_b=cfm_mat_work_double, beta=z_zero, &
    1812          16 :                             matrix_c=cfm_mat_h_double)
    1813             : 
    1814             :          CALL cp_cfm_get_info(matrix=cfm_mat_h_double, &
    1815             :                               nrow_local=nrow_local, &
    1816             :                               ncol_local=ncol_local, &
    1817             :                               row_indices=row_indices, &
    1818          16 :                               col_indices=col_indices)
    1819             : 
    1820          16 :          CALL cp_cfm_set_all(cfm_mat_s_double, z_zero)
    1821             : 
    1822          16 :          E_HOMO = Eigenval(homo(1), ikp, 1)
    1823          16 :          E_LUMO = Eigenval(homo(1) + 1, ikp, 1)
    1824             : 
    1825          16 :          CALL para_env%sync()
    1826             : 
    1827         160 :          DO i_row = 1, nrow_local
    1828        2752 :          DO j_col = 1, ncol_local
    1829        2592 :             i_glob = row_indices(i_row)
    1830        2592 :             j_glob = col_indices(j_col)
    1831        2592 :             IF (i_glob .LE. nao) THEN
    1832        1296 :                E_i = Eigenval(i_glob, ikp, 1)
    1833             :             ELSE
    1834        1296 :                E_i = Eigenval(i_glob - nao, ikp, 1)
    1835             :             END IF
    1836        2592 :             IF (j_glob .LE. nao) THEN
    1837        1296 :                E_j = Eigenval(j_glob, ikp, 1)
    1838             :             ELSE
    1839        1296 :                E_j = Eigenval(j_glob - nao, ikp, 1)
    1840             :             END IF
    1841             : 
    1842             :             ! add eigenvalues to diagonal entries
    1843        2736 :             IF (i_glob == j_glob) THEN
    1844         144 :                cfm_mat_h_double%local_data(i_row, j_col) = cfm_mat_h_double%local_data(i_row, j_col) + E_i*z_one
    1845         144 :                cfm_mat_s_double%local_data(i_row, j_col) = z_one
    1846             :             ELSE
    1847             :                IF (E_i < E_HOMO - 0.5_dp*E_window .OR. E_i > E_LUMO + 0.5_dp*E_window .OR. &
    1848        2448 :                    E_j < E_HOMO - 0.5_dp*E_window .OR. E_j > E_LUMO + 0.5_dp*E_window) THEN
    1849        2000 :                   cfm_mat_h_double%local_data(i_row, j_col) = z_zero
    1850             :                END IF
    1851             :             END IF
    1852             : 
    1853             :          END DO
    1854             :          END DO
    1855             : 
    1856          16 :          CALL para_env%sync()
    1857             : 
    1858         304 :          eigenvalues = 0.0_dp
    1859             :          CALL cp_cfm_geeig_canon(cfm_mat_h_double, cfm_mat_s_double, cfm_mo_coeff_double, eigenvalues, &
    1860          16 :                                  cfm_mat_work_double, scf_control%eps_eigval)
    1861             : 
    1862         160 :          eigenvalues_without_soc_sorted(1:nao) = Eigenval(:, ikp, 1)
    1863         160 :          eigenvalues_without_soc_sorted(nao + 1:2*nao) = Eigenval(:, ikp, 1)
    1864          48 :          ALLOCATE (index0(2*nao))
    1865          16 :          CALL sort(eigenvalues_without_soc_sorted, 2*nao, index0)
    1866          16 :          DEALLOCATE (index0)
    1867             : 
    1868          64 :          E_HOMO_GW_SOC = MAXVAL(eigenvalues(2*homo(1) - 2*gw_corr_lev_occ(1) + 1:2*homo(1)))
    1869          64 :          E_LUMO_GW_SOC = MINVAL(eigenvalues(2*homo(1) + 1:2*homo(1) + 2*gw_corr_lev_virt(1)))
    1870          16 :          E_GAP_GW_SOC = E_LUMO_GW_SOC - E_HOMO_GW_SOC
    1871          16 :          IF (E_HOMO_GW_SOC > E_VBM_GW_SOC) E_VBM_GW_SOC = E_HOMO_GW_SOC
    1872          16 :          IF (E_LUMO_GW_SOC < E_CBM_GW_SOC) E_CBM_GW_SOC = E_LUMO_GW_SOC
    1873             : 
    1874          52 :          IF (unit_nr > 0) THEN
    1875           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1876           8 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    1877           8 :                '   xkp =', kpoints_Sigma%xkp(1, ikp), kpoints_Sigma%xkp(2, ikp), kpoints_Sigma%xkp(3, ikp), &
    1878          16 :                '  and  xkp =', -kpoints_Sigma%xkp(1, ikp), -kpoints_Sigma%xkp(2, ikp), -kpoints_Sigma%xkp(3, ikp)
    1879           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1880           8 :             IF (do_soc_gw) THEN
    1881           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1882           4 :                WRITE (unit_nr, '(T3,A,F13.4)') 'GW_SOC_INFO | Average GW shift of occupied levels compared to SCF', &
    1883           8 :                   avg_occ_QP_shift*evolt
    1884           4 :                WRITE (unit_nr, '(T3,A,F11.4)') 'GW_SOC_INFO | Average GW shift of unoccupied levels compared to SCF', &
    1885           8 :                   avg_virt_QP_shift*evolt
    1886           4 :                WRITE (unit_nr, '(T3,A)') ' '
    1887           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_GW with SOC (eV)   E_GW without SOC (eV)  SOC shift (eV)'
    1888             :             ELSE
    1889           4 :                WRITE (unit_nr, '(T3,2A)') 'Molecular orbital  E_SCF with SOC (eV)  E_SCF without SOC (eV)  SOC shift (eV)'
    1890             :             END IF
    1891             : 
    1892          24 :             DO n_level_gw = 2*(homo(1) - gw_corr_lev_occ(1)) + 1, 2*homo(1)
    1893          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( occ )   ', eigenvalues(n_level_gw)*evolt, &
    1894          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1895          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1896             :             END DO
    1897          24 :             DO n_level_gw = 2*homo(1) + 1, 2*(homo(1) + gw_corr_lev_virt(1))
    1898          16 :                WRITE (unit_nr, '(T3,I4,A,3F21.4)') n_level_gw, ' ( vir )   ', eigenvalues(n_level_gw)*evolt, &
    1899          16 :                   eigenvalues_without_soc_sorted(n_level_gw)*evolt, &
    1900          40 :                   (eigenvalues(n_level_gw) - eigenvalues_without_soc_sorted(n_level_gw))*evolt
    1901             :             END DO
    1902           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1903           8 :             IF (do_soc_gw) THEN
    1904           4 :                WRITE (unit_nr, '(T3,A,F38.4)') 'GW+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1905             :             ELSE
    1906           4 :                WRITE (unit_nr, '(T3,A,F37.4)') 'SCF+SOC direct gap at current kpoint (eV)', E_GAP_GW_SOC*evolt
    1907             :             END IF
    1908           8 :             WRITE (unit_nr, '(T3,A)') ' '
    1909           8 :             WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    1910             :          END IF
    1911             : 
    1912             :       END DO
    1913             : 
    1914           4 :       IF (unit_nr > 0) THEN
    1915           2 :          WRITE (unit_nr, '(T3,A)') ' '
    1916           2 :          IF (do_soc_gw) THEN
    1917           1 :             WRITE (unit_nr, '(T3,A,F46.4)') 'GW+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1918           1 :             WRITE (unit_nr, '(T3,A,F43.4)') 'GW+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1919           1 :             WRITE (unit_nr, '(T3,A,F59.4)') 'GW+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1920             :          ELSE
    1921           1 :             WRITE (unit_nr, '(T3,A,F45.4)') 'SCF+SOC valence band maximum (eV)', E_VBM_GW_SOC*evolt
    1922           1 :             WRITE (unit_nr, '(T3,A,F42.4)') 'SCF+SOC conduction band minimum (eV)', E_CBM_GW_SOC*evolt
    1923           1 :             WRITE (unit_nr, '(T3,A,F58.4)') 'SCF+SOC bandgap (eV)', (E_CBM_GW_SOC - E_VBM_GW_SOC)*evolt
    1924             :          END IF
    1925             :       END IF
    1926             : 
    1927           4 :       CALL dbcsr_deallocate_matrix_set(matrix_l)
    1928           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_l_nosymm)
    1929           4 :       CALL dbcsr_deallocate_matrix_set(matrix_pot_dummy)
    1930           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lx_kp)
    1931           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_ly_kp)
    1932           4 :       CALL dbcsr_deallocate_matrix_set(mat_VSOC_lz_kp)
    1933           4 :       CALL dbcsr_deallocate_matrix_set(matrix_s_desymm)
    1934             : 
    1935           4 :       CALL cp_cfm_release(cfm_mat_h_double)
    1936           4 :       CALL cp_cfm_release(cfm_mat_s_double)
    1937           4 :       CALL cp_cfm_release(cfm_mo_coeff_double)
    1938           4 :       CALL cp_cfm_release(cfm_mo_coeff)
    1939           4 :       CALL cp_cfm_release(cfm_mat_h_ks)
    1940           4 :       CALL cp_cfm_release(cfm_mat_work_double)
    1941           4 :       DEALLOCATE (eigenvalues)
    1942             : 
    1943           4 :       CALL timestop(handle)
    1944             : 
    1945          12 :    END SUBROUTINE calculate_and_print_soc
    1946             : 
    1947             : ! **************************************************************************************************
    1948             : !> \brief ...
    1949             : !> \param cfm_mat_target ...
    1950             : !> \param mat_source ...
    1951             : !> \param cfm_source_template ...
    1952             : !> \param nstart_row ...
    1953             : !> \param nstart_col ...
    1954             : !> \param factor ...
    1955             : !> \param add_also_herm_conj ...
    1956             : ! **************************************************************************************************
    1957          64 :    SUBROUTINE add_dbcsr_submatrix(cfm_mat_target, mat_source, cfm_source_template, &
    1958             :                                   nstart_row, nstart_col, factor, add_also_herm_conj)
    1959             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target
    1960             :       TYPE(dbcsr_p_type), DIMENSION(:)                   :: mat_source
    1961             :       TYPE(cp_cfm_type)                                  :: cfm_source_template
    1962             :       INTEGER                                            :: nstart_row, nstart_col
    1963             :       COMPLEX(KIND=dp)                                   :: factor
    1964             :       LOGICAL                                            :: add_also_herm_conj
    1965             : 
    1966             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'add_dbcsr_submatrix'
    1967             : 
    1968             :       INTEGER                                            :: handle, nao
    1969             :       TYPE(cp_cfm_type)                                  :: cfm_mat_work_double, &
    1970             :                                                             cfm_mat_work_double_2
    1971             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    1972             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    1973             :                                                             fm_mat_work_re
    1974             : 
    1975          64 :       CALL timeset(routineN, handle)
    1976             : 
    1977          64 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    1978          64 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    1979          64 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    1980          64 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    1981             : 
    1982          64 :       CALL cp_cfm_create(cfm_mat_work_double, cfm_mat_target%matrix_struct)
    1983          64 :       CALL cp_cfm_create(cfm_mat_work_double_2, cfm_mat_target%matrix_struct)
    1984          64 :       CALL cp_cfm_set_all(cfm_mat_work_double, z_zero)
    1985          64 :       CALL cp_cfm_set_all(cfm_mat_work_double_2, z_zero)
    1986             : 
    1987          64 :       CALL cp_fm_create(fm_mat_work_re, cfm_source_template%matrix_struct)
    1988          64 :       CALL cp_fm_create(fm_mat_work_im, cfm_source_template%matrix_struct)
    1989             : 
    1990          64 :       CALL copy_dbcsr_to_fm(mat_source(1)%matrix, fm_mat_work_re)
    1991          64 :       CALL copy_dbcsr_to_fm(mat_source(2)%matrix, fm_mat_work_im)
    1992             : 
    1993          64 :       CALL cp_cfm_get_info(cfm_source_template, nrow_global=nao)
    1994             : 
    1995             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    1996             :                               nrow=nao, ncol=nao, &
    1997             :                               s_firstrow=1, s_firstcol=1, &
    1998          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    1999             : 
    2000             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    2001             :                               nrow=nao, ncol=nao, &
    2002             :                               s_firstrow=1, s_firstcol=1, &
    2003          64 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2004             : 
    2005          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, z_one, fm_mat_work_double_re)
    2006          64 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_work_double, gaussi, fm_mat_work_double_im)
    2007             : 
    2008          64 :       CALL cp_cfm_scale(factor, cfm_mat_work_double)
    2009             : 
    2010          64 :       CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double)
    2011             : 
    2012          64 :       IF (add_also_herm_conj) THEN
    2013          32 :          CALL cp_cfm_transpose(cfm_mat_work_double, 'C', cfm_mat_work_double_2)
    2014          32 :          CALL cp_cfm_scale_and_add(z_one, cfm_mat_target, z_one, cfm_mat_work_double_2)
    2015             :       END IF
    2016             : 
    2017          64 :       CALL cp_fm_release(fm_mat_work_double_re)
    2018          64 :       CALL cp_fm_release(fm_mat_work_double_im)
    2019          64 :       CALL cp_cfm_release(cfm_mat_work_double)
    2020          64 :       CALL cp_cfm_release(cfm_mat_work_double_2)
    2021          64 :       CALL cp_fm_release(fm_mat_work_re)
    2022          64 :       CALL cp_fm_release(fm_mat_work_im)
    2023             : 
    2024          64 :       CALL timestop(handle)
    2025             : 
    2026          64 :    END SUBROUTINE
    2027             : 
    2028             : ! **************************************************************************************************
    2029             : !> \brief ...
    2030             : !> \param cfm_mat_target ...
    2031             : !> \param cfm_mat_source ...
    2032             : !> \param nstart_row ...
    2033             : !> \param nstart_col ...
    2034             : ! **************************************************************************************************
    2035         192 :    SUBROUTINE add_cfm_submatrix(cfm_mat_target, cfm_mat_source, nstart_row, nstart_col)
    2036             : 
    2037             :       TYPE(cp_cfm_type)                                  :: cfm_mat_target, cfm_mat_source
    2038             :       INTEGER                                            :: nstart_row, nstart_col
    2039             : 
    2040             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'add_cfm_submatrix'
    2041             : 
    2042             :       INTEGER                                            :: handle, nao
    2043             :       TYPE(cp_fm_type)                                   :: fm_mat_work_double_im, &
    2044             :                                                             fm_mat_work_double_re, fm_mat_work_im, &
    2045             :                                                             fm_mat_work_re
    2046             : 
    2047          32 :       CALL timeset(routineN, handle)
    2048             : 
    2049          32 :       CALL cp_fm_create(fm_mat_work_double_re, cfm_mat_target%matrix_struct)
    2050          32 :       CALL cp_fm_create(fm_mat_work_double_im, cfm_mat_target%matrix_struct)
    2051          32 :       CALL cp_fm_set_all(fm_mat_work_double_re, 0.0_dp)
    2052          32 :       CALL cp_fm_set_all(fm_mat_work_double_im, 0.0_dp)
    2053             : 
    2054          32 :       CALL cp_fm_create(fm_mat_work_re, cfm_mat_source%matrix_struct)
    2055          32 :       CALL cp_fm_create(fm_mat_work_im, cfm_mat_source%matrix_struct)
    2056          32 :       CALL cp_cfm_to_fm(cfm_mat_source, fm_mat_work_re, fm_mat_work_im)
    2057             : 
    2058          32 :       CALL cp_cfm_get_info(cfm_mat_source, nrow_global=nao)
    2059             : 
    2060             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_re, mtarget=fm_mat_work_double_re, &
    2061             :                               nrow=nao, ncol=nao, &
    2062             :                               s_firstrow=1, s_firstcol=1, &
    2063          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2064             : 
    2065             :       CALL cp_fm_to_fm_submat(msource=fm_mat_work_im, mtarget=fm_mat_work_double_im, &
    2066             :                               nrow=nao, ncol=nao, &
    2067             :                               s_firstrow=1, s_firstcol=1, &
    2068          32 :                               t_firstrow=nstart_row, t_firstcol=nstart_col)
    2069             : 
    2070          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, z_one, fm_mat_work_double_re)
    2071          32 :       CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_target, gaussi, fm_mat_work_double_im)
    2072             : 
    2073          32 :       CALL cp_fm_release(fm_mat_work_double_re)
    2074          32 :       CALL cp_fm_release(fm_mat_work_double_im)
    2075          32 :       CALL cp_fm_release(fm_mat_work_re)
    2076          32 :       CALL cp_fm_release(fm_mat_work_im)
    2077             : 
    2078          32 :       CALL timestop(handle)
    2079             : 
    2080          32 :    END SUBROUTINE add_cfm_submatrix
    2081             : 
    2082             : ! **************************************************************************************************
    2083             : !> \brief ...
    2084             : !> \param fm_orig ...
    2085             : !> \param cfm_double ...
    2086             : ! **************************************************************************************************
    2087          48 :    SUBROUTINE create_cfm_double_row_col_size(fm_orig, cfm_double)
    2088             :       TYPE(cp_fm_type)                                   :: fm_orig
    2089             :       TYPE(cp_cfm_type)                                  :: cfm_double
    2090             : 
    2091             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_cfm_double_row_col_size'
    2092             : 
    2093             :       INTEGER                                            :: handle, ncol_global_orig, &
    2094             :                                                             nrow_global_orig
    2095             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_double
    2096             : 
    2097          16 :       CALL timeset(routineN, handle)
    2098             : 
    2099          16 :       CALL cp_fm_get_info(matrix=fm_orig, nrow_global=nrow_global_orig, ncol_global=ncol_global_orig)
    2100             : 
    2101             :       CALL cp_fm_struct_create(fm_struct_double, &
    2102             :                                nrow_global=2*nrow_global_orig, &
    2103             :                                ncol_global=2*ncol_global_orig, &
    2104          16 :                                template_fmstruct=fm_orig%matrix_struct)
    2105             : 
    2106          16 :       CALL cp_cfm_create(cfm_double, fm_struct_double)
    2107             : 
    2108          16 :       CALL cp_fm_struct_release(fm_struct_double)
    2109             : 
    2110          16 :       CALL timestop(handle)
    2111             : 
    2112          16 :    END SUBROUTINE
    2113             : 
    2114             : ! **************************************************************************************************
    2115             : !> \brief ...
    2116             : !> \param E_VBM_SCF ...
    2117             : !> \param E_CBM_SCF ...
    2118             : !> \param E_VBM_SCF_beta ...
    2119             : !> \param E_CBM_SCF_beta ...
    2120             : !> \param E_VBM_GW ...
    2121             : !> \param E_CBM_GW ...
    2122             : !> \param E_VBM_GW_beta ...
    2123             : !> \param E_CBM_GW_beta ...
    2124             : !> \param my_open_shell ...
    2125             : !> \param unit_nr ...
    2126             : ! **************************************************************************************************
    2127           8 :    SUBROUTINE print_gaps(E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, E_CBM_SCF_beta, &
    2128             :                          E_VBM_GW, E_CBM_GW, E_VBM_GW_beta, E_CBM_GW_beta, my_open_shell, unit_nr)
    2129             : 
    2130             :       REAL(KIND=dp)                                      :: E_VBM_SCF, E_CBM_SCF, E_VBM_SCF_beta, &
    2131             :                                                             E_CBM_SCF_beta, E_VBM_GW, E_CBM_GW, &
    2132             :                                                             E_VBM_GW_beta, E_CBM_GW_beta
    2133             :       LOGICAL                                            :: my_open_shell
    2134             :       INTEGER                                            :: unit_nr
    2135             : 
    2136           8 :       IF (my_open_shell) THEN
    2137           1 :          WRITE (unit_nr, '(T3,A)') ' '
    2138           1 :          WRITE (unit_nr, '(T3,A,F43.4)') 'Alpha SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2139           1 :          WRITE (unit_nr, '(T3,A,F40.4)') 'Alpha SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2140           1 :          WRITE (unit_nr, '(T3,A,F56.4)') 'Alpha SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2141           1 :          WRITE (unit_nr, '(T3,A)') ' '
    2142           1 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Beta SCF valence band maximum (eV)', E_VBM_SCF_beta*evolt
    2143           1 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Beta SCF conduction band minimum (eV)', E_CBM_SCF_beta*evolt
    2144           1 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Beta SCF bandgap (eV)', (E_CBM_SCF_beta - E_VBM_SCF_beta)*evolt
    2145           1 :          WRITE (unit_nr, '(T3,A)') ' '
    2146           1 :          WRITE (unit_nr, '(T3,A,F44.4)') 'Alpha GW valence band maximum (eV)', E_VBM_GW*evolt
    2147           1 :          WRITE (unit_nr, '(T3,A,F41.4)') 'Alpha GW conduction band minimum (eV)', E_CBM_GW*evolt
    2148           1 :          WRITE (unit_nr, '(T3,A,F57.4)') 'Alpha GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2149           1 :          WRITE (unit_nr, '(T3,A)') ' '
    2150           1 :          WRITE (unit_nr, '(T3,A,F45.4)') 'Beta GW valence band maximum (eV)', E_VBM_GW_beta*evolt
    2151           1 :          WRITE (unit_nr, '(T3,A,F42.4)') 'Beta GW conduction band minimum (eV)', E_CBM_GW_beta*evolt
    2152           1 :          WRITE (unit_nr, '(T3,A,F58.4)') 'Beta GW bandgap (eV)', (E_CBM_GW_beta - E_VBM_GW_beta)*evolt
    2153             :       ELSE
    2154           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2155           7 :          WRITE (unit_nr, '(T3,A,F49.4)') 'SCF valence band maximum (eV)', E_VBM_SCF*evolt
    2156           7 :          WRITE (unit_nr, '(T3,A,F46.4)') 'SCF conduction band minimum (eV)', E_CBM_SCF*evolt
    2157           7 :          WRITE (unit_nr, '(T3,A,F62.4)') 'SCF bandgap (eV)', (E_CBM_SCF - E_VBM_SCF)*evolt
    2158           7 :          WRITE (unit_nr, '(T3,A)') ' '
    2159           7 :          WRITE (unit_nr, '(T3,A,F50.4)') 'GW valence band maximum (eV)', E_VBM_GW*evolt
    2160           7 :          WRITE (unit_nr, '(T3,A,F47.4)') 'GW conduction band minimum (eV)', E_CBM_GW*evolt
    2161           7 :          WRITE (unit_nr, '(T3,A,F63.4)') 'GW bandgap (eV)', (E_CBM_GW - E_VBM_GW)*evolt
    2162             :       END IF
    2163             : 
    2164           8 :    END SUBROUTINE print_gaps
    2165             : 
    2166             : ! **************************************************************************************************
    2167             : !> \brief ...
    2168             : !> \param array ...
    2169             : !> \param real_value ...
    2170             : ! **************************************************************************************************
    2171        1050 :    SUBROUTINE check_NaN(array, real_value)
    2172             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :), &
    2173             :          INTENT(INOUT)                                   :: array
    2174             :       REAL(KIND=dp), INTENT(IN)                          :: real_value
    2175             : 
    2176             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'check_NaN'
    2177             : 
    2178             :       INTEGER                                            :: handle, i, j, k
    2179             : 
    2180        1050 :       CALL timeset(routineN, handle)
    2181             : 
    2182       10884 :       DO i = 1, SIZE(array, 1)
    2183       25566 :       DO j = 1, SIZE(array, 2)
    2184       40722 :       DO k = 1, SIZE(array, 3)
    2185             : 
    2186             :          ! check for NaN
    2187       30888 :          IF (array(i, j, k) .NE. array(i, j, k)) array(i, j, k) = real_value
    2188             : 
    2189             :       END DO
    2190             :       END DO
    2191             :       END DO
    2192             : 
    2193        1050 :       CALL timestop(handle)
    2194             : 
    2195        1050 :    END SUBROUTINE
    2196             : 
    2197             : ! **************************************************************************************************
    2198             : !> \brief ...
    2199             : !> \param qs_env ...
    2200             : !> \param Eigenval ...
    2201             : !> \param gw_corr_lev_occ ...
    2202             : !> \param gw_corr_lev_virt ...
    2203             : !> \param homo ...
    2204             : !> \param dft_gw_char ...
    2205             : ! **************************************************************************************************
    2206           4 :    SUBROUTINE print_local_bandgap(qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2207             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2208             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2209             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2210             :       CHARACTER(len=*)                                   :: dft_gw_char
    2211             : 
    2212             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_local_bandgap'
    2213             : 
    2214             :       INTEGER                                            :: handle, i_E
    2215             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2216             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2217             :       TYPE(pw_r3d_rs_type)                               :: E_CBM_rspace, E_gap_rspace, E_VBM_rspace
    2218           4 :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2219             : 
    2220           4 :       CALL timeset(routineN, handle)
    2221             : 
    2222           4 :       CALL create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2223             : 
    2224             :       CALL calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2225           4 :                                   LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2226             : 
    2227           4 :       CALL auxbas_pw_pool%give_back_pw(E_gap_rspace)
    2228           4 :       CALL auxbas_pw_pool%give_back_pw(E_VBM_rspace)
    2229           4 :       CALL auxbas_pw_pool%give_back_pw(E_CBM_rspace)
    2230           4 :       CALL auxbas_pw_pool%give_back_pw(rho_g_dummy)
    2231          20 :       DO i_E = 1, SIZE(LDOS)
    2232          20 :          CALL auxbas_pw_pool%give_back_pw(LDOS(i_E))
    2233             :       END DO
    2234           4 :       DEALLOCATE (LDOS)
    2235             : 
    2236           4 :       CALL timestop(handle)
    2237             : 
    2238           4 :    END SUBROUTINE print_local_bandgap
    2239             : 
    2240             : ! **************************************************************************************************
    2241             : !> \brief ...
    2242             : !> \param E_gap_rspace ...
    2243             : !> \param E_VBM_rspace ...
    2244             : !> \param E_CBM_rspace ...
    2245             : !> \param rho_g_dummy ...
    2246             : !> \param LDOS ...
    2247             : !> \param qs_env ...
    2248             : !> \param Eigenval ...
    2249             : !> \param gw_corr_lev_occ ...
    2250             : !> \param gw_corr_lev_virt ...
    2251             : !> \param homo ...
    2252             : !> \param dft_gw_char ...
    2253             : ! **************************************************************************************************
    2254           4 :    SUBROUTINE calculate_E_gap_rspace(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, &
    2255           4 :                                      LDOS, qs_env, Eigenval, gw_corr_lev_occ, gw_corr_lev_virt, homo, dft_gw_char)
    2256             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2257             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2258             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2259             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2260             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    2261             :       INTEGER                                            :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    2262             :       CHARACTER(len=*)                                   :: dft_gw_char
    2263             : 
    2264             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calculate_E_gap_rspace'
    2265             : 
    2266             :       INTEGER :: handle, i_E, i_img, i_spin, i_x, i_y, i_z, ikp, imo, n_E, n_E_occ, n_x_end, &
    2267             :          n_x_start, n_y_end, n_y_start, n_z_end, n_z_start, nimg, nkp, nkp_self_energy
    2268             :       REAL(KIND=dp)                                      :: avg_LDOS_occ, avg_LDOS_virt, d_E, E_CBM, &
    2269             :                                                             E_CBM_at_k, E_diff, E_VBM, E_VBM_at_k
    2270           4 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: E_array
    2271           4 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: occupation
    2272             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    2273           4 :       TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:)        :: fm_work
    2274           4 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, rho_ao
    2275           4 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: rho_ao_weighted
    2276             :       TYPE(dft_control_type), POINTER                    :: dft_control
    2277             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    2278             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2279             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2280             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2281           4 :          POINTER                                         :: sab_orb
    2282             :       TYPE(particle_list_type), POINTER                  :: particles
    2283             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2284             :       TYPE(qs_scf_env_type), POINTER                     :: scf_env
    2285             :       TYPE(qs_subsys_type), POINTER                      :: subsys
    2286             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2287             : 
    2288           4 :       CALL timeset(routineN, handle)
    2289             : 
    2290             :       CALL get_qs_env(qs_env=qs_env, para_env=para_env, mp2_env=mp2_env, ks_env=ks_env, matrix_s=matrix_s, &
    2291           4 :                       scf_env=scf_env, sab_orb=sab_orb, dft_control=dft_control, subsys=subsys)
    2292             : 
    2293             :       ! compute valence band maximum (VBM) and conduction band minimum (CBM)
    2294           4 :       nkp = SIZE(Eigenval, 2)
    2295           4 :       E_VBM = -1.0E3_dp
    2296           4 :       E_CBM = 1.0E3_dp
    2297             : 
    2298          36 :       DO ikp = 1, nkp
    2299             : 
    2300          96 :          E_VBM_at_k = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo, ikp, 1))
    2301          32 :          IF (E_VBM_at_k > E_VBM) E_VBM = E_VBM_at_k
    2302             : 
    2303          96 :          E_CBM_at_k = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt, ikp, 1))
    2304          36 :          IF (E_CBM_at_k < E_CBM) E_CBM = E_CBM_at_k
    2305             : 
    2306             :       END DO
    2307             : 
    2308           4 :       d_E = mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap
    2309             : 
    2310           4 :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/d_E)
    2311             : 
    2312           4 :       n_E_occ = n_E/2
    2313          12 :       ALLOCATE (E_array(n_E))
    2314          12 :       DO i_E = 1, n_E_occ
    2315          12 :          E_array(i_E) = E_VBM - REAL(n_E_occ - i_E, KIND=dp)*d_E
    2316             :       END DO
    2317          12 :       DO i_E = n_E_occ + 1, n_E
    2318          12 :          E_array(i_E) = E_CBM + REAL(i_E - n_E_occ - 1, KIND=dp)*d_E
    2319             :       END DO
    2320             : 
    2321           4 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    2322             : 
    2323           4 :       nkp_self_energy = kpoints_Sigma%nkp
    2324           4 :       CPASSERT(nkp == nkp_self_energy)
    2325             : 
    2326           4 :       kpoints_Sigma%sab_nl => sab_orb
    2327             : 
    2328           4 :       DEALLOCATE (kpoints_Sigma%cell_to_index)
    2329             :       NULLIFY (kpoints_Sigma%cell_to_index)
    2330           4 :       CALL kpoint_init_cell_index(kpoints_Sigma, sab_orb, para_env, dft_control)
    2331             : 
    2332         424 :       nimg = MAXVAL(kpoints_Sigma%cell_to_index)
    2333             : 
    2334           4 :       NULLIFY (rho_ao_weighted)
    2335           4 :       CALL dbcsr_allocate_matrix_set(rho_ao_weighted, 2, nimg)
    2336             : 
    2337          12 :       DO i_spin = 1, 2
    2338         236 :          DO i_img = 1, nimg
    2339         224 :             ALLOCATE (rho_ao_weighted(i_spin, i_img)%matrix)
    2340         224 :             CALL dbcsr_create(matrix=rho_ao_weighted(i_spin, i_img)%matrix, template=matrix_s(1)%matrix)
    2341         224 :             CALL cp_dbcsr_alloc_block_from_nbl(rho_ao_weighted(i_spin, i_img)%matrix, sab_orb)
    2342         232 :             CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2343             :          END DO
    2344             :       END DO
    2345             : 
    2346         124 :       ALLOCATE (fm_work(nimg))
    2347           4 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    2348         116 :       DO i_img = 1, nimg
    2349         116 :          CALL cp_fm_create(fm_work(i_img), matrix_struct)
    2350             :       END DO
    2351             : 
    2352          20 :       DO i_E = 1, n_E
    2353             : 
    2354             :          ! occupation = weight factor for computing LDOS
    2355         144 :          DO ikp = 1, nkp
    2356             :             CALL get_mo_set(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, 1), &
    2357         128 :                             occupation_numbers=occupation)
    2358             : 
    2359        3072 :             occupation(:) = 0.0_dp
    2360         400 :             DO imo = homo - gw_corr_lev_occ + 1, homo + gw_corr_lev_virt
    2361         256 :                E_diff = E_array(i_E) - Eigenval(imo, ikp, 1)
    2362         384 :                occupation(imo) = EXP(-(E_diff/d_E)**2)
    2363             :             END DO
    2364             : 
    2365             :          END DO
    2366             : 
    2367             :          CALL get_mo_set(kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1), &
    2368          16 :                          occupation_numbers=occupation)
    2369             : 
    2370             :          ! density matrices
    2371          16 :          CALL kpoint_density_matrices(kpoints_Sigma)
    2372             : 
    2373             :          ! density matrices in real space
    2374             :          CALL kpoint_density_transform(kpoints_Sigma, rho_ao_weighted, .FALSE., &
    2375          16 :                                        matrix_s(1)%matrix, sab_orb, fm_work)
    2376             : 
    2377          16 :          rho_ao => rho_ao_weighted(1, :)
    2378             : 
    2379             :          CALL calculate_rho_elec(matrix_p_kp=rho_ao, &
    2380             :                                  rho=LDOS(i_E), &
    2381             :                                  rho_gspace=rho_g_dummy, &
    2382          16 :                                  ks_env=ks_env)
    2383             : 
    2384          52 :          DO i_spin = 1, 2
    2385         944 :             DO i_img = 1, nimg
    2386         928 :                CALL dbcsr_set(rho_ao_weighted(i_spin, i_img)%matrix, 0.0_dp)
    2387             :             END DO
    2388             :          END DO
    2389             : 
    2390             :       END DO
    2391             : 
    2392           4 :       n_x_start = LBOUND(LDOS(1)%array, 1)
    2393           4 :       n_x_end = UBOUND(LDOS(1)%array, 1)
    2394           4 :       n_y_start = LBOUND(LDOS(1)%array, 2)
    2395           4 :       n_y_end = UBOUND(LDOS(1)%array, 2)
    2396           4 :       n_z_start = LBOUND(LDOS(1)%array, 3)
    2397           4 :       n_z_end = UBOUND(LDOS(1)%array, 3)
    2398             : 
    2399           4 :       CALL pw_zero(E_VBM_rspace)
    2400           4 :       CALL pw_zero(E_CBM_rspace)
    2401             : 
    2402          68 :       DO i_x = n_x_start, n_x_end
    2403        2116 :          DO i_y = n_y_start, n_y_end
    2404       94272 :             DO i_z = n_z_start, n_z_end
    2405             :                ! compute average occ and virt LDOS
    2406             :                avg_LDOS_occ = 0.0_dp
    2407      276480 :                DO i_E = 1, n_E_occ
    2408      276480 :                   avg_LDOS_occ = avg_LDOS_occ + LDOS(i_E)%array(i_x, i_y, i_z)
    2409             :                END DO
    2410       92160 :                avg_LDOS_occ = avg_LDOS_occ/REAL(n_E_occ, KIND=dp)
    2411             : 
    2412       92160 :                avg_LDOS_virt = 0.0_dp
    2413      276480 :                DO i_E = n_E_occ + 1, n_E
    2414      276480 :                   avg_LDOS_virt = avg_LDOS_virt + LDOS(i_E)%array(i_x, i_y, i_z)
    2415             :                END DO
    2416       92160 :                avg_LDOS_virt = avg_LDOS_virt/REAL(n_E - n_E_occ, KIND=dp)
    2417             : 
    2418             :                ! compute local valence band maximum (VBM)
    2419      117600 :                DO i_E = n_E_occ, 1, -1
    2420      117600 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_occ) THEN
    2421       79756 :                      E_VBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2422       79756 :                      EXIT
    2423             :                   END IF
    2424             :                END DO
    2425             : 
    2426             :                ! compute local valence band maximum (VBM)
    2427       94304 :                DO i_E = n_E_occ + 1, n_E
    2428       92256 :                   IF (LDOS(i_E)%array(i_x, i_y, i_z) > mp2_env%ri_g0w0%ldos_thresh_print_loc_bandgap*avg_LDOS_virt) THEN
    2429       92112 :                      E_CBM_rspace%array(i_x, i_y, i_z) = E_array(i_E)
    2430       92112 :                      EXIT
    2431             :                   END IF
    2432             :                END DO
    2433             : 
    2434             :             END DO
    2435             :          END DO
    2436             :       END DO
    2437             : 
    2438           4 :       CALL pw_scale(E_VBM_rspace, evolt)
    2439           4 :       CALL pw_scale(E_CBM_rspace, evolt)
    2440             : 
    2441           4 :       CALL pw_copy(E_CBM_rspace, E_gap_rspace)
    2442           4 :       CALL pw_axpy(E_VBM_rspace, E_gap_rspace, -1.0_dp)
    2443             : 
    2444           4 :       gw_section => section_vals_get_subs_vals(qs_env%input, "DFT%XC%WF_CORRELATION%RI_RPA%GW")
    2445           4 :       CALL qs_subsys_get(subsys, particles=particles)
    2446             : 
    2447           4 :       CALL print_file(E_gap_rspace, dft_gw_char//"_Gap_in_eV", gw_section, particles, mp2_env)
    2448           4 :       CALL print_file(E_VBM_rspace, dft_gw_char//"_VBM_in_eV", gw_section, particles, mp2_env)
    2449           4 :       CALL print_file(E_CBM_rspace, dft_gw_char//"_CBM_in_eV", gw_section, particles, mp2_env)
    2450           4 :       CALL print_file(LDOS(n_E_occ), dft_gw_char//"_LDOS_VBM_in_eV", gw_section, particles, mp2_env)
    2451           4 :       CALL print_file(LDOS(n_E_occ + 1), dft_gw_char//"_LDOS_CBM_in_eV", gw_section, particles, mp2_env)
    2452             : 
    2453           4 :       CALL dbcsr_deallocate_matrix_set(rho_ao_weighted)
    2454             : 
    2455           4 :       CALL cp_fm_release(fm_work)
    2456             : 
    2457           4 :       DEALLOCATE (E_array)
    2458             : 
    2459           4 :       NULLIFY (kpoints_Sigma%sab_nl)
    2460             : 
    2461           4 :       CALL timestop(handle)
    2462             : 
    2463           8 :    END SUBROUTINE calculate_E_gap_rspace
    2464             : 
    2465             : ! **************************************************************************************************
    2466             : !> \brief ...
    2467             : !> \param pw_print ...
    2468             : !> \param middle_name ...
    2469             : !> \param gw_section ...
    2470             : !> \param particles ...
    2471             : !> \param mp2_env ...
    2472             : ! **************************************************************************************************
    2473          20 :    SUBROUTINE print_file(pw_print, middle_name, gw_section, particles, mp2_env)
    2474             :       TYPE(pw_r3d_rs_type)                               :: pw_print
    2475             :       CHARACTER(len=*)                                   :: middle_name
    2476             :       TYPE(section_vals_type), POINTER                   :: gw_section
    2477             :       TYPE(particle_list_type), POINTER                  :: particles
    2478             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2479             : 
    2480             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'print_file'
    2481             : 
    2482             :       INTEGER                                            :: handle, unit_nr_cube
    2483             :       LOGICAL                                            :: mpi_io
    2484             :       TYPE(cp_logger_type), POINTER                      :: logger
    2485             : 
    2486          20 :       CALL timeset(routineN, handle)
    2487             : 
    2488          20 :       NULLIFY (logger)
    2489          20 :       logger => cp_get_default_logger()
    2490          20 :       mpi_io = .TRUE.
    2491             :       unit_nr_cube = cp_print_key_unit_nr(logger, gw_section, "PRINT%LOCAL_BANDGAP", extension=".cube", &
    2492          20 :                                           middle_name=middle_name, file_form="FORMATTED", mpi_io=mpi_io)
    2493             :       CALL cp_pw_to_cube(pw_print, unit_nr_cube, middle_name, particles=particles, &
    2494          20 :                          stride=mp2_env%ri_g0w0%stride_loc_bandgap, mpi_io=mpi_io)
    2495             :       CALL cp_print_key_finished_output(unit_nr_cube, logger, gw_section, &
    2496          20 :                                         "PRINT%LOCAL_BANDGAP", mpi_io=mpi_io)
    2497             : 
    2498          20 :       CALL timestop(handle)
    2499             : 
    2500          20 :    END SUBROUTINE print_file
    2501             : 
    2502             : ! **************************************************************************************************
    2503             : !> \brief ...
    2504             : !> \param E_gap_rspace ...
    2505             : !> \param E_VBM_rspace ...
    2506             : !> \param E_CBM_rspace ...
    2507             : !> \param rho_g_dummy ...
    2508             : !> \param LDOS ...
    2509             : !> \param auxbas_pw_pool ...
    2510             : !> \param qs_env ...
    2511             : ! **************************************************************************************************
    2512           4 :    SUBROUTINE create_real_space_grids(E_gap_rspace, E_VBM_rspace, E_CBM_rspace, rho_g_dummy, LDOS, auxbas_pw_pool, qs_env)
    2513             :       TYPE(pw_r3d_rs_type)                               :: E_gap_rspace, E_VBM_rspace, E_CBM_rspace
    2514             :       TYPE(pw_c1d_gs_type)                               :: rho_g_dummy
    2515             :       TYPE(pw_r3d_rs_type), ALLOCATABLE, DIMENSION(:)    :: LDOS
    2516             :       TYPE(pw_pool_type), POINTER                        :: auxbas_pw_pool
    2517             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2518             : 
    2519             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'create_real_space_grids'
    2520             : 
    2521             :       INTEGER                                            :: handle, i_E, n_E
    2522             :       TYPE(mp2_type), POINTER                            :: mp2_env
    2523             :       TYPE(pw_env_type), POINTER                         :: pw_env
    2524             : 
    2525           4 :       CALL timeset(routineN, handle)
    2526             : 
    2527           4 :       CALL get_qs_env(qs_env=qs_env, mp2_env=mp2_env, pw_env=pw_env)
    2528             : 
    2529           4 :       CALL pw_env_get(pw_env, auxbas_pw_pool=auxbas_pw_pool)
    2530             : 
    2531           4 :       CALL auxbas_pw_pool%create_pw(E_gap_rspace)
    2532           4 :       CALL auxbas_pw_pool%create_pw(E_VBM_rspace)
    2533           4 :       CALL auxbas_pw_pool%create_pw(E_CBM_rspace)
    2534           4 :       CALL auxbas_pw_pool%create_pw(rho_g_dummy)
    2535             : 
    2536             :       n_E = INT(mp2_env%ri_g0w0%energy_window_print_loc_bandgap/ &
    2537           4 :                 mp2_env%ri_g0w0%energy_spacing_print_loc_bandgap)
    2538             : 
    2539          28 :       ALLOCATE (LDOS(n_E))
    2540             : 
    2541          20 :       DO i_E = 1, n_E
    2542          20 :          CALL auxbas_pw_pool%create_pw(LDOS(i_E))
    2543             :       END DO
    2544             : 
    2545           4 :       CALL timestop(handle)
    2546             : 
    2547           4 :    END SUBROUTINE create_real_space_grids
    2548             : 
    2549             : ! **************************************************************************************************
    2550             : !> \brief ...
    2551             : !> \param delta_corr ...
    2552             : !> \param qs_env ...
    2553             : !> \param para_env ...
    2554             : !> \param para_env_RPA ...
    2555             : !> \param kp_grid ...
    2556             : !> \param homo ...
    2557             : !> \param nmo ...
    2558             : !> \param gw_corr_lev_occ ...
    2559             : !> \param gw_corr_lev_virt ...
    2560             : !> \param omega ...
    2561             : !> \param fm_mo_coeff ...
    2562             : !> \param Eigenval ...
    2563             : !> \param matrix_berry_re_mo_mo ...
    2564             : !> \param matrix_berry_im_mo_mo ...
    2565             : !> \param first_cycle_periodic_correction ...
    2566             : !> \param kpoints ...
    2567             : !> \param do_mo_coeff_Gamma_only ...
    2568             : !> \param num_kp_grids ...
    2569             : !> \param eps_kpoint ...
    2570             : !> \param do_extra_kpoints ...
    2571             : !> \param do_aux_bas ...
    2572             : !> \param frac_aux_mos ...
    2573             : ! **************************************************************************************************
    2574         260 :    SUBROUTINE calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, kp_grid, homo, nmo, &
    2575         260 :                                        gw_corr_lev_occ, gw_corr_lev_virt, omega, fm_mo_coeff, Eigenval, &
    2576             :                                        matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2577             :                                        first_cycle_periodic_correction, kpoints, do_mo_coeff_Gamma_only, &
    2578             :                                        num_kp_grids, eps_kpoint, do_extra_kpoints, do_aux_bas, frac_aux_mos)
    2579             : 
    2580             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2581             :          INTENT(INOUT)                                   :: delta_corr
    2582             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2583             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    2584             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    2585             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_occ, &
    2586             :                                                             gw_corr_lev_virt
    2587             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2588             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2589             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2590             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2591             :                                                             matrix_berry_im_mo_mo
    2592             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    2593             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2594             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2595             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    2596             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2597             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints, do_aux_bas
    2598             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2599             : 
    2600             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'calc_periodic_correction'
    2601             : 
    2602             :       INTEGER                                            :: handle
    2603         260 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: eps_head, eps_inv_head
    2604             :       REAL(KIND=dp), DIMENSION(3, 3)                     :: h_inv
    2605             : 
    2606         260 :       CALL timeset(routineN, handle)
    2607             : 
    2608         260 :       IF (first_cycle_periodic_correction) THEN
    2609             : 
    2610             :          CALL get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, do_mo_coeff_Gamma_only, &
    2611           6 :                           do_extra_kpoints)
    2612             : 
    2613             :          CALL get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, &
    2614             :                               para_env, do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2615           6 :                               frac_aux_mos)
    2616             : 
    2617             :       END IF
    2618             : 
    2619             :       CALL compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2620         260 :                                   qs_env, homo, Eigenval, omega)
    2621             : 
    2622             :       CALL compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    2623             : 
    2624             :       CALL kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, &
    2625             :                                              matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    2626             :                                              homo, gw_corr_lev_occ, gw_corr_lev_virt, para_env_RPA, &
    2627         260 :                                              do_extra_kpoints)
    2628             : 
    2629         260 :       DEALLOCATE (eps_head, eps_inv_head)
    2630             : 
    2631         260 :       first_cycle_periodic_correction = .FALSE.
    2632             : 
    2633         260 :       CALL timestop(handle)
    2634             : 
    2635         260 :    END SUBROUTINE calc_periodic_correction
    2636             : 
    2637             : ! **************************************************************************************************
    2638             : !> \brief ...
    2639             : !> \param eps_head ...
    2640             : !> \param kpoints ...
    2641             : !> \param matrix_berry_re_mo_mo ...
    2642             : !> \param matrix_berry_im_mo_mo ...
    2643             : !> \param para_env_RPA ...
    2644             : !> \param qs_env ...
    2645             : !> \param homo ...
    2646             : !> \param Eigenval ...
    2647             : !> \param omega ...
    2648             : ! **************************************************************************************************
    2649         260 :    SUBROUTINE compute_eps_head_Berry(eps_head, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, para_env_RPA, &
    2650         260 :                                      qs_env, homo, Eigenval, omega)
    2651             : 
    2652             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    2653             :          INTENT(OUT)                                     :: eps_head
    2654             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2655             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    2656             :                                                             matrix_berry_im_mo_mo
    2657             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env_RPA
    2658             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2659             :       INTEGER, INTENT(IN)                                :: homo
    2660             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    2661             :       REAL(KIND=dp), INTENT(IN)                          :: omega
    2662             : 
    2663             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_head_Berry'
    2664             : 
    2665             :       INTEGER :: col, col_end_in_block, col_offset, col_size, handle, i_col, i_row, ikp, nkp, nmo, &
    2666             :          row, row_offset, row_size, row_start_in_block
    2667             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    2668             :                                                             correct_kpoint(3), cos_square, &
    2669             :                                                             eigen_diff, relative_kpoint(3), &
    2670             :                                                             sin_square
    2671             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: P_head
    2672         260 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    2673             :       TYPE(cell_type), POINTER                           :: cell
    2674             :       TYPE(dbcsr_iterator_type)                          :: iter
    2675             : 
    2676         260 :       CALL timeset(routineN, handle)
    2677             : 
    2678         260 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    2679         260 :       CALL get_cell(cell=cell, deth=cell_volume)
    2680             : 
    2681         260 :       NULLIFY (data_block)
    2682             : 
    2683         260 :       nkp = kpoints%nkp
    2684             : 
    2685         260 :       nmo = SIZE(Eigenval)
    2686             : 
    2687         780 :       ALLOCATE (P_head(nkp))
    2688      279620 :       P_head(:) = 0.0_dp
    2689             : 
    2690         520 :       ALLOCATE (eps_head(nkp))
    2691      279620 :       eps_head(:) = 0.0_dp
    2692             : 
    2693      279620 :       DO ikp = 1, nkp
    2694             : 
    2695     3631680 :          relative_kpoint(1:3) = MATMUL(cell%hmat, kpoints%xkp(1:3, ikp))
    2696             : 
    2697     1117440 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    2698             : 
    2699      279360 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    2700             : 
    2701             :          ! real part of the Berry phase
    2702      279360 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    2703      465120 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2704             : 
    2705             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2706             :                                            row_size=row_size, col_size=col_size, &
    2707      185760 :                                            row_offset=row_offset, col_offset=col_offset)
    2708             : 
    2709      185760 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2710             : 
    2711      185760 :             IF (row_offset <= homo) THEN
    2712      139680 :                row_start_in_block = homo - row_offset + 2
    2713             :             ELSE
    2714             :                row_start_in_block = 1
    2715             :             END IF
    2716             : 
    2717      185760 :             IF (col_offset + col_size - 1 > homo) THEN
    2718      185760 :                col_end_in_block = homo - col_offset + 1
    2719             :             ELSE
    2720             :                col_end_in_block = col_size
    2721             :             END IF
    2722             : 
    2723     1929600 :             DO i_row = row_start_in_block, MIN(row_size, nmo - row_offset + 1)
    2724             : 
    2725     7508160 :                DO i_col = 1, MIN(col_end_in_block, nmo - col_offset + 1)
    2726             : 
    2727     5857920 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2728             : 
    2729     5857920 :                   cos_square = (data_block(i_row, i_col))**2
    2730             : 
    2731     7322400 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*cos_square/abs_k_square
    2732             : 
    2733             :                END DO
    2734             : 
    2735             :             END DO
    2736             : 
    2737             :          END DO
    2738             : 
    2739      279360 :          CALL dbcsr_iterator_stop(iter)
    2740             : 
    2741             :          ! imaginary part of the Berry phase
    2742      279360 :          CALL dbcsr_iterator_start(iter, matrix_berry_im_mo_mo(ikp)%matrix)
    2743      465120 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    2744             : 
    2745             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    2746             :                                            row_size=row_size, col_size=col_size, &
    2747      185760 :                                            row_offset=row_offset, col_offset=col_offset)
    2748             : 
    2749      185760 :             IF (row_offset + row_size <= homo .OR. col_offset > homo) CYCLE
    2750             : 
    2751      185760 :             IF (row_offset <= homo) THEN
    2752      139680 :                row_start_in_block = homo - row_offset + 2
    2753             :             ELSE
    2754             :                row_start_in_block = 1
    2755             :             END IF
    2756             : 
    2757      185760 :             IF (col_offset + col_size - 1 > homo) THEN
    2758      185760 :                col_end_in_block = homo - col_offset + 1
    2759             :             ELSE
    2760             :                col_end_in_block = col_size
    2761             :             END IF
    2762             : 
    2763     1929600 :             DO i_row = row_start_in_block, MIN(row_size, nmo - row_offset + 1)
    2764             : 
    2765     7508160 :                DO i_col = 1, MIN(col_end_in_block, nmo - col_offset + 1)
    2766             : 
    2767     5857920 :                   eigen_diff = Eigenval(i_col + col_offset - 1) - Eigenval(i_row + row_offset - 1)
    2768             : 
    2769     5857920 :                   sin_square = (data_block(i_row, i_col))**2
    2770             : 
    2771     7322400 :                   P_head(ikp) = P_head(ikp) + 2.0_dp*eigen_diff/(omega**2 + eigen_diff**2)*sin_square/abs_k_square
    2772             : 
    2773             :                END DO
    2774             : 
    2775             :             END DO
    2776             : 
    2777             :          END DO
    2778             : 
    2779      838340 :          CALL dbcsr_iterator_stop(iter)
    2780             : 
    2781             :       END DO
    2782             : 
    2783         260 :       CALL para_env_RPA%sum(P_head)
    2784             : 
    2785             :       ! normalize eps_head
    2786             :       ! 2.0_dp due to closed shell
    2787      279620 :       eps_head(:) = 1.0_dp - 2.0_dp*P_head(:)/cell_volume*fourpi
    2788             : 
    2789         260 :       DEALLOCATE (P_head)
    2790             : 
    2791         260 :       CALL timestop(handle)
    2792             : 
    2793         520 :    END SUBROUTINE compute_eps_head_Berry
    2794             : 
    2795             : ! **************************************************************************************************
    2796             : !> \brief ...
    2797             : !> \param qs_env ...
    2798             : !> \param kpoints ...
    2799             : !> \param matrix_berry_re_mo_mo ...
    2800             : !> \param matrix_berry_im_mo_mo ...
    2801             : !> \param fm_mo_coeff ...
    2802             : !> \param para_env ...
    2803             : !> \param do_mo_coeff_Gamma_only ...
    2804             : !> \param homo ...
    2805             : !> \param nmo ...
    2806             : !> \param gw_corr_lev_virt ...
    2807             : !> \param eps_kpoint ...
    2808             : !> \param do_aux_bas ...
    2809             : !> \param frac_aux_mos ...
    2810             : ! **************************************************************************************************
    2811           6 :    SUBROUTINE get_berry_phase(qs_env, kpoints, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, fm_mo_coeff, para_env, &
    2812             :                               do_mo_coeff_Gamma_only, homo, nmo, gw_corr_lev_virt, eps_kpoint, do_aux_bas, &
    2813             :                               frac_aux_mos)
    2814             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2815             :       TYPE(kpoint_type), POINTER                         :: kpoints
    2816             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    2817             :                                                             matrix_berry_im_mo_mo
    2818             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    2819             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2820             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only
    2821             :       INTEGER, INTENT(IN)                                :: homo, nmo, gw_corr_lev_virt
    2822             :       REAL(KIND=dp), INTENT(IN)                          :: eps_kpoint
    2823             :       LOGICAL, INTENT(IN)                                :: do_aux_bas
    2824             :       REAL(KIND=dp), INTENT(IN)                          :: frac_aux_mos
    2825             : 
    2826             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'get_berry_phase'
    2827             : 
    2828             :       INTEGER                                            :: col_index, handle, i_col_local, ikind, &
    2829             :                                                             ikp, nao_aux, ncol_local, nkind, nkp, &
    2830             :                                                             nmo_for_aux_bas
    2831           6 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices
    2832             :       REAL(dp)                                           :: abs_kpoint, correct_kpoint(3), &
    2833             :                                                             scale_kpoint
    2834           6 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: evals_P, evals_P_sqrt_inv
    2835             :       TYPE(cell_type), POINTER                           :: cell
    2836             :       TYPE(cp_fm_struct_type), POINTER                   :: fm_struct_aux_aux
    2837             :       TYPE(cp_fm_type) :: fm_mat_eigv_P, fm_mat_P, fm_mat_P_sqrt_inv, fm_mat_s_aux_aux_inv, &
    2838             :          fm_mat_scaled_eigv_P, fm_mat_work_aux_aux
    2839           6 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s, matrix_s_aux_aux, &
    2840           6 :                                                             matrix_s_aux_orb
    2841             :       TYPE(dbcsr_type), POINTER :: cosmat, cosmat_desymm, mat_mo_coeff_aux, mat_mo_coeff_aux_2, &
    2842             :          mat_mo_coeff_Gamma_all, mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_im, mat_mo_coeff_re, &
    2843             :          mat_work_aux_orb, mat_work_aux_orb_2, matrix_P, matrix_P_sqrt, matrix_P_sqrt_inv, &
    2844             :          matrix_s_inv_aux_aux, sinmat, sinmat_desymm, tmp
    2845           6 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: gw_aux_basis_set_list, orb_basis_set_list
    2846             :       TYPE(gto_basis_set_type), POINTER                  :: basis_set_gw_aux
    2847             :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
    2848           6 :          POINTER                                         :: sab_orb, sab_orb_mic, sgwgw_list, &
    2849           6 :                                                             sgworb_list
    2850           6 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2851             :       TYPE(qs_kind_type), POINTER                        :: qs_kind
    2852             :       TYPE(qs_ks_env_type), POINTER                      :: ks_env
    2853             : 
    2854           6 :       CALL timeset(routineN, handle)
    2855             : 
    2856           6 :       nkp = kpoints%nkp
    2857             : 
    2858           6 :       NULLIFY (matrix_berry_re_mo_mo, matrix_s, cell, matrix_berry_im_mo_mo, sinmat, cosmat, tmp, &
    2859           6 :                cosmat_desymm, sinmat_desymm, qs_kind_set, orb_basis_set_list, sab_orb_mic)
    2860             : 
    2861             :       CALL get_qs_env(qs_env=qs_env, &
    2862             :                       cell=cell, &
    2863             :                       matrix_s=matrix_s, &
    2864             :                       qs_kind_set=qs_kind_set, &
    2865             :                       nkind=nkind, &
    2866             :                       ks_env=ks_env, &
    2867           6 :                       sab_orb=sab_orb)
    2868             : 
    2869          30 :       ALLOCATE (orb_basis_set_list(nkind))
    2870           6 :       CALL basis_set_list_setup(orb_basis_set_list, "ORB", qs_kind_set)
    2871             : 
    2872           6 :       CALL setup_neighbor_list(sab_orb_mic, orb_basis_set_list, qs_env=qs_env, mic=.FALSE.)
    2873             : 
    2874             :       ! create dbcsr matrix of mo_coeff for multiplcation
    2875           6 :       NULLIFY (mat_mo_coeff_re)
    2876           6 :       CALL dbcsr_init_p(mat_mo_coeff_re)
    2877             :       CALL dbcsr_create(matrix=mat_mo_coeff_re, &
    2878             :                         template=matrix_s(1)%matrix, &
    2879           6 :                         matrix_type=dbcsr_type_no_symmetry)
    2880             : 
    2881           6 :       NULLIFY (mat_mo_coeff_im)
    2882           6 :       CALL dbcsr_init_p(mat_mo_coeff_im)
    2883             :       CALL dbcsr_create(matrix=mat_mo_coeff_im, &
    2884             :                         template=matrix_s(1)%matrix, &
    2885           6 :                         matrix_type=dbcsr_type_no_symmetry)
    2886             : 
    2887           6 :       NULLIFY (mat_mo_coeff_Gamma_all)
    2888           6 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    2889             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    2890             :                         template=matrix_s(1)%matrix, &
    2891           6 :                         matrix_type=dbcsr_type_no_symmetry)
    2892             : 
    2893           6 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_all, keep_sparsity=.FALSE.)
    2894             : 
    2895           6 :       NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    2896           6 :       CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    2897             :       CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    2898             :                         template=matrix_s(1)%matrix, &
    2899           6 :                         matrix_type=dbcsr_type_no_symmetry)
    2900             : 
    2901           6 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff_Gamma_occ_and_GW, keep_sparsity=.FALSE.)
    2902             : 
    2903           6 :       IF (.NOT. do_aux_bas) THEN
    2904             : 
    2905             :          ! allocate intermediate matrices
    2906           4 :          CALL dbcsr_init_p(cosmat)
    2907           4 :          CALL dbcsr_init_p(sinmat)
    2908           4 :          CALL dbcsr_init_p(tmp)
    2909           4 :          CALL dbcsr_init_p(cosmat_desymm)
    2910           4 :          CALL dbcsr_init_p(sinmat_desymm)
    2911           4 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s(1)%matrix)
    2912           4 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s(1)%matrix)
    2913             :          CALL dbcsr_create(matrix=tmp, &
    2914             :                            template=matrix_s(1)%matrix, &
    2915           4 :                            matrix_type=dbcsr_type_no_symmetry)
    2916             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    2917             :                            template=matrix_s(1)%matrix, &
    2918           4 :                            matrix_type=dbcsr_type_no_symmetry)
    2919             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    2920             :                            template=matrix_s(1)%matrix, &
    2921           4 :                            matrix_type=dbcsr_type_no_symmetry)
    2922           4 :          CALL dbcsr_copy(cosmat, matrix_s(1)%matrix)
    2923           4 :          CALL dbcsr_copy(sinmat, matrix_s(1)%matrix)
    2924           4 :          CALL dbcsr_set(cosmat, 0.0_dp)
    2925           4 :          CALL dbcsr_set(sinmat, 0.0_dp)
    2926             : 
    2927           4 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    2928           4 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    2929             : 
    2930             :       ELSE
    2931             : 
    2932           2 :          NULLIFY (gw_aux_basis_set_list)
    2933          10 :          ALLOCATE (gw_aux_basis_set_list(nkind))
    2934             : 
    2935           6 :          DO ikind = 1, nkind
    2936             : 
    2937           4 :             NULLIFY (gw_aux_basis_set_list(ikind)%gto_basis_set)
    2938             : 
    2939           4 :             NULLIFY (basis_set_gw_aux)
    2940             : 
    2941           4 :             qs_kind => qs_kind_set(ikind)
    2942           4 :             CALL get_qs_kind(qs_kind=qs_kind, basis_set=basis_set_gw_aux, basis_type="AUX_GW")
    2943           4 :             CPASSERT(ASSOCIATED(basis_set_gw_aux))
    2944             : 
    2945           4 :             basis_set_gw_aux%kind_radius = orb_basis_set_list(ikind)%gto_basis_set%kind_radius
    2946             : 
    2947           6 :             gw_aux_basis_set_list(ikind)%gto_basis_set => basis_set_gw_aux
    2948             : 
    2949             :          END DO
    2950             : 
    2951             :          ! neighbor lists
    2952           2 :          NULLIFY (sgwgw_list, sgworb_list)
    2953           2 :          CALL setup_neighbor_list(sgwgw_list, gw_aux_basis_set_list, qs_env=qs_env)
    2954           2 :          CALL setup_neighbor_list(sgworb_list, gw_aux_basis_set_list, orb_basis_set_list, qs_env=qs_env)
    2955             : 
    2956           2 :          NULLIFY (matrix_s_aux_aux, matrix_s_aux_orb)
    2957             : 
    2958             :          ! build overlap matrix in gw aux basis and the mixed gw aux basis-orb basis
    2959             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_aux, &
    2960           2 :                                           gw_aux_basis_set_list, gw_aux_basis_set_list, sgwgw_list)
    2961             : 
    2962             :          CALL build_overlap_matrix_simple(ks_env, matrix_s_aux_orb, &
    2963           2 :                                           gw_aux_basis_set_list, orb_basis_set_list, sgworb_list)
    2964             : 
    2965           2 :          CALL dbcsr_get_info(matrix_s_aux_aux(1)%matrix, nfullrows_total=nao_aux)
    2966             : 
    2967           2 :          nmo_for_aux_bas = FLOOR(frac_aux_mos*REAL(nao_aux, KIND=dp))
    2968             : 
    2969             :          CALL cp_fm_struct_create(fm_struct_aux_aux, &
    2970             :                                   context=fm_mo_coeff%matrix_struct%context, &
    2971             :                                   nrow_global=nao_aux, &
    2972             :                                   ncol_global=nao_aux, &
    2973           2 :                                   para_env=para_env)
    2974             : 
    2975           2 :          NULLIFY (mat_work_aux_orb)
    2976           2 :          CALL dbcsr_init_p(mat_work_aux_orb)
    2977             :          CALL dbcsr_create(matrix=mat_work_aux_orb, &
    2978             :                            template=matrix_s_aux_orb(1)%matrix, &
    2979           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2980             : 
    2981           2 :          NULLIFY (mat_work_aux_orb_2)
    2982           2 :          CALL dbcsr_init_p(mat_work_aux_orb_2)
    2983             :          CALL dbcsr_create(matrix=mat_work_aux_orb_2, &
    2984             :                            template=matrix_s_aux_orb(1)%matrix, &
    2985           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2986             : 
    2987           2 :          NULLIFY (mat_mo_coeff_aux)
    2988           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux)
    2989             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux, &
    2990             :                            template=matrix_s_aux_orb(1)%matrix, &
    2991           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2992             : 
    2993           2 :          NULLIFY (mat_mo_coeff_aux_2)
    2994           2 :          CALL dbcsr_init_p(mat_mo_coeff_aux_2)
    2995             :          CALL dbcsr_create(matrix=mat_mo_coeff_aux_2, &
    2996             :                            template=matrix_s_aux_orb(1)%matrix, &
    2997           2 :                            matrix_type=dbcsr_type_no_symmetry)
    2998             : 
    2999           2 :          NULLIFY (matrix_s_inv_aux_aux)
    3000           2 :          CALL dbcsr_init_p(matrix_s_inv_aux_aux)
    3001             :          CALL dbcsr_create(matrix=matrix_s_inv_aux_aux, &
    3002             :                            template=matrix_s_aux_aux(1)%matrix, &
    3003           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3004             : 
    3005           2 :          NULLIFY (matrix_P)
    3006           2 :          CALL dbcsr_init_p(matrix_P)
    3007             :          CALL dbcsr_create(matrix=matrix_P, &
    3008             :                            template=matrix_s(1)%matrix, &
    3009           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3010             : 
    3011           2 :          NULLIFY (matrix_P_sqrt)
    3012           2 :          CALL dbcsr_init_p(matrix_P_sqrt)
    3013             :          CALL dbcsr_create(matrix=matrix_P_sqrt, &
    3014             :                            template=matrix_s(1)%matrix, &
    3015           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3016             : 
    3017           2 :          NULLIFY (matrix_P_sqrt_inv)
    3018           2 :          CALL dbcsr_init_p(matrix_P_sqrt_inv)
    3019             :          CALL dbcsr_create(matrix=matrix_P_sqrt_inv, &
    3020             :                            template=matrix_s(1)%matrix, &
    3021           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3022             : 
    3023           2 :          CALL cp_fm_create(fm_mat_s_aux_aux_inv, fm_struct_aux_aux, name="inverse overlap mat")
    3024           2 :          CALL cp_fm_create(fm_mat_work_aux_aux, fm_struct_aux_aux, name="work mat")
    3025           2 :          CALL cp_fm_create(fm_mat_P, fm_mo_coeff%matrix_struct)
    3026           2 :          CALL cp_fm_create(fm_mat_eigv_P, fm_mo_coeff%matrix_struct)
    3027           2 :          CALL cp_fm_create(fm_mat_scaled_eigv_P, fm_mo_coeff%matrix_struct)
    3028           2 :          CALL cp_fm_create(fm_mat_P_sqrt_inv, fm_mo_coeff%matrix_struct)
    3029             : 
    3030             :          NULLIFY (evals_P)
    3031           6 :          ALLOCATE (evals_P(nmo))
    3032             : 
    3033           2 :          NULLIFY (evals_P_sqrt_inv)
    3034           4 :          ALLOCATE (evals_P_sqrt_inv(nmo))
    3035             : 
    3036           2 :          CALL copy_dbcsr_to_fm(matrix_s_aux_aux(1)%matrix, fm_mat_s_aux_aux_inv)
    3037             :          ! Calculate S_inverse
    3038           2 :          CALL cp_fm_cholesky_decompose(fm_mat_s_aux_aux_inv)
    3039           2 :          CALL cp_fm_cholesky_invert(fm_mat_s_aux_aux_inv)
    3040             :          ! Symmetrize the guy
    3041           2 :          CALL cp_fm_uplo_to_full(fm_mat_s_aux_aux_inv, fm_mat_work_aux_aux)
    3042             : 
    3043           2 :          CALL copy_fm_to_dbcsr(fm_mat_s_aux_aux_inv, matrix_s_inv_aux_aux, keep_sparsity=.FALSE.)
    3044             : 
    3045             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_inv_aux_aux, matrix_s_aux_orb(1)%matrix, 0.0_dp, mat_work_aux_orb, &
    3046           2 :                              filter_eps=1.0E-15_dp)
    3047             : 
    3048             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_work_aux_orb, mat_mo_coeff_Gamma_all, 0.0_dp, mat_mo_coeff_aux_2, &
    3049           2 :                              last_column=nmo_for_aux_bas, filter_eps=1.0E-15_dp)
    3050             : 
    3051             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s_aux_aux(1)%matrix, mat_mo_coeff_aux_2, 0.0_dp, mat_work_aux_orb, &
    3052           2 :                              filter_eps=1.0E-15_dp)
    3053             : 
    3054             :          CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_aux_2, mat_work_aux_orb, 0.0_dp, matrix_P, &
    3055           2 :                              filter_eps=1.0E-15_dp)
    3056             : 
    3057           2 :          CALL copy_dbcsr_to_fm(matrix_P, fm_mat_P)
    3058             : 
    3059           2 :          CALL cp_fm_syevd(fm_mat_P, fm_mat_eigv_P, evals_P)
    3060             : 
    3061             :          ! only invert the eigenvalues which correspond to the MOs used in the aux. basis
    3062          62 :          evals_P_sqrt_inv(1:nmo - nmo_for_aux_bas) = 0.0_dp
    3063          46 :          evals_P_sqrt_inv(nmo - nmo_for_aux_bas + 1:nmo) = 1.0_dp/SQRT(evals_P(nmo - nmo_for_aux_bas + 1:nmo))
    3064             : 
    3065           2 :          CALL cp_fm_to_fm(fm_mat_eigv_P, fm_mat_scaled_eigv_P)
    3066             : 
    3067             :          CALL cp_fm_get_info(matrix=fm_mat_scaled_eigv_P, &
    3068             :                              ncol_local=ncol_local, &
    3069           2 :                              col_indices=col_indices)
    3070             : 
    3071           2 :          CALL para_env%sync()
    3072             : 
    3073             :          ! multiply eigenvectors with inverse sqrt of eigenvalues
    3074          84 :          DO i_col_local = 1, ncol_local
    3075             : 
    3076          82 :             col_index = col_indices(i_col_local)
    3077             : 
    3078             :             fm_mat_scaled_eigv_P%local_data(:, i_col_local) = &
    3079        1765 :                fm_mat_scaled_eigv_P%local_data(:, i_col_local)*evals_P_sqrt_inv(col_index)
    3080             : 
    3081             :          END DO
    3082             : 
    3083           2 :          CALL para_env%sync()
    3084             : 
    3085             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    3086             :                             matrix_a=fm_mat_eigv_P, matrix_b=fm_mat_scaled_eigv_P, beta=0.0_dp, &
    3087           2 :                             matrix_c=fm_mat_P_sqrt_inv)
    3088             : 
    3089           2 :          CALL copy_fm_to_dbcsr(fm_mat_P_sqrt_inv, matrix_P_sqrt_inv, keep_sparsity=.FALSE.)
    3090             : 
    3091             :          CALL dbcsr_multiply('N', 'N', 1.0_dp, mat_mo_coeff_aux_2, matrix_P_sqrt_inv, 0.0_dp, mat_mo_coeff_aux, &
    3092           2 :                              filter_eps=1.0E-15_dp)
    3093             : 
    3094             :          ! allocate intermediate matrices
    3095           2 :          CALL dbcsr_init_p(cosmat)
    3096           2 :          CALL dbcsr_init_p(sinmat)
    3097           2 :          CALL dbcsr_init_p(tmp)
    3098           2 :          CALL dbcsr_init_p(cosmat_desymm)
    3099           2 :          CALL dbcsr_init_p(sinmat_desymm)
    3100           2 :          CALL dbcsr_create(matrix=cosmat, template=matrix_s_aux_aux(1)%matrix)
    3101           2 :          CALL dbcsr_create(matrix=sinmat, template=matrix_s_aux_aux(1)%matrix)
    3102             :          CALL dbcsr_create(matrix=tmp, &
    3103             :                            template=matrix_s_aux_orb(1)%matrix, &
    3104           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3105             :          CALL dbcsr_create(matrix=cosmat_desymm, &
    3106             :                            template=matrix_s_aux_aux(1)%matrix, &
    3107           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3108             :          CALL dbcsr_create(matrix=sinmat_desymm, &
    3109             :                            template=matrix_s_aux_aux(1)%matrix, &
    3110           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3111           2 :          CALL dbcsr_copy(cosmat, matrix_s_aux_aux(1)%matrix)
    3112           2 :          CALL dbcsr_copy(sinmat, matrix_s_aux_aux(1)%matrix)
    3113           2 :          CALL dbcsr_set(cosmat, 0.0_dp)
    3114           2 :          CALL dbcsr_set(sinmat, 0.0_dp)
    3115             : 
    3116           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_re_mo_mo, nkp)
    3117           2 :          CALL dbcsr_allocate_matrix_set(matrix_berry_im_mo_mo, nkp)
    3118             : 
    3119             :          ! allocate the new MO coefficients in the aux basis
    3120           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3121           2 :          CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3122             : 
    3123           2 :          NULLIFY (mat_mo_coeff_Gamma_all)
    3124           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_all)
    3125             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_all, &
    3126             :                            template=matrix_s_aux_orb(1)%matrix, &
    3127           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3128             : 
    3129           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_all, mat_mo_coeff_aux)
    3130             : 
    3131           2 :          NULLIFY (mat_mo_coeff_Gamma_occ_and_GW)
    3132           2 :          CALL dbcsr_init_p(mat_mo_coeff_Gamma_occ_and_GW)
    3133             :          CALL dbcsr_create(matrix=mat_mo_coeff_Gamma_occ_and_GW, &
    3134             :                            template=matrix_s_aux_orb(1)%matrix, &
    3135           2 :                            matrix_type=dbcsr_type_no_symmetry)
    3136             : 
    3137           2 :          CALL dbcsr_copy(mat_mo_coeff_Gamma_occ_and_GW, mat_mo_coeff_aux)
    3138             : 
    3139           8 :          DEALLOCATE (evals_P, evals_P_sqrt_inv)
    3140             : 
    3141             :       END IF
    3142             : 
    3143           6 :       CALL remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3144             : 
    3145       11166 :       DO ikp = 1, nkp
    3146             : 
    3147       11160 :          ALLOCATE (matrix_berry_re_mo_mo(ikp)%matrix)
    3148       11160 :          CALL dbcsr_init_p(matrix_berry_re_mo_mo(ikp)%matrix)
    3149             :          CALL dbcsr_create(matrix_berry_re_mo_mo(ikp)%matrix, &
    3150             :                            template=matrix_s(1)%matrix, &
    3151       11160 :                            matrix_type=dbcsr_type_no_symmetry)
    3152       11160 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_re_mo_mo(ikp)%matrix)
    3153       11160 :          CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3154             : 
    3155       11160 :          ALLOCATE (matrix_berry_im_mo_mo(ikp)%matrix)
    3156       11160 :          CALL dbcsr_init_p(matrix_berry_im_mo_mo(ikp)%matrix)
    3157             :          CALL dbcsr_create(matrix_berry_im_mo_mo(ikp)%matrix, &
    3158             :                            template=matrix_s(1)%matrix, &
    3159       11160 :                            matrix_type=dbcsr_type_no_symmetry)
    3160       11160 :          CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_berry_im_mo_mo(ikp)%matrix)
    3161       11160 :          CALL dbcsr_set(matrix_berry_im_mo_mo(ikp)%matrix, 0.0_dp)
    3162             : 
    3163       44640 :          correct_kpoint(1:3) = -twopi*kpoints%xkp(1:3, ikp)
    3164             : 
    3165       11160 :          abs_kpoint = SQRT(correct_kpoint(1)**2 + correct_kpoint(2)**2 + correct_kpoint(3)**2)
    3166             : 
    3167       11160 :          IF (abs_kpoint < eps_kpoint) THEN
    3168             : 
    3169           0 :             scale_kpoint = eps_kpoint/abs_kpoint
    3170           0 :             correct_kpoint(:) = correct_kpoint(:)*scale_kpoint
    3171             : 
    3172             :          END IF
    3173             : 
    3174             :          ! get the Berry phase
    3175       11160 :          IF (do_aux_bas) THEN
    3176             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3177        1944 :                                            basis_type="AUX_GW")
    3178             :          ELSE
    3179             :             CALL build_berry_moment_matrix(qs_env, cosmat, sinmat, correct_kpoint, sab_orb_external=sab_orb_mic, &
    3180        9216 :                                            basis_type="ORB")
    3181             :          END IF
    3182             : 
    3183       11160 :          IF (do_mo_coeff_Gamma_only) THEN
    3184             : 
    3185       11160 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3186             : 
    3187             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3188       11160 :                                 filter_eps=1.0E-15_dp)
    3189             : 
    3190             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3191       11160 :                                 matrix_berry_re_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3192             : 
    3193       11160 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3194             : 
    3195             :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_Gamma_occ_and_GW, 0.0_dp, tmp, &
    3196       11160 :                                 filter_eps=1.0E-15_dp)
    3197             : 
    3198             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3199       11160 :                                 matrix_berry_im_mo_mo(ikp)%matrix, filter_eps=1.0E-15_dp)
    3200             : 
    3201             :          ELSE
    3202             : 
    3203             :             ! get mo coeff at the ikp
    3204             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(1, 1)%mo_coeff, &
    3205           0 :                                   mat_mo_coeff_re, keep_sparsity=.FALSE.)
    3206             : 
    3207             :             CALL copy_fm_to_dbcsr(kpoints%kp_env(ikp)%kpoint_env%mos(2, 1)%mo_coeff, &
    3208           0 :                                   mat_mo_coeff_im, keep_sparsity=.FALSE.)
    3209             : 
    3210           0 :             CALL dbcsr_desymmetrize(cosmat, cosmat_desymm)
    3211             : 
    3212           0 :             CALL dbcsr_desymmetrize(sinmat, sinmat_desymm)
    3213             : 
    3214             :             ! I.
    3215           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3216             : 
    3217             :             ! I.1
    3218             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3219           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3220             : 
    3221             :             ! II.
    3222           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_re, 0.0_dp, tmp)
    3223             : 
    3224             :             ! II.5
    3225             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 0.0_dp, &
    3226           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3227             : 
    3228             :             ! III.
    3229           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, cosmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3230             : 
    3231             :             ! III.7
    3232             :             CALL dbcsr_multiply('T', 'N', 1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3233           0 :                                 matrix_berry_im_mo_mo(ikp)%matrix)
    3234             : 
    3235             :             ! IV.
    3236           0 :             CALL dbcsr_multiply('N', 'N', 1.0_dp, sinmat_desymm, mat_mo_coeff_im, 0.0_dp, tmp)
    3237             : 
    3238             :             ! IV.3
    3239             :             CALL dbcsr_multiply('T', 'N', -1.0_dp, mat_mo_coeff_Gamma_all, tmp, 1.0_dp, &
    3240           0 :                                 matrix_berry_re_mo_mo(ikp)%matrix)
    3241             : 
    3242             :          END IF
    3243             : 
    3244       11166 :          IF (abs_kpoint < eps_kpoint) THEN
    3245             : 
    3246           0 :             CALL dbcsr_scale(matrix_berry_im_mo_mo(ikp)%matrix, 1.0_dp/scale_kpoint)
    3247           0 :             CALL dbcsr_set(matrix_berry_re_mo_mo(ikp)%matrix, 0.0_dp)
    3248           0 :             CALL dbcsr_add_on_diag(matrix_berry_re_mo_mo(ikp)%matrix, 1.0_dp)
    3249             : 
    3250             :          END IF
    3251             : 
    3252             :       END DO
    3253             : 
    3254           6 :       CALL dbcsr_release_p(cosmat)
    3255           6 :       CALL dbcsr_release_p(sinmat)
    3256           6 :       CALL dbcsr_release_p(mat_mo_coeff_re)
    3257           6 :       CALL dbcsr_release_p(mat_mo_coeff_im)
    3258           6 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_all)
    3259           6 :       CALL dbcsr_release_p(mat_mo_coeff_Gamma_occ_and_GW)
    3260           6 :       CALL dbcsr_release_p(tmp)
    3261           6 :       CALL dbcsr_release_p(cosmat_desymm)
    3262           6 :       CALL dbcsr_release_p(sinmat_desymm)
    3263           6 :       DEALLOCATE (orb_basis_set_list)
    3264             : 
    3265           6 :       CALL release_neighbor_list_sets(sab_orb_mic)
    3266             : 
    3267           6 :       IF (do_aux_bas) THEN
    3268             : 
    3269           2 :          DEALLOCATE (gw_aux_basis_set_list)
    3270           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_aux)
    3271           2 :          CALL dbcsr_deallocate_matrix_set(matrix_s_aux_orb)
    3272           2 :          CALL dbcsr_release_p(mat_work_aux_orb)
    3273           2 :          CALL dbcsr_release_p(mat_work_aux_orb_2)
    3274           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux)
    3275           2 :          CALL dbcsr_release_p(mat_mo_coeff_aux_2)
    3276           2 :          CALL dbcsr_release_p(matrix_s_inv_aux_aux)
    3277           2 :          CALL dbcsr_release_p(matrix_P)
    3278           2 :          CALL dbcsr_release_p(matrix_P_sqrt)
    3279           2 :          CALL dbcsr_release_p(matrix_P_sqrt_inv)
    3280             : 
    3281           2 :          CALL cp_fm_struct_release(fm_struct_aux_aux)
    3282             : 
    3283           2 :          CALL cp_fm_release(fm_mat_s_aux_aux_inv)
    3284           2 :          CALL cp_fm_release(fm_mat_work_aux_aux)
    3285           2 :          CALL cp_fm_release(fm_mat_P)
    3286           2 :          CALL cp_fm_release(fm_mat_eigv_P)
    3287           2 :          CALL cp_fm_release(fm_mat_scaled_eigv_P)
    3288           2 :          CALL cp_fm_release(fm_mat_P_sqrt_inv)
    3289             : 
    3290             :          ! Deallocate the neighbor list structure
    3291           2 :          CALL release_neighbor_list_sets(sgwgw_list)
    3292           2 :          CALL release_neighbor_list_sets(sgworb_list)
    3293             : 
    3294             :       END IF
    3295             : 
    3296           6 :       CALL timestop(handle)
    3297             : 
    3298           6 :    END SUBROUTINE get_berry_phase
    3299             : 
    3300             : ! **************************************************************************************************
    3301             : !> \brief ...
    3302             : !> \param mat_mo_coeff_Gamma_occ_and_GW ...
    3303             : !> \param homo ...
    3304             : !> \param gw_corr_lev_virt ...
    3305             : ! **************************************************************************************************
    3306           6 :    SUBROUTINE remove_unnecessary_blocks(mat_mo_coeff_Gamma_occ_and_GW, homo, gw_corr_lev_virt)
    3307             : 
    3308             :       TYPE(dbcsr_type), POINTER                          :: mat_mo_coeff_Gamma_occ_and_GW
    3309             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_virt
    3310             : 
    3311             :       INTEGER                                            :: col, col_offset, row
    3312           6 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3313             :       TYPE(dbcsr_iterator_type)                          :: iter
    3314             : 
    3315           6 :       CALL dbcsr_iterator_start(iter, mat_mo_coeff_Gamma_occ_and_GW)
    3316             : 
    3317          27 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
    3318             : 
    3319             :          CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3320          21 :                                         col_offset=col_offset)
    3321             : 
    3322          27 :          IF (col_offset > homo + gw_corr_lev_virt) THEN
    3323             : 
    3324         532 :             data_block = 0.0_dp
    3325             : 
    3326             :          END IF
    3327             : 
    3328             :       END DO
    3329             : 
    3330           6 :       CALL dbcsr_iterator_stop(iter)
    3331             : 
    3332           6 :       CALL dbcsr_filter(mat_mo_coeff_Gamma_occ_and_GW, 1.0E-15_dp)
    3333             : 
    3334           6 :    END SUBROUTINE remove_unnecessary_blocks
    3335             : 
    3336             : ! **************************************************************************************************
    3337             : !> \brief ...
    3338             : !> \param delta_corr ...
    3339             : !> \param eps_inv_head ...
    3340             : !> \param kpoints ...
    3341             : !> \param qs_env ...
    3342             : !> \param matrix_berry_re_mo_mo ...
    3343             : !> \param matrix_berry_im_mo_mo ...
    3344             : !> \param homo ...
    3345             : !> \param gw_corr_lev_occ ...
    3346             : !> \param gw_corr_lev_virt ...
    3347             : !> \param para_env_RPA ...
    3348             : !> \param do_extra_kpoints ...
    3349             : ! **************************************************************************************************
    3350         260 :    SUBROUTINE kpoint_sum_for_eps_inv_head_Berry(delta_corr, eps_inv_head, kpoints, qs_env, matrix_berry_re_mo_mo, &
    3351         260 :                                                 matrix_berry_im_mo_mo, homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    3352             :                                                 para_env_RPA, do_extra_kpoints)
    3353             : 
    3354             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3355             :          INTENT(INOUT)                                   :: delta_corr
    3356             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_inv_head
    3357             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3358             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3359             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_berry_re_mo_mo, &
    3360             :                                                             matrix_berry_im_mo_mo
    3361             :       INTEGER, INTENT(IN)                                :: homo, gw_corr_lev_occ, gw_corr_lev_virt
    3362             :       TYPE(mp_para_env_type), INTENT(IN), OPTIONAL       :: para_env_RPA
    3363             :       LOGICAL, INTENT(IN)                                :: do_extra_kpoints
    3364             : 
    3365             :       INTEGER                                            :: col, col_offset, col_size, i_col, i_row, &
    3366             :                                                             ikp, m_level, n_level_gw, nkp, row, &
    3367             :                                                             row_offset, row_size
    3368             :       REAL(KIND=dp)                                      :: abs_k_square, cell_volume, &
    3369             :                                                             check_int_one_over_ksq, contribution, &
    3370             :                                                             weight
    3371             :       REAL(KIND=dp), DIMENSION(3)                        :: correct_kpoint
    3372         260 :       REAL(KIND=dp), DIMENSION(:), POINTER               :: delta_corr_extra
    3373         260 :       REAL(KIND=dp), DIMENSION(:, :), POINTER            :: data_block
    3374             :       TYPE(cell_type), POINTER                           :: cell
    3375             :       TYPE(dbcsr_iterator_type)                          :: iter, iter_new
    3376             : 
    3377         260 :       CALL get_qs_env(qs_env=qs_env, cell=cell)
    3378             : 
    3379         260 :       CALL get_cell(cell=cell, deth=cell_volume)
    3380             : 
    3381         260 :       nkp = kpoints%nkp
    3382             : 
    3383        3800 :       delta_corr = 0.0_dp
    3384             : 
    3385         260 :       IF (do_extra_kpoints) THEN
    3386         260 :          NULLIFY (delta_corr_extra)
    3387         780 :          ALLOCATE (delta_corr_extra(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt))
    3388        3800 :          delta_corr_extra = 0.0_dp
    3389             :       END IF
    3390             : 
    3391         260 :       check_int_one_over_ksq = 0.0_dp
    3392             : 
    3393      279620 :       DO ikp = 1, nkp
    3394             : 
    3395      279360 :          weight = kpoints%wkp(ikp)
    3396             : 
    3397     1117440 :          correct_kpoint(1:3) = twopi*kpoints%xkp(1:3, ikp)
    3398             : 
    3399      279360 :          abs_k_square = (correct_kpoint(1))**2 + (correct_kpoint(2))**2 + (correct_kpoint(3))**2
    3400             : 
    3401             :          ! cos part of the Berry phase
    3402      279360 :          CALL dbcsr_iterator_start(iter, matrix_berry_re_mo_mo(ikp)%matrix)
    3403      465120 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    3404             : 
    3405             :             CALL dbcsr_iterator_next_block(iter, row, col, data_block, &
    3406             :                                            row_size=row_size, col_size=col_size, &
    3407      185760 :                                            row_offset=row_offset, col_offset=col_offset)
    3408             : 
    3409     2880000 :             DO i_col = 1, col_size
    3410             : 
    3411    31916160 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3412             : 
    3413    31730400 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3414             : 
    3415    26619840 :                      DO i_row = 1, row_size
    3416             : 
    3417    24481440 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3418             : 
    3419    24481440 :                         m_level = i_row + row_offset - 1
    3420             : 
    3421             :                         ! we only compute the correction for n=m
    3422    24481440 :                         IF (m_level .NE. n_level_gw) CYCLE
    3423             : 
    3424     3862080 :                         IF (.NOT. do_extra_kpoints) THEN
    3425             : 
    3426           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3427             : 
    3428             :                         ELSE
    3429             : 
    3430     1723680 :                            IF (ikp <= nkp*8/9) THEN
    3431             : 
    3432     1532160 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3433             : 
    3434             :                            ELSE
    3435             : 
    3436      191520 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3437             : 
    3438             :                            END IF
    3439             : 
    3440             :                         END IF
    3441             : 
    3442             :                      END DO
    3443             : 
    3444             :                   END IF
    3445             : 
    3446             :                END DO
    3447             : 
    3448             :             END DO
    3449             : 
    3450             :          END DO
    3451             : 
    3452      279360 :          CALL dbcsr_iterator_stop(iter)
    3453             : 
    3454             :          ! the same for the im. part of the Berry phase
    3455      279360 :          CALL dbcsr_iterator_start(iter_new, matrix_berry_im_mo_mo(ikp)%matrix)
    3456      465120 :          DO WHILE (dbcsr_iterator_blocks_left(iter_new))
    3457             : 
    3458             :             CALL dbcsr_iterator_next_block(iter_new, row, col, data_block, &
    3459             :                                            row_size=row_size, col_size=col_size, &
    3460      185760 :                                            row_offset=row_offset, col_offset=col_offset)
    3461             : 
    3462     2880000 :             DO i_col = 1, col_size
    3463             : 
    3464    31916160 :                DO n_level_gw = 1 + homo - gw_corr_lev_occ, homo + gw_corr_lev_virt
    3465             : 
    3466    31730400 :                   IF (n_level_gw == i_col + col_offset - 1) THEN
    3467             : 
    3468    26619840 :                      DO i_row = 1, row_size
    3469             : 
    3470    24481440 :                         m_level = i_row + row_offset - 1
    3471             : 
    3472    24481440 :                         contribution = weight*(eps_inv_head(ikp) - 1.0_dp)/abs_k_square*(data_block(i_row, i_col))**2
    3473             : 
    3474             :                         ! we only compute the correction for n=m
    3475    24481440 :                         IF (m_level .NE. n_level_gw) CYCLE
    3476             : 
    3477     3862080 :                         IF (.NOT. do_extra_kpoints) THEN
    3478             : 
    3479           0 :                            delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3480             : 
    3481             :                         ELSE
    3482             : 
    3483     1723680 :                            IF (ikp <= nkp*8/9) THEN
    3484             : 
    3485     1532160 :                               delta_corr(n_level_gw) = delta_corr(n_level_gw) + contribution
    3486             : 
    3487             :                            ELSE
    3488             : 
    3489      191520 :                               delta_corr_extra(n_level_gw) = delta_corr_extra(n_level_gw) + contribution
    3490             : 
    3491             :                            END IF
    3492             : 
    3493             :                         END IF
    3494             : 
    3495             :                      END DO
    3496             : 
    3497             :                   END IF
    3498             : 
    3499             :                END DO
    3500             : 
    3501             :             END DO
    3502             : 
    3503             :          END DO
    3504             : 
    3505      279360 :          CALL dbcsr_iterator_stop(iter_new)
    3506             : 
    3507      838340 :          check_int_one_over_ksq = check_int_one_over_ksq + weight/abs_k_square
    3508             : 
    3509             :       END DO
    3510             : 
    3511             :       ! normalize by the cell volume
    3512        3800 :       delta_corr = delta_corr/cell_volume*fourpi
    3513             : 
    3514         260 :       check_int_one_over_ksq = check_int_one_over_ksq/cell_volume
    3515             : 
    3516         260 :       CALL para_env_RPA%sum(delta_corr)
    3517             : 
    3518         260 :       IF (do_extra_kpoints) THEN
    3519             : 
    3520        3800 :          delta_corr_extra = delta_corr_extra/cell_volume*fourpi
    3521             : 
    3522        7340 :          CALL para_env_RPA%sum(delta_corr_extra)
    3523             : 
    3524        3800 :          delta_corr(:) = delta_corr(:) + (delta_corr(:) - delta_corr_extra(:))
    3525             : 
    3526         260 :          DEALLOCATE (delta_corr_extra)
    3527             : 
    3528             :       END IF
    3529             : 
    3530         260 :    END SUBROUTINE kpoint_sum_for_eps_inv_head_Berry
    3531             : 
    3532             : ! **************************************************************************************************
    3533             : !> \brief ...
    3534             : !> \param eps_inv_head ...
    3535             : !> \param eps_head ...
    3536             : !> \param kpoints ...
    3537             : ! **************************************************************************************************
    3538         260 :    SUBROUTINE compute_eps_inv_head(eps_inv_head, eps_head, kpoints)
    3539             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    3540             :          INTENT(OUT)                                     :: eps_inv_head
    3541             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: eps_head
    3542             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3543             : 
    3544             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_eps_inv_head'
    3545             : 
    3546             :       INTEGER                                            :: handle, ikp, nkp
    3547             : 
    3548         260 :       CALL timeset(routineN, handle)
    3549             : 
    3550         260 :       nkp = kpoints%nkp
    3551             : 
    3552         780 :       ALLOCATE (eps_inv_head(nkp))
    3553             : 
    3554      279620 :       DO ikp = 1, nkp
    3555             : 
    3556      279620 :          eps_inv_head(ikp) = 1.0_dp/eps_head(ikp)
    3557             : 
    3558             :       END DO
    3559             : 
    3560         260 :       CALL timestop(handle)
    3561             : 
    3562         260 :    END SUBROUTINE compute_eps_inv_head
    3563             : 
    3564             : ! **************************************************************************************************
    3565             : !> \brief ...
    3566             : !> \param qs_env ...
    3567             : !> \param kpoints ...
    3568             : !> \param kp_grid ...
    3569             : !> \param num_kp_grids ...
    3570             : !> \param para_env ...
    3571             : !> \param h_inv ...
    3572             : !> \param nmo ...
    3573             : !> \param do_mo_coeff_Gamma_only ...
    3574             : !> \param do_extra_kpoints ...
    3575             : ! **************************************************************************************************
    3576           6 :    SUBROUTINE get_kpoints(qs_env, kpoints, kp_grid, num_kp_grids, para_env, h_inv, nmo, &
    3577             :                           do_mo_coeff_Gamma_only, do_extra_kpoints)
    3578             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3579             :       TYPE(kpoint_type), POINTER                         :: kpoints
    3580             :       INTEGER, DIMENSION(:), POINTER                     :: kp_grid
    3581             :       INTEGER, INTENT(IN)                                :: num_kp_grids
    3582             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    3583             :       REAL(KIND=dp), DIMENSION(3, 3), INTENT(INOUT)      :: h_inv
    3584             :       INTEGER, INTENT(IN)                                :: nmo
    3585             :       LOGICAL, INTENT(IN)                                :: do_mo_coeff_Gamma_only, do_extra_kpoints
    3586             : 
    3587             :       INTEGER                                            :: end_kp, i, i_grid_level, ix, iy, iz, &
    3588             :                                                             nkp_inner_grid, nkp_outer_grid, &
    3589             :                                                             npoints, start_kp
    3590             :       INTEGER, DIMENSION(3)                              :: outer_kp_grid
    3591             :       REAL(KIND=dp)                                      :: kpoint_weight_left, single_weight
    3592             :       REAL(KIND=dp), DIMENSION(3)                        :: kpt_latt, reducing_factor
    3593             :       TYPE(cell_type), POINTER                           :: cell
    3594           6 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3595             : 
    3596           6 :       NULLIFY (kpoints, cell, particle_set)
    3597             : 
    3598             :       ! check whether kp_grid includes the Gamma point. If so, abort.
    3599           6 :       CPASSERT(MOD(kp_grid(1)*kp_grid(2)*kp_grid(3), 2) == 0)
    3600           6 :       IF (do_extra_kpoints) THEN
    3601           6 :          CPASSERT(do_mo_coeff_Gamma_only)
    3602             :       END IF
    3603             : 
    3604           6 :       IF (do_mo_coeff_Gamma_only) THEN
    3605             : 
    3606           6 :          outer_kp_grid(1) = kp_grid(1) - 1
    3607           6 :          outer_kp_grid(2) = kp_grid(2) - 1
    3608           6 :          outer_kp_grid(3) = kp_grid(3) - 1
    3609             : 
    3610           6 :          CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3611             : 
    3612           6 :          CALL get_cell(cell, h_inv=h_inv)
    3613             : 
    3614           6 :          CALL kpoint_create(kpoints)
    3615             : 
    3616           6 :          kpoints%kp_scheme = "GENERAL"
    3617           6 :          kpoints%symmetry = .FALSE.
    3618           6 :          kpoints%verbose = .FALSE.
    3619           6 :          kpoints%full_grid = .FALSE.
    3620           6 :          kpoints%use_real_wfn = .FALSE.
    3621           6 :          kpoints%eps_geo = 1.e-6_dp
    3622             :          npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + &
    3623           6 :                    (num_kp_grids - 1)*((outer_kp_grid(1) + 1)/2*outer_kp_grid(2)*outer_kp_grid(3) - 1)
    3624             : 
    3625           6 :          IF (do_extra_kpoints) THEN
    3626             : 
    3627           6 :             CPASSERT(num_kp_grids == 1)
    3628           6 :             CPASSERT(MOD(kp_grid(1), 4) == 0)
    3629           6 :             CPASSERT(MOD(kp_grid(2), 4) == 0)
    3630           6 :             CPASSERT(MOD(kp_grid(3), 4) == 0)
    3631             : 
    3632             :          END IF
    3633             : 
    3634           6 :          IF (do_extra_kpoints) THEN
    3635             : 
    3636           6 :             npoints = kp_grid(1)*kp_grid(2)*kp_grid(3)/2 + kp_grid(1)*kp_grid(2)*kp_grid(3)/2/8
    3637             : 
    3638             :          END IF
    3639             : 
    3640           6 :          kpoints%full_grid = .TRUE.
    3641           6 :          kpoints%nkp = npoints
    3642          30 :          ALLOCATE (kpoints%xkp(3, npoints), kpoints%wkp(npoints))
    3643       44646 :          kpoints%xkp = 0.0_dp
    3644       11166 :          kpoints%wkp = 0.0_dp
    3645             : 
    3646           6 :          nkp_outer_grid = outer_kp_grid(1)*outer_kp_grid(2)*outer_kp_grid(3)
    3647           6 :          nkp_inner_grid = kp_grid(1)*kp_grid(2)*kp_grid(3)
    3648             : 
    3649           6 :          i = 0
    3650          24 :          reducing_factor(:) = 1.0_dp
    3651             :          kpoint_weight_left = 1.0_dp
    3652             : 
    3653             :          ! the outer grids
    3654           6 :          DO i_grid_level = 1, num_kp_grids - 1
    3655             : 
    3656           0 :             single_weight = kpoint_weight_left/REAL(nkp_outer_grid, KIND=dp)
    3657             : 
    3658           0 :             start_kp = i + 1
    3659             : 
    3660           0 :             DO ix = 1, outer_kp_grid(1)
    3661           0 :                DO iy = 1, outer_kp_grid(2)
    3662           0 :                   DO iz = 1, outer_kp_grid(3)
    3663             : 
    3664             :                      ! exclude Gamma
    3665           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0 .AND. 2*iy - outer_kp_grid(2) - 1 == 0 .AND. &
    3666             :                          2*iz - outer_kp_grid(3) - 1 == 0) CYCLE
    3667             : 
    3668             :                      ! use time reversal symmetry k<->-k
    3669           0 :                      IF (2*ix - outer_kp_grid(1) - 1 < 0) CYCLE
    3670             : 
    3671           0 :                      i = i + 1
    3672             :                      kpt_latt(1) = REAL(2*ix - outer_kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(1), KIND=dp)) &
    3673           0 :                                    *reducing_factor(1)
    3674             :                      kpt_latt(2) = REAL(2*iy - outer_kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(2), KIND=dp)) &
    3675           0 :                                    *reducing_factor(2)
    3676             :                      kpt_latt(3) = REAL(2*iz - outer_kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(outer_kp_grid(3), KIND=dp)) &
    3677           0 :                                    *reducing_factor(3)
    3678           0 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3679             : 
    3680           0 :                      IF (2*ix - outer_kp_grid(1) - 1 == 0) THEN
    3681           0 :                         kpoints%wkp(i) = single_weight
    3682             :                      ELSE
    3683           0 :                         kpoints%wkp(i) = 2._dp*single_weight
    3684             :                      END IF
    3685             : 
    3686             :                   END DO
    3687             :                END DO
    3688             :             END DO
    3689             : 
    3690           0 :             end_kp = i
    3691             : 
    3692           0 :             kpoint_weight_left = kpoint_weight_left - SUM(kpoints%wkp(start_kp:end_kp))
    3693             : 
    3694           0 :             reducing_factor(1) = reducing_factor(1)/REAL(outer_kp_grid(1), KIND=dp)
    3695           0 :             reducing_factor(2) = reducing_factor(2)/REAL(outer_kp_grid(2), KIND=dp)
    3696           6 :             reducing_factor(3) = reducing_factor(3)/REAL(outer_kp_grid(3), KIND=dp)
    3697             : 
    3698             :          END DO
    3699             : 
    3700           6 :          single_weight = kpoint_weight_left/REAL(nkp_inner_grid, KIND=dp)
    3701             : 
    3702             :          ! the inner grid
    3703          94 :          DO ix = 1, kp_grid(1)
    3704        1406 :             DO iy = 1, kp_grid(2)
    3705       21240 :                DO iz = 1, kp_grid(3)
    3706             : 
    3707             :                   ! use time reversal symmetry k<->-k
    3708       19840 :                   IF (2*ix - kp_grid(1) - 1 < 0) CYCLE
    3709             : 
    3710        9920 :                   i = i + 1
    3711        9920 :                   kpt_latt(1) = REAL(2*ix - kp_grid(1) - 1, KIND=dp)/(2._dp*REAL(kp_grid(1), KIND=dp))*reducing_factor(1)
    3712        9920 :                   kpt_latt(2) = REAL(2*iy - kp_grid(2) - 1, KIND=dp)/(2._dp*REAL(kp_grid(2), KIND=dp))*reducing_factor(2)
    3713        9920 :                   kpt_latt(3) = REAL(2*iz - kp_grid(3) - 1, KIND=dp)/(2._dp*REAL(kp_grid(3), KIND=dp))*reducing_factor(3)
    3714             : 
    3715       39680 :                   kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3716             : 
    3717       21152 :                   kpoints%wkp(i) = 2._dp*single_weight
    3718             : 
    3719             :                END DO
    3720             :             END DO
    3721             :          END DO
    3722             : 
    3723           6 :          IF (do_extra_kpoints) THEN
    3724             : 
    3725           6 :             single_weight = kpoint_weight_left/REAL(kp_grid(1)*kp_grid(2)*kp_grid(3)/8, KIND=dp)
    3726             : 
    3727          50 :             DO ix = 1, kp_grid(1)/2
    3728         378 :                DO iy = 1, kp_grid(2)/2
    3729        2852 :                   DO iz = 1, kp_grid(3)/2
    3730             : 
    3731             :                      ! use time reversal symmetry k<->-k
    3732        2480 :                      IF (2*ix - kp_grid(1)/2 - 1 < 0) CYCLE
    3733             : 
    3734        1240 :                      i = i + 1
    3735        1240 :                      kpt_latt(1) = REAL(2*ix - kp_grid(1)/2 - 1, KIND=dp)/(REAL(kp_grid(1), KIND=dp))
    3736        1240 :                      kpt_latt(2) = REAL(2*iy - kp_grid(2)/2 - 1, KIND=dp)/(REAL(kp_grid(2), KIND=dp))
    3737        1240 :                      kpt_latt(3) = REAL(2*iz - kp_grid(3)/2 - 1, KIND=dp)/(REAL(kp_grid(3), KIND=dp))
    3738             : 
    3739        4960 :                      kpoints%xkp(1:3, i) = MATMUL(TRANSPOSE(h_inv), kpt_latt(:))
    3740             : 
    3741        2808 :                      kpoints%wkp(i) = 2._dp*single_weight
    3742             : 
    3743             :                   END DO
    3744             :                END DO
    3745             :             END DO
    3746             : 
    3747             :          END IF
    3748             : 
    3749             :          ! default: no symmetry settings
    3750       11178 :          ALLOCATE (kpoints%kp_sym(kpoints%nkp))
    3751       11166 :          DO i = 1, kpoints%nkp
    3752       11160 :             NULLIFY (kpoints%kp_sym(i)%kpoint_sym)
    3753       11166 :             CALL kpoint_sym_create(kpoints%kp_sym(i)%kpoint_sym)
    3754             :          END DO
    3755             : 
    3756             :       ELSE
    3757             : 
    3758             :          BLOCK
    3759             :             TYPE(qs_environment_type), POINTER :: qs_env_kp_Gamma_only
    3760           0 :             CALL create_kp_from_gamma(qs_env, qs_env_kp_Gamma_only)
    3761             : 
    3762           0 :             CALL get_qs_env(qs_env=qs_env, cell=cell, particle_set=particle_set)
    3763             : 
    3764             :             CALL calculate_kp_orbitals(qs_env_kp_Gamma_only, kpoints, "MONKHORST-PACK", nadd=nmo, mp_grid=kp_grid(1:3), &
    3765           0 :                                        group_size_ext=para_env%num_pe)
    3766             : 
    3767           0 :             CALL qs_env_release(qs_env_kp_Gamma_only)
    3768           0 :             DEALLOCATE (qs_env_kp_Gamma_only)
    3769             :          END BLOCK
    3770             : 
    3771             :       END IF
    3772             : 
    3773           6 :    END SUBROUTINE get_kpoints
    3774             : 
    3775             : ! **************************************************************************************************
    3776             : !> \brief ...
    3777             : !> \param vec_Sigma_c_gw ...
    3778             : !> \param Eigenval_DFT ...
    3779             : !> \param eps_eigenval ...
    3780             : ! **************************************************************************************************
    3781          10 :    PURE SUBROUTINE average_degenerate_levels(vec_Sigma_c_gw, Eigenval_DFT, eps_eigenval)
    3782             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), &
    3783             :          INTENT(INOUT)                                   :: vec_Sigma_c_gw
    3784             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval_DFT
    3785             :       REAL(KIND=dp), INTENT(IN)                          :: eps_eigenval
    3786             : 
    3787          10 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: avg_self_energy
    3788             :       INTEGER :: degeneracy, first_degenerate_level, i_deg_level, i_level_gw, j_deg_level, jquad, &
    3789             :          num_deg_levels, num_integ_points, num_levels_gw
    3790          10 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: list_degenerate_levels
    3791             : 
    3792          10 :       num_levels_gw = SIZE(vec_Sigma_c_gw, 1)
    3793             : 
    3794          30 :       ALLOCATE (list_degenerate_levels(num_levels_gw))
    3795         130 :       list_degenerate_levels = 1
    3796             : 
    3797          10 :       num_integ_points = SIZE(vec_Sigma_c_gw, 2)
    3798             : 
    3799          30 :       ALLOCATE (avg_self_energy(num_integ_points))
    3800             : 
    3801         120 :       DO i_level_gw = 2, num_levels_gw
    3802             : 
    3803         120 :          IF (ABS(Eigenval_DFT(i_level_gw) - Eigenval_DFT(i_level_gw - 1)) < eps_eigenval) THEN
    3804             : 
    3805           0 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1)
    3806             : 
    3807             :          ELSE
    3808             : 
    3809         110 :             list_degenerate_levels(i_level_gw) = list_degenerate_levels(i_level_gw - 1) + 1
    3810             : 
    3811             :          END IF
    3812             : 
    3813             :       END DO
    3814             : 
    3815          10 :       num_deg_levels = list_degenerate_levels(num_levels_gw)
    3816             : 
    3817         130 :       DO i_deg_level = 1, num_deg_levels
    3818             : 
    3819             :          degeneracy = 0
    3820             : 
    3821        1624 :          DO i_level_gw = 1, num_levels_gw
    3822             : 
    3823        1504 :             IF (degeneracy == 0 .AND. i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3824             : 
    3825         120 :                first_degenerate_level = i_level_gw
    3826             : 
    3827             :             END IF
    3828             : 
    3829        1624 :             IF (i_deg_level == list_degenerate_levels(i_level_gw)) THEN
    3830             : 
    3831         120 :                degeneracy = degeneracy + 1
    3832             : 
    3833             :             END IF
    3834             : 
    3835             :          END DO
    3836             : 
    3837        3136 :          DO jquad = 1, num_integ_points
    3838             : 
    3839             :             avg_self_energy(jquad) = SUM(vec_Sigma_c_gw(first_degenerate_level:first_degenerate_level + degeneracy - 1, jquad, 1)) &
    3840        6152 :                                      /REAL(degeneracy, KIND=dp)
    3841             : 
    3842             :          END DO
    3843             : 
    3844         250 :          DO j_deg_level = 0, degeneracy - 1
    3845             : 
    3846        3256 :             vec_Sigma_c_gw(first_degenerate_level + j_deg_level, :, 1) = avg_self_energy(:)
    3847             : 
    3848             :          END DO
    3849             : 
    3850             :       END DO
    3851             : 
    3852          10 :    END SUBROUTINE average_degenerate_levels
    3853             : 
    3854             : ! **************************************************************************************************
    3855             : !> \brief ...
    3856             : !> \param vec_gw_energ ...
    3857             : !> \param vec_omega_fit_gw ...
    3858             : !> \param z_value ...
    3859             : !> \param m_value ...
    3860             : !> \param vec_Sigma_c_gw ...
    3861             : !> \param vec_Sigma_x_minus_vxc_gw ...
    3862             : !> \param Eigenval ...
    3863             : !> \param Eigenval_scf ...
    3864             : !> \param n_level_gw ...
    3865             : !> \param gw_corr_lev_occ ...
    3866             : !> \param gw_corr_lev_vir ...
    3867             : !> \param num_poles ...
    3868             : !> \param num_fit_points ...
    3869             : !> \param crossing_search ...
    3870             : !> \param homo ...
    3871             : !> \param stop_crit ...
    3872             : !> \param fermi_level_offset ...
    3873             : !> \param do_gw_im_time ...
    3874             : ! **************************************************************************************************
    3875         568 :    SUBROUTINE fit_and_continuation_2pole(vec_gw_energ, vec_omega_fit_gw, &
    3876        1136 :                                          z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    3877        1136 :                                          Eigenval, Eigenval_scf, n_level_gw, &
    3878             :                                          gw_corr_lev_occ, gw_corr_lev_vir, num_poles, &
    3879             :                                          num_fit_points, crossing_search, homo, stop_crit, &
    3880             :                                          fermi_level_offset, do_gw_im_time)
    3881             : 
    3882             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ, vec_omega_fit_gw, z_value, &
    3883             :                                                             m_value
    3884             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    3885             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    3886             :                                                             Eigenval_scf
    3887             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, &
    3888             :                                                             gw_corr_lev_vir, num_poles, &
    3889             :                                                             num_fit_points, crossing_search, homo
    3890             :       REAL(KIND=dp), INTENT(IN)                          :: stop_crit, fermi_level_offset
    3891             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time
    3892             : 
    3893             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'fit_and_continuation_2pole'
    3894             : 
    3895             :       COMPLEX(KIND=dp)                                   :: func_val, rho1
    3896         568 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: dLambda, dLambda_2, Lambda, &
    3897         568 :                                                             Lambda_without_offset, vec_b_gw, &
    3898         568 :                                                             vec_b_gw_copy
    3899         568 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: mat_A_gw, mat_B_gw
    3900             :       INTEGER                                            :: handle4, ierr, iii, iiter, info, &
    3901             :                                                             integ_range, jjj, jquad, kkk, &
    3902             :                                                             max_iter_fit, n_level_gw_ref, num_var, &
    3903             :                                                             xpos
    3904         568 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: ipiv
    3905             :       LOGICAL                                            :: could_exit
    3906             :       REAL(KIND=dp) :: chi2, chi2_old, delta, deriv_val_real, e_fermi, gw_energ, Ldown, &
    3907             :          level_energ_GW, Lup, range_step, ScalParam, sign_occ_virt, stat_error
    3908         568 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: Lambda_Im, Lambda_Re, stat_errors, &
    3909         568 :                                                             vec_N_gw, vec_omega_fit_gw_sign
    3910         568 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :)        :: mat_N_gw
    3911             : 
    3912         568 :       max_iter_fit = 10000
    3913             : 
    3914         568 :       num_var = 2*num_poles + 1
    3915        1704 :       ALLOCATE (Lambda(num_var))
    3916        3408 :       Lambda = z_zero
    3917        1136 :       ALLOCATE (Lambda_without_offset(num_var))
    3918        3408 :       Lambda_without_offset = z_zero
    3919        1704 :       ALLOCATE (Lambda_Re(num_var))
    3920        3408 :       Lambda_Re = 0.0_dp
    3921        1136 :       ALLOCATE (Lambda_Im(num_var))
    3922        3408 :       Lambda_Im = 0.0_dp
    3923             : 
    3924        1704 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    3925             : 
    3926         568 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    3927             :          sign_occ_virt = -1.0_dp
    3928             :       ELSE
    3929         405 :          sign_occ_virt = 1.0_dp
    3930             :       END IF
    3931             : 
    3932         568 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    3933             : 
    3934        7324 :       DO jquad = 1, num_fit_points
    3935        7324 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    3936             :       END DO
    3937             : 
    3938             :       ! initial guess
    3939         568 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/(num_poles - 1)
    3940        1704 :       DO iii = 1, num_poles
    3941        1704 :          Lambda_Im(2*iii + 1) = vec_omega_fit_gw_sign(1) + (iii - 1)*range_step
    3942             :       END DO
    3943         568 :       range_step = (vec_omega_fit_gw_sign(num_fit_points) - vec_omega_fit_gw_sign(1))/num_poles
    3944        1704 :       DO iii = 1, num_poles
    3945        1704 :          Lambda_Re(2*iii + 1) = ABS(vec_omega_fit_gw_sign(1) + (iii - 0.5_dp)*range_step)
    3946             :       END DO
    3947             : 
    3948        3408 :       DO iii = 1, num_var
    3949        3408 :          Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    3950             :       END DO
    3951             : 
    3952             :       CALL calc_chi2(chi2_old, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    3953         568 :                      num_fit_points, n_level_gw)
    3954             : 
    3955        2272 :       ALLOCATE (mat_A_gw(num_poles + 1, num_poles + 1))
    3956        1704 :       ALLOCATE (vec_b_gw(num_poles + 1))
    3957        1704 :       ALLOCATE (ipiv(num_poles + 1))
    3958        7384 :       mat_A_gw = z_zero
    3959        2272 :       vec_b_gw = 0.0_dp
    3960             : 
    3961        2272 :       mat_A_gw(1:num_poles + 1, 1) = z_one
    3962         568 :       integ_range = num_fit_points/num_poles
    3963        2272 :       DO kkk = 1, num_poles + 1
    3964        1704 :          xpos = (kkk - 1)*integ_range + 1
    3965        1704 :          xpos = MIN(xpos, num_fit_points)
    3966             :          ! calculate coefficient at this point
    3967        5112 :          DO iii = 1, num_poles
    3968        3408 :             jjj = iii*2
    3969             :             func_val = z_one/(gaussi*vec_omega_fit_gw_sign(xpos) - &
    3970        3408 :                               CMPLX(Lambda_Re(jjj + 1), Lambda_Im(jjj + 1), KIND=dp))
    3971        5112 :             mat_A_gw(kkk, iii + 1) = func_val
    3972             :          END DO
    3973        2272 :          vec_b_gw(kkk) = vec_Sigma_c_gw(n_level_gw, xpos)
    3974             :       END DO
    3975             : 
    3976             :       ! Solve system of linear equations
    3977         568 :       CALL ZGETRF(num_poles + 1, num_poles + 1, mat_A_gw, num_poles + 1, ipiv, info)
    3978             : 
    3979         568 :       CALL ZGETRS('N', num_poles + 1, 1, mat_A_gw, num_poles + 1, ipiv, vec_b_gw, num_poles + 1, info)
    3980             : 
    3981         568 :       Lambda_Re(1) = REAL(vec_b_gw(1))
    3982         568 :       Lambda_Im(1) = AIMAG(vec_b_gw(1))
    3983        1704 :       DO iii = 1, num_poles
    3984        1136 :          jjj = iii*2
    3985        1136 :          Lambda_Re(jjj) = REAL(vec_b_gw(iii + 1))
    3986        1704 :          Lambda_Im(jjj) = AIMAG(vec_b_gw(iii + 1))
    3987             :       END DO
    3988             : 
    3989         568 :       DEALLOCATE (mat_A_gw)
    3990         568 :       DEALLOCATE (vec_b_gw)
    3991         568 :       DEALLOCATE (ipiv)
    3992             : 
    3993        2272 :       ALLOCATE (mat_A_gw(num_var*2, num_var*2))
    3994        2272 :       ALLOCATE (mat_B_gw(num_fit_points, num_var*2))
    3995        1704 :       ALLOCATE (dLambda(num_fit_points))
    3996        1136 :       ALLOCATE (dLambda_2(num_fit_points))
    3997        1704 :       ALLOCATE (vec_b_gw(num_var*2))
    3998        1136 :       ALLOCATE (vec_b_gw_copy(num_var*2))
    3999        1704 :       ALLOCATE (ipiv(num_var*2))
    4000             : 
    4001             :       ScalParam = 0.01_dp
    4002             :       Ldown = 1.5_dp
    4003             :       Lup = 10.0_dp
    4004             :       could_exit = .FALSE.
    4005             : 
    4006             :       ! iteration loop for fitting
    4007     1170784 :       DO iiter = 1, max_iter_fit
    4008             : 
    4009     1170749 :          CALL timeset(routineN//"_fit_loop_1", handle4)
    4010             : 
    4011             :          ! calc delta lambda
    4012     7024494 :          DO iii = 1, num_var
    4013     7024494 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii)
    4014             :          END DO
    4015    14998449 :          dLambda = z_zero
    4016             : 
    4017    14998449 :          DO kkk = 1, num_fit_points
    4018    13827700 :             func_val = Lambda(1)
    4019    41483100 :             DO iii = 1, num_poles
    4020    27655400 :                jjj = iii*2
    4021    41483100 :                func_val = func_val + Lambda(jjj)/(vec_omega_fit_gw_sign(kkk)*gaussi - Lambda(jjj + 1))
    4022             :             END DO
    4023    14998449 :             dLambda(kkk) = vec_Sigma_c_gw(n_level_gw, kkk) - func_val
    4024             :          END DO
    4025    14998449 :          rho1 = SUM(dLambda*dLambda)
    4026             : 
    4027             :          ! fill matrix
    4028   151155239 :          mat_B_gw = z_zero
    4029    14998449 :          DO iii = 1, num_fit_points
    4030    13827700 :             mat_B_gw(iii, 1) = 1.0_dp
    4031    14998449 :             mat_B_gw(iii, num_var + 1) = gaussi
    4032             :          END DO
    4033     3512247 :          DO iii = 1, num_poles
    4034     2341498 :             jjj = iii*2
    4035    31167647 :             DO kkk = 1, num_fit_points
    4036    27655400 :                mat_B_gw(kkk, jjj) = 1.0_dp/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4037    27655400 :                mat_B_gw(kkk, jjj + num_var) = gaussi/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))
    4038    27655400 :                mat_B_gw(kkk, jjj + 1) = Lambda(jjj)/(gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4039             :                mat_B_gw(kkk, jjj + 1 + num_var) = (-Lambda_Im(jjj) + gaussi*Lambda_Re(jjj))/ &
    4040    29996898 :                                                   (gaussi*vec_omega_fit_gw_sign(kkk) - Lambda(jjj + 1))**2
    4041             :             END DO
    4042             :          END DO
    4043             : 
    4044     1170749 :          CALL timestop(handle4)
    4045             : 
    4046     1170749 :          CALL timeset(routineN//"_fit_matmul_1", handle4)
    4047             : 
    4048             :          CALL zgemm('C', 'N', num_var*2, num_var*2, num_fit_points, z_one, mat_B_gw, num_fit_points, mat_B_gw, num_fit_points, &
    4049     1170749 :                     z_zero, mat_A_gw, num_var*2)
    4050     1170749 :          CALL timestop(handle4)
    4051             : 
    4052     1170749 :          CALL timeset(routineN//"_fit_zgemv_1", handle4)
    4053             :          CALL zgemv('C', num_fit_points, num_var*2, z_one, mat_B_gw, num_fit_points, dLambda, 1, &
    4054     1170749 :                     z_zero, vec_b_gw, 1)
    4055             : 
    4056     1170749 :          CALL timestop(handle4)
    4057             : 
    4058             :          ! scale diagonal elements of a_mat
    4059    12878239 :          DO iii = 1, num_var*2
    4060    12878239 :             mat_A_gw(iii, iii) = mat_A_gw(iii, iii) + ScalParam*mat_A_gw(iii, iii)
    4061             :          END DO
    4062             : 
    4063             :          ! solve linear system
    4064             :          ierr = 0
    4065    12878239 :          ipiv = 0
    4066             : 
    4067     1170749 :          CALL timeset(routineN//"_fit_lin_eq_2", handle4)
    4068             : 
    4069     1170749 :          CALL ZGETRF(2*num_var, 2*num_var, mat_A_gw, 2*num_var, ipiv, info)
    4070             : 
    4071     1170749 :          CALL ZGETRS('N', 2*num_var, 1, mat_A_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4072             : 
    4073     1170749 :          CALL timestop(handle4)
    4074             : 
    4075     7024494 :          DO iii = 1, num_var
    4076     7024494 :             Lambda(iii) = Lambda_Re(iii) + gaussi*Lambda_Im(iii) + vec_b_gw(iii) + vec_b_gw(iii + num_var)
    4077             :          END DO
    4078             : 
    4079             :          ! calculate chi2
    4080             :          CALL calc_chi2(chi2, Lambda, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4081     1170749 :                         num_fit_points, n_level_gw)
    4082             : 
    4083             :          ! if the fit is already super accurate, exit. otherwise maybe issues when dividing by 0
    4084     1170749 :          IF (chi2 < 1.0E-30_dp) EXIT
    4085             : 
    4086     1170703 :          IF (chi2 < chi2_old) THEN
    4087      993991 :             ScalParam = MAX(ScalParam/Ldown, 1E-12_dp)
    4088     5963946 :             DO iii = 1, num_var
    4089     4969955 :                Lambda_Re(iii) = Lambda_Re(iii) + REAL(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4090     5963946 :                Lambda_Im(iii) = Lambda_Im(iii) + AIMAG(vec_b_gw(iii) + vec_b_gw(iii + num_var))
    4091             :             END DO
    4092      993991 :             IF (chi2_old/chi2 - 1.0_dp < stop_crit) could_exit = .TRUE.
    4093      993991 :             chi2_old = chi2
    4094             :          ELSE
    4095      176712 :             ScalParam = ScalParam*Lup
    4096             :          END IF
    4097     1170703 :          IF (ScalParam > 100.0_dp .AND. could_exit) EXIT
    4098             : 
    4099     4683564 :          IF (ScalParam > 1E+10_dp) ScalParam = 1E-4_dp
    4100             : 
    4101             :       END DO
    4102             : 
    4103         568 :       IF (.NOT. do_gw_im_time) THEN
    4104             : 
    4105             :          ! change a_0 [Lambda(1)], so that Sigma(i0) = Fit(i0)
    4106             :          ! do not do this for imaginary time since we do not have many fit points and the fit should be perfect
    4107         420 :          func_val = Lambda(1)
    4108        1260 :          DO iii = 1, num_poles
    4109         840 :             jjj = iii*2
    4110             :             ! calculate value of the fit function
    4111        1260 :             func_val = func_val + Lambda(jjj)/(-Lambda(jjj + 1))
    4112             :          END DO
    4113             : 
    4114         420 :          Lambda_Re(1) = Lambda_Re(1) - REAL(func_val) + REAL(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4115         420 :          Lambda_Im(1) = Lambda_Im(1) - AIMAG(func_val) + AIMAG(vec_Sigma_c_gw(n_level_gw, num_fit_points))
    4116             : 
    4117             :       END IF
    4118             : 
    4119        3408 :       Lambda_without_offset(:) = Lambda(:)
    4120             : 
    4121        3408 :       DO iii = 1, num_var
    4122        3408 :          Lambda(iii) = CMPLX(Lambda_Re(iii), Lambda_Im(iii), KIND=dp)
    4123             :       END DO
    4124             : 
    4125         568 :       IF (do_gw_im_time) THEN
    4126             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states with the Fermi level
    4127             :          ! in the middle of homo and lumo
    4128         148 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4129             :       ELSE
    4130             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4131             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4132         420 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4133         666 :             e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    4134             :          ELSE
    4135        3738 :             e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_vir)) - fermi_level_offset
    4136             :          END IF
    4137             :       END IF
    4138             : 
    4139             :       ! either Z-shot or Newton/bisection crossing search for evaluating Sigma_c
    4140         568 :       IF (crossing_search == ri_rpa_g0w0_crossing_z_shot .OR. &
    4141             :           crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4142             : 
    4143             :          ! calculate Sigma_c_fit(e_n) and Z
    4144         568 :          func_val = Lambda(1)
    4145         568 :          z_value(n_level_gw) = 1.0_dp
    4146        1704 :          DO iii = 1, num_poles
    4147        1136 :             jjj = iii*2
    4148             :             z_value(n_level_gw) = z_value(n_level_gw) + REAL(Lambda(jjj)/ &
    4149        1136 :                                                              (Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))**2)
    4150        1704 :             func_val = func_val + Lambda(jjj)/(Eigenval(n_level_gw_ref) - e_fermi - Lambda(jjj + 1))
    4151             :          END DO
    4152             :          ! m is the slope of the correl self-energy
    4153         568 :          m_value(n_level_gw) = 1.0_dp - z_value(n_level_gw)
    4154         568 :          z_value(n_level_gw) = 1.0_dp/z_value(n_level_gw)
    4155         568 :          gw_energ = REAL(func_val)
    4156         568 :          vec_gw_energ(n_level_gw) = gw_energ
    4157             : 
    4158             :          ! in case one wants to do Newton-Raphson on top of the Z-shot
    4159         568 :          IF (crossing_search == ri_rpa_g0w0_crossing_newton) THEN
    4160             : 
    4161             :             level_energ_GW = (Eigenval_scf(n_level_gw_ref) - &
    4162             :                               m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4163             :                               vec_gw_energ(n_level_gw) + &
    4164             :                               vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4165          32 :                              z_value(n_level_gw)
    4166             : 
    4167             :             ! Newton-Raphson iteration
    4168         272 :             DO kkk = 1, 1000
    4169             : 
    4170             :                ! calculate the value of the fit function for level_energ_GW
    4171         272 :                func_val = Lambda(1)
    4172         272 :                z_value(n_level_gw) = 1.0_dp
    4173         816 :                DO iii = 1, num_poles
    4174         544 :                   jjj = iii*2
    4175         816 :                   func_val = func_val + Lambda(jjj)/(level_energ_GW - e_fermi - Lambda(jjj + 1))
    4176             :                END DO
    4177             : 
    4178             :                ! calculate the derivative of the fit function for level_energ_GW
    4179         272 :                deriv_val_real = -1.0_dp
    4180         816 :                DO iii = 1, num_poles
    4181         544 :                   jjj = iii*2
    4182             :                   deriv_val_real = deriv_val_real + REAL(Lambda(jjj))/((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2) &
    4183             :                                    - (REAL(Lambda(jjj))*(level_energ_GW - e_fermi) - REAL(Lambda(jjj)*CONJG(Lambda(jjj + 1))))* &
    4184             :                                    2.0_dp*(level_energ_GW - e_fermi - REAL(Lambda(jjj + 1)))/ &
    4185         816 :                                    ((ABS(level_energ_GW - e_fermi - Lambda(jjj + 1)))**2)
    4186             : 
    4187             :                END DO
    4188             : 
    4189             :               delta = (Eigenval_scf(n_level_gw_ref) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref) + REAL(func_val) - level_energ_GW)/ &
    4190         272 :                        deriv_val_real
    4191             : 
    4192         272 :                level_energ_GW = level_energ_GW - delta
    4193             : 
    4194         272 :                IF (ABS(delta) < 1.0E-08) EXIT
    4195             : 
    4196             :             END DO
    4197             : 
    4198             :             ! update the GW-energy by Newton-Raphson and set the Z-value to 1
    4199             : 
    4200          32 :             vec_gw_energ(n_level_gw) = REAL(func_val)
    4201          32 :             z_value(n_level_gw) = 1.0_dp
    4202          32 :             m_value(n_level_gw) = 0.0_dp
    4203             : 
    4204             :          END IF ! Newton-Raphson on top of Z-shot
    4205             : 
    4206             :       ELSE
    4207           0 :          CPABORT("Only NONE, ZSHOT and NEWTON implemented for 2-pole model")
    4208             :       END IF ! decision crossing search none, Z-shot
    4209             : 
    4210             :       !   --------------------------------------------
    4211             :       !  | calculate statistical error due to fitting |
    4212             :       !   --------------------------------------------
    4213             : 
    4214             :       ! estimate the statistical error of the calculated Sigma_c(i*omega)
    4215             :       ! by sqrt(chi2/n), where n is the number of fit points
    4216             : 
    4217             :       CALL calc_chi2(chi2, Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, num_poles, &
    4218         568 :                      num_fit_points, n_level_gw)
    4219             : 
    4220             :       ! Estimate the statistical error of every fit point
    4221         568 :       stat_error = SQRT(chi2/num_fit_points)
    4222             : 
    4223             :       ! allocate N array containing the second derivatives of chi^2
    4224        1704 :       ALLOCATE (vec_N_gw(num_var*2))
    4225        6248 :       vec_N_gw = 0.0_dp
    4226             : 
    4227        2272 :       ALLOCATE (mat_N_gw(num_var*2, num_var*2))
    4228       63048 :       mat_N_gw = 0.0_dp
    4229             : 
    4230        6248 :       DO iii = 1, num_var*2
    4231             :          CALL calc_mat_N(vec_N_gw(iii), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4232        6248 :                          iii, iii, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4233             :       END DO
    4234             : 
    4235        6248 :       DO iii = 1, num_var*2
    4236       63048 :          DO jjj = 1, num_var*2
    4237             :             CALL calc_mat_N(mat_N_gw(iii, jjj), Lambda_without_offset, vec_Sigma_c_gw, vec_omega_fit_gw_sign, &
    4238       62480 :                             iii, jjj, num_poles, num_fit_points, n_level_gw, 0.001_dp)
    4239             :          END DO
    4240             :       END DO
    4241             : 
    4242         568 :       CALL DGETRF(2*num_var, 2*num_var, mat_N_gw, 2*num_var, ipiv, info)
    4243             : 
    4244             :       ! vec_b_gw is only working array
    4245         568 :       CALL DGETRI(2*num_var, mat_N_gw, 2*num_var, ipiv, vec_b_gw, 2*num_var, info)
    4246             : 
    4247        1136 :       ALLOCATE (stat_errors(2*num_var))
    4248        6248 :       stat_errors = 0.0_dp
    4249             : 
    4250        6248 :       DO iii = 1, 2*num_var
    4251        6248 :          stat_errors(iii) = SQRT(ABS(mat_N_gw(iii, iii)))*stat_error
    4252             :       END DO
    4253             : 
    4254         568 :       DEALLOCATE (mat_N_gw)
    4255         568 :       DEALLOCATE (vec_N_gw)
    4256         568 :       DEALLOCATE (mat_A_gw)
    4257         568 :       DEALLOCATE (mat_B_gw)
    4258         568 :       DEALLOCATE (stat_errors)
    4259         568 :       DEALLOCATE (dLambda)
    4260         568 :       DEALLOCATE (dLambda_2)
    4261         568 :       DEALLOCATE (vec_b_gw)
    4262         568 :       DEALLOCATE (vec_b_gw_copy)
    4263         568 :       DEALLOCATE (ipiv)
    4264         568 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4265         568 :       DEALLOCATE (Lambda)
    4266         568 :       DEALLOCATE (Lambda_without_offset)
    4267         568 :       DEALLOCATE (Lambda_Re)
    4268         568 :       DEALLOCATE (Lambda_Im)
    4269             : 
    4270         568 :    END SUBROUTINE fit_and_continuation_2pole
    4271             : 
    4272             : ! **************************************************************************************************
    4273             : !> \brief perform analytic continuation with pade approximation
    4274             : !> \param vec_gw_energ real Sigma_c
    4275             : !> \param vec_omega_fit_gw frequency points for Sigma_c(iomega)
    4276             : !> \param z_value 1/(1-dev)
    4277             : !> \param m_value derivative of real Sigma_c
    4278             : !> \param vec_Sigma_c_gw complex Sigma_c(iomega)
    4279             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4280             : !> \param Eigenval quasiparticle energy during ev self-consistent GW
    4281             : !> \param Eigenval_scf KS/HF eigenvalue
    4282             : !> \param do_hedin_shift ...
    4283             : !> \param n_level_gw ...
    4284             : !> \param gw_corr_lev_occ ...
    4285             : !> \param gw_corr_lev_vir ...
    4286             : !> \param nparam_pade number of pade parameters
    4287             : !> \param num_fit_points number of fit points for Sigma_c(iomega)
    4288             : !> \param crossing_search type ofr cross search to find quasiparticle energies
    4289             : !> \param homo ...
    4290             : !> \param fermi_level_offset ...
    4291             : !> \param do_gw_im_time ...
    4292             : !> \param print_self_energy ...
    4293             : !> \param count_ev_sc_GW ...
    4294             : !> \param vec_gw_dos ...
    4295             : !> \param dos_lower_bound ...
    4296             : !> \param dos_precision ...
    4297             : !> \param ndos ...
    4298             : !> \param min_level_self_energy ...
    4299             : !> \param max_level_self_energy ...
    4300             : !> \param dos_eta ...
    4301             : !> \param dos_min ...
    4302             : !> \param dos_max ...
    4303             : !> \param e_fermi_ext ...
    4304             : ! **************************************************************************************************
    4305        2269 :    SUBROUTINE continuation_pade(vec_gw_energ, vec_omega_fit_gw, &
    4306        4538 :                                 z_value, m_value, vec_Sigma_c_gw, vec_Sigma_x_minus_vxc_gw, &
    4307        4538 :                                 Eigenval, Eigenval_scf, do_hedin_shift, n_level_gw, &
    4308             :                                 gw_corr_lev_occ, gw_corr_lev_vir, &
    4309             :                                 nparam_pade, num_fit_points, crossing_search, homo, &
    4310             :                                 fermi_level_offset, do_gw_im_time, print_self_energy, count_ev_sc_GW, &
    4311             :                                 vec_gw_dos, dos_lower_bound, dos_precision, ndos, &
    4312             :                                 min_level_self_energy, max_level_self_energy, &
    4313             :                                 dos_eta, dos_min, dos_max, e_fermi_ext)
    4314             : 
    4315             :       ! Optional arguments for spectral function
    4316             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_gw_energ
    4317             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    4318             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: z_value, m_value
    4319             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: vec_Sigma_c_gw
    4320             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4321             :                                                             Eigenval_scf
    4322             :       LOGICAL, INTENT(IN)                                :: do_hedin_shift
    4323             :       INTEGER, INTENT(IN)                                :: n_level_gw, gw_corr_lev_occ, &
    4324             :                                                             gw_corr_lev_vir, nparam_pade, &
    4325             :                                                             num_fit_points, crossing_search, homo
    4326             :       REAL(KIND=dp), INTENT(IN)                          :: fermi_level_offset
    4327             :       LOGICAL, INTENT(IN)                                :: do_gw_im_time, print_self_energy
    4328             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW
    4329             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), OPTIONAL :: vec_gw_dos
    4330             :       REAL(KIND=dp), OPTIONAL                            :: dos_lower_bound, dos_precision
    4331             :       INTEGER, INTENT(IN), OPTIONAL                      :: ndos, min_level_self_energy, &
    4332             :                                                             max_level_self_energy
    4333             :       REAL(KIND=dp), OPTIONAL                            :: dos_eta
    4334             :       INTEGER, INTENT(IN), OPTIONAL                      :: dos_min, dos_max
    4335             :       REAL(KIND=dp), OPTIONAL                            :: e_fermi_ext
    4336             : 
    4337             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'continuation_pade'
    4338             : 
    4339             :       CHARACTER(LEN=5)                                   :: string_level
    4340             :       CHARACTER(len=default_path_length)                 :: filename
    4341             :       COMPLEX(KIND=dp)                                   :: sigma_c_pade, sigma_c_pade_im_freq
    4342        2269 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: coeff_pade, omega_points_pade, &
    4343        2269 :                                                             Sigma_c_gw_reorder
    4344             :       INTEGER                                            :: handle, i_omega, idos, iunit, jquad, &
    4345             :                                                             n_level_gw_ref, num_omega
    4346             :       REAL(KIND=dp)                                      :: e_fermi, energy_val, hedin_shift, &
    4347             :                                                             level_energ_GW_start, omega, &
    4348             :                                                             omega_dos, omega_dos_pade_eval, &
    4349             :                                                             sign_occ_virt
    4350        2269 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: vec_omega_fit_gw_sign, &
    4351        2269 :                                                             vec_omega_fit_gw_sign_reorder, &
    4352        2269 :                                                             vec_sigma_imag, vec_sigma_real
    4353             :       TYPE(cp_logger_type), POINTER                      :: logger
    4354             : 
    4355        2269 :       CALL timeset(routineN, handle)
    4356             : 
    4357        6807 :       ALLOCATE (vec_omega_fit_gw_sign(num_fit_points))
    4358             : 
    4359        2269 :       IF (n_level_gw <= gw_corr_lev_occ) THEN
    4360             :          sign_occ_virt = -1.0_dp
    4361             :       ELSE
    4362        1552 :          sign_occ_virt = 1.0_dp
    4363             :       END IF
    4364             : 
    4365       72644 :       DO jquad = 1, num_fit_points
    4366       72644 :          vec_omega_fit_gw_sign(jquad) = ABS(vec_omega_fit_gw(jquad))*sign_occ_virt
    4367             :       END DO
    4368             : 
    4369        2269 :       IF (do_gw_im_time) THEN
    4370             :          ! for cubic-scaling GW, we have one Green's function for occ and virt states
    4371             :          ! with the Fermi level in the middle of homo and lumo
    4372        1300 :          e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    4373             :       ELSE
    4374             :          ! in case of O(N^4) GW, we have the Fermi level differently for occ and virt states, see
    4375             :          ! Fig. 1 in JCTC 12, 3623-3635 (2016)
    4376         969 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    4377        1491 :             e_fermi = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo)) + fermi_level_offset
    4378             :          ELSE
    4379        9728 :             e_fermi = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_vir)) - fermi_level_offset
    4380             :          END IF
    4381             :       END IF
    4382             : 
    4383        2269 :       IF (PRESENT(e_fermi_ext)) e_fermi = e_fermi_ext
    4384             : 
    4385        2269 :       n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    4386             : 
    4387             :       !*** reorder, such that omega=i*0 is first entry
    4388        6807 :       ALLOCATE (Sigma_c_gw_reorder(num_fit_points))
    4389        4538 :       ALLOCATE (vec_omega_fit_gw_sign_reorder(num_fit_points))
    4390             :       ! for cubic scaling GW fit points are ordered differently than in N^4 GW
    4391        2269 :       IF (do_gw_im_time) THEN
    4392        7529 :          DO jquad = 1, num_fit_points
    4393        6229 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, jquad)
    4394        7529 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(jquad)
    4395             :          END DO
    4396             :       ELSE
    4397       65115 :          DO jquad = 1, num_fit_points
    4398       64146 :             Sigma_c_gw_reorder(jquad) = vec_Sigma_c_gw(n_level_gw, num_fit_points - jquad + 1)
    4399       65115 :             vec_omega_fit_gw_sign_reorder(jquad) = vec_omega_fit_gw_sign(num_fit_points - jquad + 1)
    4400             :          END DO
    4401             :       END IF
    4402             : 
    4403             :       !*** evaluate parameters for pade approximation
    4404        6807 :       ALLOCATE (coeff_pade(nparam_pade))
    4405        4538 :       ALLOCATE (omega_points_pade(nparam_pade))
    4406       22308 :       coeff_pade = 0.0_dp
    4407             :       CALL get_pade_parameters(Sigma_c_gw_reorder, vec_omega_fit_gw_sign_reorder, &
    4408        2269 :                                num_fit_points, nparam_pade, omega_points_pade, coeff_pade)
    4409             : 
    4410             :       !*** calculate start_value for iterative cross-searching methods
    4411        2269 :       IF ((crossing_search == ri_rpa_g0w0_crossing_bisection) .OR. &
    4412             :           (crossing_search == ri_rpa_g0w0_crossing_newton)) THEN
    4413        2269 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4414             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4415        2269 :                                      coeff_pade, sigma_c_pade)
    4416             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4417        2269 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4418             :          level_energ_GW_start = (Eigenval_scf(n_level_gw_ref) - &
    4419             :                                  m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    4420             :                                  REAL(sigma_c_pade) + &
    4421             :                                  vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    4422        2269 :                                 z_value(n_level_gw)
    4423             : 
    4424             :          ! calculate Hedin shift; the last line is for evGW0 and evGW
    4425        2269 :          hedin_shift = 0.0_dp
    4426        2269 :          IF (do_hedin_shift) hedin_shift = REAL(sigma_c_pade) + &
    4427             :                                            vec_Sigma_x_minus_vxc_gw(n_level_gw_ref) &
    4428          60 :                                            - Eigenval(n_level_gw_ref) + Eigenval_scf(n_level_gw_ref)
    4429             :       END IF
    4430             : 
    4431        2269 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4432        1213 :          IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4433             :              n_level_gw_ref <= max_level_self_energy) THEN
    4434           0 :             ALLOCATE (vec_sigma_real(ndos))
    4435           0 :             ALLOCATE (vec_sigma_imag(ndos))
    4436           0 :             WRITE (string_level, "(I4)") n_level_gw_ref
    4437           0 :             string_level = ADJUSTL(string_level)
    4438             :          END IF
    4439             :       END IF
    4440             : 
    4441             :       !*** Calculate spectral function
    4442             :       !***         1   \‾‾                    |Im 𝚺ₘ(ω)|+η
    4443             :       !*** A(ω) = ---   |    ---------------------------------------------------
    4444             :       !***         π   /__   [ω - eₘ^DFT - (Re 𝚺ₘ(ω) - vₘ^xc)]² + (|Im 𝚺ₘ(ω)|+η)²
    4445             : 
    4446        2269 :       IF (PRESENT(ndos)) THEN
    4447        1213 :       IF (ndos /= 0) THEN
    4448             :          ! Hedin shift not implemented
    4449           0 :          CPASSERT(.NOT. do_hedin_shift)
    4450           0 :          logger => cp_get_default_logger()
    4451           0 :          IF (logger%para_env%is_source()) THEN
    4452           0 :             iunit = cp_logger_get_default_unit_nr()
    4453             :          ELSE
    4454           0 :             iunit = -1
    4455             :          END IF
    4456           0 :          DO idos = 1, ndos
    4457           0 :             omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4458           0 :             omega_dos_pade_eval = omega_dos - e_fermi
    4459             :             CALL evaluate_pade_function(omega_dos_pade_eval, nparam_pade, omega_points_pade, &
    4460           0 :                                         coeff_pade, sigma_c_pade)
    4461             : 
    4462             :             IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4463           0 :                 n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4464             : 
    4465           0 :                vec_sigma_real(idos) = (REAL(sigma_c_pade))
    4466           0 :                vec_sigma_imag(idos) = (AIMAG(sigma_c_pade))
    4467             : 
    4468             :             END IF
    4469             : 
    4470           0 :             IF (n_level_gw_ref >= dos_min .AND. &
    4471           0 :                 (n_level_gw_ref <= dos_max .OR. dos_max == 0)) THEN
    4472             :                vec_gw_dos(idos) = vec_gw_dos(idos) + &
    4473             :                                   (ABS(AIMAG(sigma_c_pade)) + dos_eta) &
    4474             :                                   /( &
    4475             :                                   (omega_dos - Eigenval_scf(n_level_gw_ref) - &
    4476             :                                    (REAL(sigma_c_pade) + vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)) &
    4477             :                                    )**2 &
    4478             :                                   + (ABS(AIMAG(sigma_c_pade)) + dos_eta)**2 &
    4479           0 :                                   )
    4480             :             END IF
    4481             : 
    4482             :          END DO
    4483             :       END IF
    4484             :       END IF
    4485             : 
    4486        2269 :       IF (PRESENT(min_level_self_energy) .AND. PRESENT(max_level_self_energy)) THEN
    4487        1213 :          logger => cp_get_default_logger()
    4488        1213 :          IF (logger%para_env%is_source()) THEN
    4489        1189 :             iunit = cp_logger_get_default_unit_nr()
    4490             :          ELSE
    4491          24 :             iunit = -1
    4492             :          END IF
    4493             :          IF (n_level_gw_ref >= min_level_self_energy .AND. &
    4494        1213 :              n_level_gw_ref <= max_level_self_energy .AND. iunit > 0) THEN
    4495             : 
    4496             :             CALL open_file('self_energy_re_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4497           0 :                            file_status="UNKNOWN", file_action="WRITE")
    4498           0 :             DO idos = 1, ndos
    4499           0 :                omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4500           0 :                WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_real(idos)*evolt
    4501             :             END DO
    4502             : 
    4503           0 :             CALL close_file(iunit)
    4504             : 
    4505             :             CALL open_file('self_energy_im_'//TRIM(string_level)//'.dat', unit_number=iunit, &
    4506           0 :                            file_status="UNKNOWN", file_action="WRITE")
    4507           0 :             DO idos = 1, ndos
    4508           0 :                omega_dos = dos_lower_bound + REAL(idos - 1, KIND=dp)*dos_precision
    4509           0 :                WRITE (iunit, '(F17.10, F17.10)') omega_dos*evolt, vec_sigma_imag(idos)*evolt
    4510             :             END DO
    4511             : 
    4512           0 :             CALL close_file(iunit)
    4513             : 
    4514           0 :             DEALLOCATE (vec_sigma_real)
    4515           0 :             DEALLOCATE (vec_sigma_imag)
    4516             :          END IF
    4517             :       END IF
    4518             : 
    4519             :       !*** perform crossing search
    4520           0 :       SELECT CASE (crossing_search)
    4521             :       CASE (ri_rpa_g0w0_crossing_z_shot)
    4522             :          ! Hedin shift not implemented
    4523           0 :          CPASSERT(.NOT. do_hedin_shift)
    4524           0 :          energy_val = Eigenval(n_level_gw_ref) - e_fermi
    4525             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4526           0 :                                      coeff_pade, sigma_c_pade)
    4527           0 :          vec_gw_energ(n_level_gw) = REAL(sigma_c_pade)
    4528             : 
    4529             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4530           0 :                                      coeff_pade, z_value(n_level_gw), m_value(n_level_gw))
    4531             : 
    4532             :       CASE (ri_rpa_g0w0_crossing_bisection)
    4533             :          CALL get_sigma_c_bisection_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4534             :                                          vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4535             :                                          nparam_pade, omega_points_pade, coeff_pade, &
    4536           8 :                                          level_energ_GW_start, hedin_shift)
    4537           8 :          z_value(n_level_gw) = 1.0_dp
    4538           8 :          m_value(n_level_gw) = 0.0_dp
    4539             : 
    4540             :       CASE (ri_rpa_g0w0_crossing_newton)
    4541             :          CALL get_sigma_c_newton_pade(vec_gw_energ(n_level_gw), Eigenval_scf(n_level_gw_ref), &
    4542             :                                       vec_Sigma_x_minus_vxc_gw(n_level_gw_ref), e_fermi, &
    4543             :                                       nparam_pade, omega_points_pade, coeff_pade, &
    4544        2261 :                                       level_energ_GW_start, hedin_shift)
    4545        2261 :          z_value(n_level_gw) = 1.0_dp
    4546        2261 :          m_value(n_level_gw) = 0.0_dp
    4547             : 
    4548             :       CASE DEFAULT
    4549        2269 :          CPABORT("Only Z_SHOT, NEWTON, and BISECTION crossing search implemented.")
    4550             :       END SELECT
    4551             : 
    4552        2269 :       IF (print_self_energy) THEN
    4553             : 
    4554           0 :          IF (count_ev_sc_GW == 1) THEN
    4555             : 
    4556           0 :             IF (n_level_gw_ref < 10) THEN
    4557           0 :                WRITE (filename, "(A26,I1)") "G0W0_self_energy_level_000", n_level_gw_ref
    4558           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4559           0 :                WRITE (filename, "(A25,I2)") "G0W0_self_energy_level_00", n_level_gw_ref
    4560           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4561           0 :                WRITE (filename, "(A24,I3)") "G0W0_self_energy_level_0", n_level_gw_ref
    4562             :             ELSE
    4563           0 :                WRITE (filename, "(A23,I4)") "G0W0_self_energy_level_", n_level_gw_ref
    4564             :             END IF
    4565             : 
    4566             :          ELSE
    4567             : 
    4568           0 :             IF (n_level_gw_ref < 10) THEN
    4569           0 :                WRITE (filename, "(A11,I1,A22,I1)") "evGW_cycle_", count_ev_sc_GW, &
    4570           0 :                   "_self_energy_level_000", n_level_gw_ref
    4571           0 :             ELSE IF (n_level_gw_ref < 100) THEN
    4572           0 :                WRITE (filename, "(A11,I1,A21,I2)") "evGW_cycle_", count_ev_sc_GW, &
    4573           0 :                   "_self_energy_level_00", n_level_gw_ref
    4574           0 :             ELSE IF (n_level_gw_ref < 1000) THEN
    4575           0 :                WRITE (filename, "(A11,I1,A20,I3)") "evGW_cycle_", count_ev_sc_GW, &
    4576           0 :                   "_self_energy_level_0", n_level_gw_ref
    4577             :             ELSE
    4578           0 :                WRITE (filename, "(A11,I1,A19,I4)") "evGW_cycle_", count_ev_sc_GW, &
    4579           0 :                   "_self_energy_level_", n_level_gw_ref
    4580             :             END IF
    4581             : 
    4582             :          END IF
    4583             : 
    4584           0 :          logger => cp_get_default_logger()
    4585           0 :          IF (logger%para_env%is_source()) THEN
    4586           0 :             iunit = cp_logger_get_default_unit_nr()
    4587             :          ELSE
    4588           0 :             iunit = -1
    4589             :          END IF
    4590           0 :          CALL open_file(TRIM(filename), unit_number=iunit, file_status="UNKNOWN", file_action="WRITE")
    4591             : 
    4592           0 :          num_omega = 10000
    4593             : 
    4594           0 :          WRITE (iunit, "(2A42)") " omega (eV)     Sigma(omega) (eV)  ", &
    4595           0 :             "  omega - e_n^DFT - Sigma_n^x - v_n^xc (eV)"
    4596             : 
    4597           0 :          DO i_omega = 0, num_omega
    4598             : 
    4599           0 :             omega = -50.0_dp/evolt + REAL(i_omega, KIND=dp)/REAL(num_omega, KIND=dp)*100.0_dp/evolt
    4600             : 
    4601             :             CALL evaluate_pade_function(omega - e_fermi, nparam_pade, omega_points_pade, &
    4602           0 :                                         coeff_pade, sigma_c_pade)
    4603             : 
    4604           0 :             WRITE (iunit, "(F12.2,2F17.5)") omega*evolt, REAL(sigma_c_pade)*evolt, &
    4605           0 :                (omega - Eigenval_scf(n_level_gw_ref) - vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))*evolt
    4606             : 
    4607             :          END DO
    4608             : 
    4609           0 :          WRITE (iunit, "(A51,A39)") " w (eV)  Re(Sigma(i*w)) (eV)   Im(Sigma(i*w)) (eV) ", &
    4610           0 :             "  Re(Fit(i*w)) (eV)    Im(Fit(iw)) (eV)"
    4611             : 
    4612           0 :          DO jquad = 1, num_fit_points
    4613             : 
    4614             :             CALL evaluate_pade_function(vec_omega_fit_gw_sign_reorder(jquad), &
    4615             :                                         nparam_pade, omega_points_pade, &
    4616           0 :                                         coeff_pade, sigma_c_pade_im_freq, do_imag_freq=.TRUE.)
    4617             : 
    4618           0 :             WRITE (iunit, "(F12.2,4F17.5)") vec_omega_fit_gw_sign_reorder(jquad)*evolt, &
    4619           0 :                REAL(Sigma_c_gw_reorder(jquad)*evolt), &
    4620           0 :                AIMAG(Sigma_c_gw_reorder(jquad)*evolt), &
    4621           0 :                REAL(sigma_c_pade_im_freq*evolt), &
    4622           0 :                AIMAG(sigma_c_pade_im_freq*evolt)
    4623             : 
    4624             :          END DO
    4625             : 
    4626           0 :          CALL close_file(iunit)
    4627             : 
    4628             :       END IF
    4629             : 
    4630        2269 :       DEALLOCATE (vec_omega_fit_gw_sign)
    4631        2269 :       DEALLOCATE (Sigma_c_gw_reorder)
    4632        2269 :       DEALLOCATE (vec_omega_fit_gw_sign_reorder)
    4633        2269 :       DEALLOCATE (coeff_pade, omega_points_pade)
    4634             : 
    4635        2269 :       CALL timestop(handle)
    4636             : 
    4637        4538 :    END SUBROUTINE continuation_pade
    4638             : 
    4639             : ! **************************************************************************************************
    4640             : !> \brief calculate pade parameter recursively as in  Eq. (A2) in J. Low Temp. Phys., Vol. 29,
    4641             : !>          1977, pp. 179
    4642             : !> \param y f(x), here: Sigma_c(iomega)
    4643             : !> \param x the frequency points omega
    4644             : !> \param num_fit_points ...
    4645             : !> \param nparam number of pade parameters
    4646             : !> \param xpoints set of points used in pade approximation, selection of x
    4647             : !> \param coeff pade coefficients
    4648             : ! **************************************************************************************************
    4649        2269 :    PURE SUBROUTINE get_pade_parameters(y, x, num_fit_points, nparam, xpoints, coeff)
    4650             : 
    4651             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: y
    4652             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: x
    4653             :       INTEGER, INTENT(IN)                                :: num_fit_points, nparam
    4654             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(INOUT)      :: xpoints, coeff
    4655             : 
    4656        2269 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: ypoints
    4657        2269 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: g_mat
    4658             :       INTEGER                                            :: idat, iparam, nstep
    4659             : 
    4660        2269 :       nstep = INT(num_fit_points/(nparam - 1))
    4661             : 
    4662        6807 :       ALLOCATE (ypoints(nparam))
    4663             :       !omega=i0 is in element x(1)
    4664        2269 :       idat = 1
    4665       20039 :       DO iparam = 1, nparam - 1
    4666       17770 :          xpoints(iparam) = gaussi*x(idat)
    4667       17770 :          ypoints(iparam) = y(idat)
    4668       20039 :          idat = idat + nstep
    4669             :       END DO
    4670        2269 :       xpoints(nparam) = gaussi*x(num_fit_points)
    4671        2269 :       ypoints(nparam) = y(num_fit_points)
    4672             : 
    4673             :       !*** generate parameters recursively
    4674             : 
    4675        9076 :       ALLOCATE (g_mat(nparam, nparam))
    4676       22308 :       g_mat(:, 1) = ypoints(:)
    4677       20039 :       DO iparam = 2, nparam
    4678      137015 :          DO idat = iparam, nparam
    4679             :             g_mat(idat, iparam) = (g_mat(iparam - 1, iparam - 1) - g_mat(idat, iparam - 1))/ &
    4680      134746 :                                   ((xpoints(idat) - xpoints(iparam - 1))*g_mat(idat, iparam - 1))
    4681             :          END DO
    4682             :       END DO
    4683             : 
    4684       22308 :       DO iparam = 1, nparam
    4685       22308 :          coeff(iparam) = g_mat(iparam, iparam)
    4686             :       END DO
    4687             : 
    4688        2269 :       DEALLOCATE (ypoints)
    4689        2269 :       DEALLOCATE (g_mat)
    4690             : 
    4691        2269 :    END SUBROUTINE get_pade_parameters
    4692             : 
    4693             : ! **************************************************************************************************
    4694             : !> \brief evaluate pade function for a real value x_val
    4695             : !> \param x_val real value
    4696             : !> \param nparam number of pade parameters
    4697             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4698             : !> \param coeff pade coefficients
    4699             : !> \param func_val function value
    4700             : !> \param do_imag_freq ...
    4701             : ! **************************************************************************************************
    4702        8980 :    PURE SUBROUTINE evaluate_pade_function(x_val, nparam, xpoints, coeff, func_val, do_imag_freq)
    4703             : 
    4704             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4705             :       INTEGER, INTENT(IN)                                :: nparam
    4706             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4707             :       COMPLEX(KIND=dp), INTENT(OUT)                      :: func_val
    4708             :       LOGICAL, INTENT(IN), OPTIONAL                      :: do_imag_freq
    4709             : 
    4710             :       INTEGER                                            :: iparam
    4711             :       LOGICAL                                            :: my_do_imag_freq
    4712             : 
    4713        8980 :       my_do_imag_freq = .FALSE.
    4714        8980 :       IF (PRESENT(do_imag_freq)) my_do_imag_freq = do_imag_freq
    4715             : 
    4716        8980 :       func_val = z_one
    4717       66510 :       DO iparam = nparam, 2, -1
    4718       66510 :          IF (my_do_imag_freq) THEN
    4719           0 :             func_val = z_one + coeff(iparam)*(gaussi*x_val - xpoints(iparam - 1))/func_val
    4720             :          ELSE
    4721       57530 :             func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4722             :          END IF
    4723             :       END DO
    4724             : 
    4725        8980 :       func_val = coeff(1)/func_val
    4726             : 
    4727        8980 :    END SUBROUTINE evaluate_pade_function
    4728             : 
    4729             : ! **************************************************************************************************
    4730             : !> \brief get the z-value and the m-value (derivative) of the pade function
    4731             : !> \param x_val real value
    4732             : !> \param nparam number of pade parameters
    4733             : !> \param xpoints selection of points of the original complex function, i.e. here of Sigma_c(iomega)
    4734             : !> \param coeff pade coefficients
    4735             : !> \param z_value 1/(1-dev)
    4736             : !> \param m_value derivative
    4737             : ! **************************************************************************************************
    4738        8872 :    PURE SUBROUTINE get_z_and_m_value_pade(x_val, nparam, xpoints, coeff, z_value, m_value)
    4739             : 
    4740             :       REAL(KIND=dp), INTENT(IN)                          :: x_val
    4741             :       INTEGER, INTENT(IN)                                :: nparam
    4742             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: xpoints, coeff
    4743             :       REAL(KIND=dp), INTENT(OUT), OPTIONAL               :: z_value, m_value
    4744             : 
    4745             :       COMPLEX(KIND=dp)                                   :: denominator, dev_denominator, &
    4746             :                                                             dev_numerator, dev_val, func_val, &
    4747             :                                                             numerator
    4748             :       INTEGER                                            :: iparam
    4749             : 
    4750        8872 :       func_val = z_one
    4751        8872 :       dev_val = z_zero
    4752       66294 :       DO iparam = nparam, 2, -1
    4753       57422 :          numerator = coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))
    4754       57422 :          dev_numerator = coeff(iparam)*z_one
    4755       57422 :          denominator = func_val
    4756       57422 :          dev_denominator = dev_val
    4757       57422 :          dev_val = dev_numerator/denominator - (numerator*dev_denominator)/(denominator**2)
    4758       66294 :          func_val = z_one + coeff(iparam)*(x_val*z_one - xpoints(iparam - 1))/func_val
    4759             :       END DO
    4760             : 
    4761        8872 :       dev_val = -1.0_dp*coeff(1)/(func_val**2)*dev_val
    4762        8872 :       func_val = coeff(1)/func_val
    4763             : 
    4764        8872 :       IF (PRESENT(z_value)) THEN
    4765        2269 :          z_value = 1.0_dp - REAL(dev_val)
    4766        2269 :          z_value = 1.0_dp/z_value
    4767             :       END IF
    4768        8872 :       IF (PRESENT(m_value)) m_value = REAL(dev_val)
    4769             : 
    4770        8872 :    END SUBROUTINE get_z_and_m_value_pade
    4771             : 
    4772             : ! **************************************************************************************************
    4773             : !> \brief crossing search using the bisection method to find the quasiparticle energy
    4774             : !> \param gw_energ real Sigma_c
    4775             : !> \param Eigenval_scf Eigenvalue from the SCF
    4776             : !> \param Sigma_x_minus_vxc_gw ...
    4777             : !> \param e_fermi fermi level
    4778             : !> \param nparam_pade number of pade parameters
    4779             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4780             : !> \param coeff_pade pade coefficients
    4781             : !> \param start_val start value for the quasiparticle iteration
    4782             : !> \param hedin_shift ...
    4783             : ! **************************************************************************************************
    4784          16 :    SUBROUTINE get_sigma_c_bisection_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4785           8 :                                          nparam_pade, omega_points_pade, coeff_pade, start_val, &
    4786             :                                          hedin_shift)
    4787             : 
    4788             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4789             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4790             :                                                             e_fermi
    4791             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4792             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4793             :       REAL(KIND=dp), INTENT(IN)                          :: start_val, hedin_shift
    4794             : 
    4795             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_bisection_pade'
    4796             : 
    4797             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4798             :       INTEGER                                            :: handle, icount
    4799             :       REAL(KIND=dp)                                      :: delta, energy_val, qp_energy, &
    4800             :                                                             qp_energy_old, threshold
    4801             : 
    4802           8 :       CALL timeset(routineN, handle)
    4803             : 
    4804           8 :       threshold = 1.0E-7_dp
    4805             : 
    4806           8 :       qp_energy = start_val
    4807           8 :       qp_energy_old = start_val
    4808           8 :       delta = 1.0E-3_dp
    4809             : 
    4810           8 :       icount = 0
    4811         116 :       DO WHILE (ABS(delta) > threshold)
    4812         108 :          icount = icount + 1
    4813         108 :          qp_energy = qp_energy_old + 0.5_dp*delta
    4814         108 :          qp_energy_old = qp_energy
    4815         108 :          energy_val = qp_energy - e_fermi - hedin_shift
    4816             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4817         108 :                                      coeff_pade, sigma_c)
    4818         108 :          qp_energy = Eigenval_scf + REAL(sigma_c) + Sigma_x_minus_vxc_gw
    4819         108 :          delta = qp_energy - qp_energy_old
    4820             :          ! Self-consistent quasi-particle solution has not been found
    4821         116 :          IF (icount > 500) EXIT
    4822             :       END DO
    4823             : 
    4824           8 :       gw_energ = REAL(sigma_c)
    4825             : 
    4826           8 :       CALL timestop(handle)
    4827             : 
    4828           8 :    END SUBROUTINE get_sigma_c_bisection_pade
    4829             : 
    4830             : ! **************************************************************************************************
    4831             : !> \brief crossing search using the Newton method to find the quasiparticle energy
    4832             : !> \param gw_energ real Sigma_c
    4833             : !> \param Eigenval_scf Eigenvalue from the SCF
    4834             : !> \param Sigma_x_minus_vxc_gw ...
    4835             : !> \param e_fermi fermi level
    4836             : !> \param nparam_pade number of pade parameters
    4837             : !> \param omega_points_pade selection of frequency points of Sigma_c(iomega)
    4838             : !> \param coeff_pade pade coefficients
    4839             : !> \param start_val start value for the quasiparticle iteration
    4840             : !> \param hedin_shift ...
    4841             : ! **************************************************************************************************
    4842        4522 :    SUBROUTINE get_sigma_c_newton_pade(gw_energ, Eigenval_scf, Sigma_x_minus_vxc_gw, e_fermi, &
    4843        2261 :                                       nparam_pade, omega_points_pade, coeff_pade, start_val, &
    4844             :                                       hedin_shift)
    4845             : 
    4846             :       REAL(KIND=dp), INTENT(OUT)                         :: gw_energ
    4847             :       REAL(KIND=dp), INTENT(IN)                          :: Eigenval_scf, Sigma_x_minus_vxc_gw, &
    4848             :                                                             e_fermi
    4849             :       INTEGER, INTENT(IN)                                :: nparam_pade
    4850             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: omega_points_pade, coeff_pade
    4851             :       REAL(KIND=dp), INTENT(IN)                          :: start_val, hedin_shift
    4852             : 
    4853             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'get_sigma_c_newton_pade'
    4854             : 
    4855             :       COMPLEX(KIND=dp)                                   :: sigma_c
    4856             :       INTEGER                                            :: handle, icount
    4857             :       REAL(KIND=dp)                                      :: delta, energy_val, m_value, qp_energy, &
    4858             :                                                             qp_energy_old, threshold
    4859             : 
    4860        2261 :       CALL timeset(routineN, handle)
    4861             : 
    4862        2261 :       threshold = 1.0E-7_dp
    4863             : 
    4864        2261 :       qp_energy = start_val
    4865        2261 :       qp_energy_old = start_val
    4866        2261 :       delta = 1.0E-3_dp
    4867             : 
    4868        2261 :       icount = 0
    4869        8864 :       DO WHILE (ABS(delta) > threshold)
    4870        6603 :          icount = icount + 1
    4871        6603 :          energy_val = qp_energy - e_fermi - hedin_shift
    4872             :          CALL evaluate_pade_function(energy_val, nparam_pade, omega_points_pade, &
    4873        6603 :                                      coeff_pade, sigma_c)
    4874             :          !get m_value --> derivative of function
    4875             :          CALL get_z_and_m_value_pade(energy_val, nparam_pade, omega_points_pade, &
    4876        6603 :                                      coeff_pade, m_value=m_value)
    4877        6603 :          qp_energy_old = qp_energy
    4878             :          qp_energy = qp_energy - (Eigenval_scf + Sigma_x_minus_vxc_gw + REAL(sigma_c) - qp_energy)/ &
    4879        6603 :                      (m_value - 1.0_dp)
    4880        6603 :          delta = qp_energy - qp_energy_old
    4881             :          ! Self-consistent quasi-particle solution has not been found
    4882        8864 :          IF (icount > 500) EXIT
    4883             :       END DO
    4884             : 
    4885        2261 :       gw_energ = REAL(sigma_c)
    4886             : 
    4887        2261 :       CALL timestop(handle)
    4888             : 
    4889        2261 :    END SUBROUTINE get_sigma_c_newton_pade
    4890             : 
    4891             : ! **************************************************************************************************
    4892             : !> \brief Prints the GW stuff to the output and optinally to an external file.
    4893             : !>        Also updates the eigenvalues for eigenvalue-self-consistent GW
    4894             : !> \param vec_gw_energ ...
    4895             : !> \param z_value ...
    4896             : !> \param m_value ...
    4897             : !> \param vec_Sigma_x_minus_vxc_gw ...
    4898             : !> \param Eigenval ...
    4899             : !> \param Eigenval_last ...
    4900             : !> \param Eigenval_scf ...
    4901             : !> \param gw_corr_lev_occ ...
    4902             : !> \param gw_corr_lev_virt ...
    4903             : !> \param gw_corr_lev_tot ...
    4904             : !> \param crossing_search ...
    4905             : !> \param homo ...
    4906             : !> \param unit_nr ...
    4907             : !> \param count_ev_sc_GW ...
    4908             : !> \param count_sc_GW0 ...
    4909             : !> \param ikp ...
    4910             : !> \param nkp_self_energy ...
    4911             : !> \param kpoints ...
    4912             : !> \param ispin requested spin-state (1 for alpha, 2 for beta, else closed-shell)
    4913             : !> \param E_VBM_GW ...
    4914             : !> \param E_CBM_GW ...
    4915             : !> \param E_VBM_SCF ...
    4916             : !> \param E_CBM_SCF ...
    4917             : ! **************************************************************************************************
    4918        1536 :    SUBROUTINE print_and_update_for_ev_sc(vec_gw_energ, &
    4919         384 :                                          z_value, m_value, vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4920         384 :                                          Eigenval_last, Eigenval_scf, &
    4921             :                                          gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, &
    4922             :                                          crossing_search, homo, unit_nr, count_ev_sc_GW, count_sc_GW0, &
    4923             :                                          ikp, nkp_self_energy, kpoints, ispin, E_VBM_GW, E_CBM_GW, &
    4924             :                                          E_VBM_SCF, E_CBM_SCF)
    4925             : 
    4926             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_gw_energ, z_value, m_value
    4927             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma_x_minus_vxc_gw, Eigenval, &
    4928             :                                                             Eigenval_last, Eigenval_scf
    4929             :       INTEGER, INTENT(IN) :: gw_corr_lev_occ, gw_corr_lev_virt, gw_corr_lev_tot, crossing_search, &
    4930             :          homo, unit_nr, count_ev_sc_GW, count_sc_GW0, ikp, nkp_self_energy
    4931             :       TYPE(kpoint_type), INTENT(IN), POINTER             :: kpoints
    4932             :       INTEGER, INTENT(IN)                                :: ispin
    4933             :       REAL(KIND=dp), INTENT(INOUT), OPTIONAL             :: E_VBM_GW, E_CBM_GW, E_VBM_SCF, E_CBM_SCF
    4934             : 
    4935             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'print_and_update_for_ev_sc'
    4936             : 
    4937             :       CHARACTER(4)                                       :: occ_virt
    4938             :       INTEGER                                            :: handle, n_level_gw, n_level_gw_ref
    4939             :       LOGICAL                                            :: do_alpha, do_beta, do_closed_shell, &
    4940             :                                                             do_kpoints, is_energy_okay
    4941             :       REAL(KIND=dp)                                      :: E_GAP_GW, E_HOMO_GW, E_HOMO_SCF, &
    4942             :                                                             E_LUMO_GW, E_LUMO_SCF, new_energy
    4943             : 
    4944         384 :       CALL timeset(routineN, handle)
    4945             : 
    4946         384 :       do_alpha = (ispin == 1)
    4947         384 :       do_beta = (ispin == 2)
    4948         384 :       do_closed_shell = .NOT. (do_alpha .OR. do_beta)
    4949         384 :       do_kpoints = (nkp_self_energy > 1)
    4950             : 
    4951        8880 :       Eigenval_last(:) = Eigenval(:)
    4952             : 
    4953         384 :       IF (unit_nr > 0) THEN
    4954             : 
    4955         192 :          IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. ikp == 1) THEN
    4956             : 
    4957          57 :             WRITE (unit_nr, *) ' '
    4958             : 
    4959          57 :             IF (do_alpha .OR. do_closed_shell) THEN
    4960          51 :                WRITE (unit_nr, *) ' '
    4961          51 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4962          51 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4963          51 :                WRITE (unit_nr, '(T3,A)') '**                        GW QUASIPARTICLE ENERGIES                         **'
    4964          51 :                WRITE (unit_nr, '(T3,A)') '**                                                                          **'
    4965          51 :                WRITE (unit_nr, '(T3,A)') '******************************************************************************'
    4966          51 :                WRITE (unit_nr, '(T3,A)') ' '
    4967          51 :                WRITE (unit_nr, '(T3,A)') ' '
    4968          51 :                WRITE (unit_nr, '(T3,A)') 'The GW quasiparticle energies are calculated according to: '
    4969             : 
    4970          51 :                IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    4971          16 :                   WRITE (unit_nr, '(T3,A)') 'E_GW = E_SCF + Z * ( Sigc(E_SCF) + Sigx - vxc )'
    4972             :                ELSE
    4973          35 :                   WRITE (unit_nr, '(T3,A)') ' '
    4974          35 :                   WRITE (unit_nr, '(T3,A)') '                    E_GW = E_SCF + Sigc(E_GW) + Sigx - vxc '
    4975          35 :                   WRITE (unit_nr, '(T3,A)') ' '
    4976          35 :                   WRITE (unit_nr, '(T3,A)') 'Upper equation is solved self-consistently for E_GW, see Eq. (12) in J. Phys.'
    4977          35 :                   WRITE (unit_nr, '(T3,A)') 'Chem. Lett. 9, 306 (2018), doi: 10.1021/acs.jpclett.7b02740'
    4978             :                END IF
    4979          51 :                WRITE (unit_nr, *) ' '
    4980          51 :                WRITE (unit_nr, *) ' '
    4981          51 :                WRITE (unit_nr, '(T3,A)') '------------'
    4982          51 :                WRITE (unit_nr, '(T3,A)') 'G0W0 results'
    4983          51 :                WRITE (unit_nr, '(T3,A)') '------------'
    4984             : 
    4985             :             END IF
    4986             : 
    4987          57 :             IF (.NOT. do_kpoints) THEN
    4988          48 :                IF (do_alpha) THEN
    4989           5 :                   WRITE (unit_nr, *) ' '
    4990           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4991           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins'
    4992           5 :                   WRITE (unit_nr, '(T3,A)') '----------------------------------------'
    4993          43 :                ELSE IF (do_beta) THEN
    4994           5 :                   WRITE (unit_nr, *) ' '
    4995           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4996           5 :                   WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins'
    4997           5 :                   WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    4998             :                END IF
    4999             :             END IF
    5000             : 
    5001             :          END IF
    5002             : 
    5003         192 :          IF (count_ev_sc_GW > 1) THEN
    5004          41 :             WRITE (unit_nr, *) ' '
    5005          41 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    5006          41 :             WRITE (unit_nr, '(T3,A,I4)') 'Eigenvalue-selfconsistency cycle: ', count_ev_sc_GW
    5007          41 :             WRITE (unit_nr, '(T3,A)') '---------------------------------------'
    5008             :          END IF
    5009             : 
    5010         192 :          IF (count_sc_GW0 > 1) THEN
    5011          36 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    5012          36 :             WRITE (unit_nr, '(T3,A,I4)') 'scGW0 selfconsistency cycle: ', count_sc_GW0
    5013          36 :             WRITE (unit_nr, '(T3,A)') '----------------------------------'
    5014             :          END IF
    5015             : 
    5016         192 :          IF (do_kpoints) THEN
    5017          68 :             WRITE (unit_nr, *) ' '
    5018          68 :             WRITE (unit_nr, '(T3,A7,I3,A3,I3,A8,3F7.3,A12,3F7.3)') 'Kpoint ', ikp, '  /', nkp_self_energy, &
    5019          68 :                '   xkp =', kpoints%xkp(1, ikp), kpoints%xkp(2, ikp), kpoints%xkp(3, ikp), &
    5020         136 :                '  and  xkp =', -kpoints%xkp(1, ikp), -kpoints%xkp(2, ikp), -kpoints%xkp(3, ikp)
    5021          68 :             WRITE (unit_nr, '(T3,A72)') '(Relative Brillouin zone size: [-0.5, 0.5] x [-0.5, 0.5] x [-0.5, 0.5])'
    5022          68 :             WRITE (unit_nr, *) ' '
    5023          68 :             IF (do_alpha) THEN
    5024           8 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of alpha spins:'
    5025          60 :             ELSE IF (do_beta) THEN
    5026           8 :                WRITE (unit_nr, '(T3,A)') 'GW quasiparticle energies of beta spins:'
    5027             :             END IF
    5028             :          END IF
    5029             : 
    5030             :       END IF
    5031             : 
    5032        3946 :       DO n_level_gw = 1, gw_corr_lev_tot
    5033             : 
    5034        3562 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5035             : 
    5036             :          new_energy = (Eigenval_scf(n_level_gw_ref) - &
    5037             :                        m_value(n_level_gw)*Eigenval(n_level_gw_ref) + &
    5038             :                        vec_gw_energ(n_level_gw) + &
    5039             :                        vec_Sigma_x_minus_vxc_gw(n_level_gw_ref))* &
    5040        3562 :                       z_value(n_level_gw)
    5041             : 
    5042        3562 :          is_energy_okay = .TRUE.
    5043             : 
    5044        3562 :          IF (n_level_gw_ref > homo .AND. new_energy < Eigenval(homo)) THEN
    5045             :             is_energy_okay = .FALSE.
    5046             :          END IF
    5047             : 
    5048         384 :          IF (is_energy_okay) THEN
    5049        3562 :             Eigenval(n_level_gw_ref) = new_energy
    5050             :          END IF
    5051             : 
    5052             :       END DO
    5053             : 
    5054         384 :       IF (unit_nr > 0) THEN
    5055         192 :          WRITE (unit_nr, '(T3,A)') ' '
    5056         192 :          IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5057          39 :             WRITE (unit_nr, '(T13,2A)') 'MO    E_SCF (eV)    Sigc (eV)   Sigx-vxc (eV)    Z         E_GW (eV)'
    5058             :          ELSE
    5059         153 :             WRITE (unit_nr, '(T3,2A)') 'Molecular orbital   E_SCF (eV)       Sigc (eV)   Sigx-vxc (eV)       E_GW (eV)'
    5060             :          END IF
    5061             :       END IF
    5062             : 
    5063        3946 :       DO n_level_gw = 1, gw_corr_lev_tot
    5064        3562 :          n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5065        3562 :          IF (n_level_gw <= gw_corr_lev_occ) THEN
    5066        1020 :             occ_virt = 'occ'
    5067             :          ELSE
    5068        2542 :             occ_virt = 'vir'
    5069             :          END IF
    5070             : 
    5071        3946 :          IF (unit_nr > 0) THEN
    5072        1781 :             IF (crossing_search == ri_rpa_g0w0_crossing_z_shot) THEN
    5073             :                WRITE (unit_nr, '(T3,I4,3A,5F13.4)') &
    5074         536 :                   n_level_gw_ref, ' ( ', occ_virt, ') ', &
    5075         536 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5076         536 :                   vec_gw_energ(n_level_gw)*evolt, &
    5077         536 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5078         536 :                   z_value(n_level_gw), &
    5079        1072 :                   Eigenval(n_level_gw_ref)*evolt
    5080             :             ELSE
    5081             :                WRITE (unit_nr, '(T3,I4,3A,4F16.4)') &
    5082        1245 :                   n_level_gw_ref, ' ( ', occ_virt, ')  ', &
    5083        1245 :                   Eigenval_last(n_level_gw_ref)*evolt, &
    5084        1245 :                   vec_gw_energ(n_level_gw)*evolt, &
    5085        1245 :                   vec_Sigma_x_minus_vxc_gw(n_level_gw_ref)*evolt, &
    5086        2490 :                   Eigenval(n_level_gw_ref)*evolt
    5087             :             END IF
    5088             :          END IF
    5089             :       END DO
    5090             : 
    5091        1788 :       E_HOMO_SCF = MAXVAL(Eigenval_last(homo - gw_corr_lev_occ + 1:homo))
    5092        3310 :       E_LUMO_SCF = MINVAL(Eigenval_last(homo + 1:homo + gw_corr_lev_virt))
    5093             : 
    5094        1788 :       E_HOMO_GW = MAXVAL(Eigenval(homo - gw_corr_lev_occ + 1:homo))
    5095        3310 :       E_LUMO_GW = MINVAL(Eigenval(homo + 1:homo + gw_corr_lev_virt))
    5096         384 :       E_GAP_GW = E_LUMO_GW - E_HOMO_GW
    5097             : 
    5098             :       IF (PRESENT(E_VBM_SCF) .AND. PRESENT(E_CBM_SCF) .AND. &
    5099         384 :           PRESENT(E_VBM_GW) .AND. PRESENT(E_CBM_GW)) THEN
    5100         384 :          IF (E_HOMO_SCF > E_VBM_SCF) E_VBM_SCF = E_HOMO_SCF
    5101         384 :          IF (E_LUMO_SCF < E_CBM_SCF) E_CBM_SCF = E_LUMO_SCF
    5102         384 :          IF (E_HOMO_GW > E_VBM_GW) E_VBM_GW = E_HOMO_GW
    5103         384 :          IF (E_LUMO_GW < E_CBM_GW) E_CBM_GW = E_LUMO_GW
    5104             :       END IF
    5105             : 
    5106         384 :       IF (unit_nr > 0) THEN
    5107             : 
    5108         192 :          IF (do_kpoints) THEN
    5109          68 :             IF (do_closed_shell) THEN
    5110          52 :                WRITE (unit_nr, '(T3,A)') ' '
    5111          52 :                WRITE (unit_nr, '(T3,A,F42.4)') 'GW direct gap at current kpoint (eV)', E_GAP_GW*evolt
    5112          16 :             ELSE IF (do_alpha) THEN
    5113           8 :                WRITE (unit_nr, '(T3,A)') ' '
    5114           8 :                WRITE (unit_nr, '(T3,A,F36.4)') 'Alpha GW direct gap at current kpoint (eV)', &
    5115          16 :                   E_GAP_GW*evolt
    5116           8 :             ELSE IF (do_beta) THEN
    5117           8 :                WRITE (unit_nr, '(T3,A)') ' '
    5118           8 :                WRITE (unit_nr, '(T3,A,F37.4)') 'Beta GW direct gap at current kpoint (eV)', &
    5119          16 :                   E_GAP_GW*evolt
    5120             :             END IF
    5121             :          ELSE
    5122         124 :             IF (do_closed_shell) THEN
    5123         106 :                WRITE (unit_nr, '(T3,A)') ' '
    5124         106 :                IF (count_ev_sc_GW > 1) THEN
    5125          33 :                   WRITE (unit_nr, '(T3,A,I3,A,F39.4)') 'HOMO-LUMO gap in evGW iteration', &
    5126          66 :                      count_ev_sc_GW, ' (eV)', E_GAP_GW*evolt
    5127          73 :                ELSE IF (count_sc_GW0 > 1) THEN
    5128          35 :                   WRITE (unit_nr, '(T3,A,I3,A,F38.4)') 'HOMO-LUMO gap in evGW0 iteration', &
    5129          70 :                      count_sc_GW0, ' (eV)', E_GAP_GW*evolt
    5130             :                ELSE
    5131          38 :                   WRITE (unit_nr, '(T3,A,F55.4)') 'G0W0 HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5132             :                END IF
    5133          18 :             ELSE IF (do_alpha) THEN
    5134           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5135           9 :                WRITE (unit_nr, '(T3,A,F51.4)') 'Alpha GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5136           9 :             ELSE IF (do_beta) THEN
    5137           9 :                WRITE (unit_nr, '(T3,A)') ' '
    5138           9 :                WRITE (unit_nr, '(T3,A,F52.4)') 'Beta GW HOMO-LUMO gap (eV)', E_GAP_GW*evolt
    5139             :             END IF
    5140             :          END IF
    5141             :       END IF
    5142             : 
    5143         384 :       IF (unit_nr > 0) THEN
    5144         192 :          WRITE (unit_nr, *) ' '
    5145         192 :          WRITE (unit_nr, '(T3,A)') '------------------------------------------------------------------------------'
    5146             :       END IF
    5147             : 
    5148         384 :       CALL timestop(handle)
    5149             : 
    5150         384 :    END SUBROUTINE print_and_update_for_ev_sc
    5151             : 
    5152             : ! **************************************************************************************************
    5153             : !> \brief ...
    5154             : !> \param Eigenval ...
    5155             : !> \param Eigenval_last ...
    5156             : !> \param gw_corr_lev_occ ...
    5157             : !> \param gw_corr_lev_virt ...
    5158             : !> \param homo ...
    5159             : !> \param nmo ...
    5160             : ! **************************************************************************************************
    5161         244 :    PURE SUBROUTINE shift_unshifted_levels(Eigenval, Eigenval_last, gw_corr_lev_occ, gw_corr_lev_virt, &
    5162             :                                           homo, nmo)
    5163             : 
    5164             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: Eigenval, Eigenval_last
    5165             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5166             :                                                             nmo
    5167             : 
    5168             :       INTEGER                                            :: n_level_gw, n_level_gw_ref
    5169             :       REAL(KIND=dp)                                      :: eigen_diff
    5170             : 
    5171             :       ! for eigenvalue self-consistent GW, all eigenvalues have to be corrected
    5172             :       ! 1) the occupied; check if there are occupied MOs not being corrected by GW
    5173         244 :       IF (gw_corr_lev_occ < homo .AND. gw_corr_lev_occ > 0) THEN
    5174             : 
    5175             :          ! calculate average GW correction for occupied orbitals
    5176             :          eigen_diff = 0.0_dp
    5177             : 
    5178          84 :          DO n_level_gw = 1, gw_corr_lev_occ
    5179          42 :             n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5180          84 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5181             :          END DO
    5182          42 :          eigen_diff = eigen_diff/gw_corr_lev_occ
    5183             : 
    5184             :          ! correct the eigenvalues of the occupied orbitals which have not been corrected by GW
    5185         164 :          DO n_level_gw = 1, homo - gw_corr_lev_occ
    5186         164 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5187             :          END DO
    5188             : 
    5189             :       END IF
    5190             : 
    5191             :       ! 2) the virtual: check if there are virtual orbitals not being corrected by GW
    5192         244 :       IF (gw_corr_lev_virt < nmo - homo .AND. gw_corr_lev_virt > 0) THEN
    5193             : 
    5194             :          ! calculate average GW correction for virtual orbitals
    5195             :          eigen_diff = 0.0_dp
    5196        2434 :          DO n_level_gw = 1, gw_corr_lev_virt
    5197        2190 :             n_level_gw_ref = n_level_gw + homo
    5198        2434 :             eigen_diff = eigen_diff + Eigenval(n_level_gw_ref) - Eigenval_last(n_level_gw_ref)
    5199             :          END DO
    5200         244 :          eigen_diff = eigen_diff/gw_corr_lev_virt
    5201             : 
    5202             :          ! correct the eigenvalues of the virtual orbitals which have not been corrected by GW
    5203        2696 :          DO n_level_gw = homo + gw_corr_lev_virt + 1, nmo
    5204        2696 :             Eigenval(n_level_gw) = Eigenval(n_level_gw) + eigen_diff
    5205             :          END DO
    5206             : 
    5207             :       END IF
    5208             : 
    5209         244 :    END SUBROUTINE shift_unshifted_levels
    5210             : 
    5211             : ! **************************************************************************************************
    5212             : !> \brief Calculate the matrix mat_N_gw containing the second derivatives
    5213             : !>        with respect to the fitting parameters. The second derivatives are
    5214             : !>        calculated numerically by finite differences.
    5215             : !> \param N_ij matrix element
    5216             : !> \param Lambda fitting parameters
    5217             : !> \param Sigma_c ...
    5218             : !> \param vec_omega_fit_gw ...
    5219             : !> \param i ...
    5220             : !> \param j ...
    5221             : !> \param num_poles ...
    5222             : !> \param num_fit_points ...
    5223             : !> \param n_level_gw ...
    5224             : !> \param h  ...
    5225             : ! **************************************************************************************************
    5226       62480 :    SUBROUTINE calc_mat_N(N_ij, Lambda, Sigma_c, vec_omega_fit_gw, i, j, &
    5227             :                          num_poles, num_fit_points, n_level_gw, h)
    5228             :       REAL(KIND=dp), INTENT(OUT)                         :: N_ij
    5229             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5230             :          INTENT(IN)                                      :: Lambda
    5231             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5232             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5233             :          INTENT(IN)                                      :: vec_omega_fit_gw
    5234             :       INTEGER, INTENT(IN)                                :: i, j, num_poles, num_fit_points, &
    5235             :                                                             n_level_gw
    5236             :       REAL(KIND=dp), INTENT(IN)                          :: h
    5237             : 
    5238             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'calc_mat_N'
    5239             : 
    5240             :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:)        :: Lambda_tmp
    5241             :       INTEGER                                            :: handle, num_var
    5242             :       REAL(KIND=dp)                                      :: chi2, chi2_sum
    5243             : 
    5244       62480 :       CALL timeset(routineN, handle)
    5245             : 
    5246       62480 :       num_var = 2*num_poles + 1
    5247      187440 :       ALLOCATE (Lambda_tmp(num_var))
    5248      374880 :       Lambda_tmp = z_zero
    5249       62480 :       chi2_sum = 0.0_dp
    5250             : 
    5251             :       !test
    5252      374880 :       Lambda_tmp(:) = Lambda(:)
    5253             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5254       62480 :                      num_fit_points, n_level_gw)
    5255             : 
    5256             :       ! Fitting parameters with offset h
    5257      374880 :       Lambda_tmp(:) = Lambda(:)
    5258       62480 :       IF (MODULO(i, 2) == 0) THEN
    5259       31240 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + h*z_one
    5260             :       ELSE
    5261       31240 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + h*gaussi
    5262             :       END IF
    5263       62480 :       IF (MODULO(j, 2) == 0) THEN
    5264       31240 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) + h*z_one
    5265             :       ELSE
    5266       31240 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) + h*gaussi
    5267             :       END IF
    5268             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5269       62480 :                      num_fit_points, n_level_gw)
    5270       62480 :       chi2_sum = chi2_sum + chi2
    5271             : 
    5272       62480 :       IF (MODULO(i, 2) == 0) THEN
    5273       31240 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) - 2.0_dp*h*z_one
    5274             :       ELSE
    5275       31240 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) - 2.0_dp*h*gaussi
    5276             :       END IF
    5277             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5278       62480 :                      num_fit_points, n_level_gw)
    5279       62480 :       chi2_sum = chi2_sum - chi2
    5280             : 
    5281       62480 :       IF (MODULO(j, 2) == 0) THEN
    5282       31240 :          Lambda_tmp(j/2) = Lambda_tmp(j/2) - 2.0_dp*h*z_one
    5283             :       ELSE
    5284       31240 :          Lambda_tmp((j + 1)/2) = Lambda_tmp((j + 1)/2) - 2.0_dp*h*gaussi
    5285             :       END IF
    5286             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5287       62480 :                      num_fit_points, n_level_gw)
    5288       62480 :       chi2_sum = chi2_sum + chi2
    5289             : 
    5290       62480 :       IF (MODULO(i, 2) == 0) THEN
    5291       31240 :          Lambda_tmp(i/2) = Lambda_tmp(i/2) + 2.0_dp*h*z_one
    5292             :       ELSE
    5293       31240 :          Lambda_tmp((i + 1)/2) = Lambda_tmp((i + 1)/2) + 2.0_dp*h*gaussi
    5294             :       END IF
    5295             :       CALL calc_chi2(chi2, Lambda_tmp, Sigma_c, vec_omega_fit_gw, num_poles, &
    5296       62480 :                      num_fit_points, n_level_gw)
    5297       62480 :       chi2_sum = chi2_sum - chi2
    5298             : 
    5299             :       ! Second derivative with symmetric difference quotient
    5300       62480 :       N_ij = 1.0_dp/2.0_dp*chi2_sum/(4.0_dp*h*h)
    5301             : 
    5302       62480 :       DEALLOCATE (Lambda_tmp)
    5303             : 
    5304       62480 :       CALL timestop(handle)
    5305             : 
    5306       62480 :    END SUBROUTINE calc_mat_N
    5307             : 
    5308             : ! **************************************************************************************************
    5309             : !> \brief Calculate chi2
    5310             : !> \param chi2 ...
    5311             : !> \param Lambda fitting parameters
    5312             : !> \param Sigma_c ...
    5313             : !> \param vec_omega_fit_gw ...
    5314             : !> \param num_poles ...
    5315             : !> \param num_fit_points ...
    5316             : !> \param n_level_gw ...
    5317             : ! **************************************************************************************************
    5318     1484285 :    PURE SUBROUTINE calc_chi2(chi2, Lambda, Sigma_c, vec_omega_fit_gw, num_poles, &
    5319             :                              num_fit_points, n_level_gw)
    5320             :       REAL(KIND=dp), INTENT(OUT)                         :: chi2
    5321             :       COMPLEX(KIND=dp), DIMENSION(:), INTENT(IN)         :: Lambda
    5322             :       COMPLEX(KIND=dp), DIMENSION(:, :), INTENT(IN)      :: Sigma_c
    5323             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: vec_omega_fit_gw
    5324             :       INTEGER, INTENT(IN)                                :: num_poles, num_fit_points, n_level_gw
    5325             : 
    5326             :       COMPLEX(KIND=dp)                                   :: func_val
    5327             :       INTEGER                                            :: iii, jjj, kkk
    5328             : 
    5329     1484285 :       chi2 = 0.0_dp
    5330    19041297 :       DO kkk = 1, num_fit_points
    5331    17557012 :          func_val = Lambda(1)
    5332    52671036 :          DO iii = 1, num_poles
    5333    35114024 :             jjj = iii*2
    5334             :             ! calculate value of the fit function
    5335    52671036 :             func_val = func_val + Lambda(jjj)/(gaussi*vec_omega_fit_gw(kkk) - Lambda(jjj + 1))
    5336             :          END DO
    5337    19041297 :          chi2 = chi2 + (ABS(Sigma_c(n_level_gw, kkk) - func_val))**2
    5338             :       END DO
    5339             : 
    5340     1484285 :    END SUBROUTINE calc_chi2
    5341             : 
    5342             : ! **************************************************************************************************
    5343             : !> \brief ...
    5344             : !> \param num_integ_points ...
    5345             : !> \param nmo ...
    5346             : !> \param tau_tj ...
    5347             : !> \param tj ...
    5348             : !> \param matrix_s ...
    5349             : !> \param fm_mo_coeff_occ ...
    5350             : !> \param fm_mo_coeff_virt ...
    5351             : !> \param fm_mo_coeff_occ_scaled ...
    5352             : !> \param fm_mo_coeff_virt_scaled ...
    5353             : !> \param fm_scaled_dm_occ_tau ...
    5354             : !> \param fm_scaled_dm_virt_tau ...
    5355             : !> \param Eigenval ...
    5356             : !> \param eps_filter ...
    5357             : !> \param e_fermi ...
    5358             : !> \param fm_mat_W ...
    5359             : !> \param gw_corr_lev_tot ...
    5360             : !> \param gw_corr_lev_occ ...
    5361             : !> \param gw_corr_lev_virt ...
    5362             : !> \param homo ...
    5363             : !> \param count_ev_sc_GW ...
    5364             : !> \param count_sc_GW0 ...
    5365             : !> \param t_3c_overl_int_ao_mo ...
    5366             : !> \param t_3c_O_mo_compressed ...
    5367             : !> \param t_3c_O_mo_ind ...
    5368             : !> \param t_3c_overl_int_gw_RI ...
    5369             : !> \param t_3c_overl_int_gw_AO ...
    5370             : !> \param mat_W ...
    5371             : !> \param mat_MinvVMinv ...
    5372             : !> \param mat_dm ...
    5373             : !> \param weights_cos_tf_t_to_w ...
    5374             : !> \param weights_sin_tf_t_to_w ...
    5375             : !> \param vec_Sigma_c_gw ...
    5376             : !> \param do_periodic ...
    5377             : !> \param num_points_corr ...
    5378             : !> \param delta_corr ...
    5379             : !> \param qs_env ...
    5380             : !> \param para_env ...
    5381             : !> \param para_env_RPA ...
    5382             : !> \param mp2_env ...
    5383             : !> \param matrix_berry_re_mo_mo ...
    5384             : !> \param matrix_berry_im_mo_mo ...
    5385             : !> \param first_cycle_periodic_correction ...
    5386             : !> \param kpoints ...
    5387             : !> \param num_fit_points ...
    5388             : !> \param fm_mo_coeff ...
    5389             : !> \param do_ri_Sigma_x ...
    5390             : !> \param vec_Sigma_x_gw ...
    5391             : !> \param unit_nr ...
    5392             : !> \param ispin ...
    5393             : ! **************************************************************************************************
    5394          62 :    SUBROUTINE compute_self_energy_cubic_gw(num_integ_points, nmo, tau_tj, tj, &
    5395          62 :                                            matrix_s, fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5396             :                                            fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, &
    5397         124 :                                            fm_scaled_dm_virt_tau, Eigenval, eps_filter, &
    5398          62 :                                            e_fermi, fm_mat_W, &
    5399             :                                            gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5400             :                                            count_ev_sc_GW, count_sc_GW0, &
    5401          62 :                                            t_3c_overl_int_ao_mo, t_3c_O_mo_compressed, t_3c_O_mo_ind, &
    5402             :                                            t_3c_overl_int_gw_RI, t_3c_overl_int_gw_AO, &
    5403             :                                            mat_W, mat_MinvVMinv, mat_dm, &
    5404         124 :                                            weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5405             :                                            do_periodic, num_points_corr, delta_corr, qs_env, para_env, para_env_RPA, &
    5406             :                                            mp2_env, matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5407             :                                            first_cycle_periodic_correction, kpoints, num_fit_points, fm_mo_coeff, &
    5408          62 :                                            do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, ispin)
    5409             :       INTEGER, INTENT(IN)                                :: num_integ_points, nmo
    5410             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5411             :          INTENT(IN)                                      :: tau_tj, tj
    5412             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5413             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    5414             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    5415             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    5416             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5417             :       REAL(KIND=dp), INTENT(INOUT)                       :: e_fermi
    5418             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5419             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot, gw_corr_lev_occ, &
    5420             :                                                             gw_corr_lev_virt, homo, &
    5421             :                                                             count_ev_sc_GW, count_sc_GW0
    5422             :       TYPE(dbt_type)                                     :: t_3c_overl_int_ao_mo
    5423             :       TYPE(hfx_compression_type)                         :: t_3c_O_mo_compressed
    5424             :       INTEGER, DIMENSION(:, :)                           :: t_3c_O_mo_ind
    5425             :       TYPE(dbt_type)                                     :: t_3c_overl_int_gw_RI, &
    5426             :                                                             t_3c_overl_int_gw_AO
    5427             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5428             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv, mat_dm
    5429             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5430             :                                                             weights_sin_tf_t_to_w
    5431             :       COMPLEX(KIND=dp), DIMENSION(:, :, :), INTENT(OUT)  :: vec_Sigma_c_gw
    5432             :       LOGICAL, INTENT(IN)                                :: do_periodic
    5433             :       INTEGER, INTENT(IN)                                :: num_points_corr
    5434             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5435             :          INTENT(INOUT)                                   :: delta_corr
    5436             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5437             :       TYPE(mp_para_env_type), POINTER                    :: para_env, para_env_RPA
    5438             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5439             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_berry_re_mo_mo, &
    5440             :                                                             matrix_berry_im_mo_mo
    5441             :       LOGICAL, INTENT(INOUT) :: first_cycle_periodic_correction
    5442             :       TYPE(kpoint_type), POINTER                         :: kpoints
    5443             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5444             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5445             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5446             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(INOUT)      :: vec_Sigma_x_gw
    5447             :       INTEGER, INTENT(IN)                                :: unit_nr, ispin
    5448             : 
    5449             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw'
    5450             : 
    5451          62 :       COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:, :)     :: delta_corr_omega
    5452             :       INTEGER :: gw_lev_end, gw_lev_start, handle, handle3, i, iblk_mo, iquad, jquad, mo_end, &
    5453             :          mo_start, n_level_gw, n_level_gw_ref, nblk_mo, unit_nr_prv
    5454          62 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: batch_range_mo, dist1, dist2, mo_bsizes, &
    5455         124 :                                                             mo_offsets, sizes_AO, sizes_RI
    5456             :       INTEGER, DIMENSION(2)                              :: mo_bounds, pdims_2d
    5457             :       LOGICAL                                            :: memory_info
    5458             :       REAL(KIND=dp)                                      :: ext_scaling, omega, omega_i, omega_sign, &
    5459             :                                                             sign_occ_virt, t_i_Clenshaw, tau, &
    5460             :                                                             weight_cos, weight_i, weight_sin
    5461          62 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :) :: vec_Sigma_c_gw_cos_omega, &
    5462          62 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5463          62 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5464             :       TYPE(dbcsr_type), TARGET                           :: mat_greens_fct_occ, mat_greens_fct_virt
    5465         186 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5466        1178 :       TYPE(dbt_type)                                     :: t_3c_ctr_AO, t_3c_ctr_RI, t_AO_tmp, &
    5467         806 :                                                             t_dm, t_greens_fct_occ, &
    5468         806 :                                                             t_greens_fct_virt, t_RI_tmp, &
    5469         806 :                                                             t_SinvVSinv, t_W
    5470             : 
    5471          62 :       CALL timeset(routineN, handle)
    5472             : 
    5473             :       CALL decompress_tensor(t_3c_overl_int_ao_mo, t_3c_O_mo_ind, t_3c_O_mo_compressed, &
    5474          62 :                              mp2_env%ri_rpa_im_time%eps_compress)
    5475             : 
    5476          62 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_RI)
    5477          62 :       CALL dbt_copy(t_3c_overl_int_ao_mo, t_3c_overl_int_gw_AO, order=[2, 1, 3], move_data=.TRUE.)
    5478             : 
    5479          62 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5480          62 :       IF (memory_info) THEN
    5481           0 :          unit_nr_prv = unit_nr
    5482             :       ELSE
    5483          62 :          unit_nr_prv = 0
    5484             :       END IF
    5485             : 
    5486          62 :       mo_start = homo - gw_corr_lev_occ + 1
    5487          62 :       mo_end = homo + gw_corr_lev_virt
    5488          62 :       CPASSERT(mo_end - mo_start + 1 == gw_corr_lev_tot)
    5489             : 
    5490        7940 :       vec_Sigma_c_gw = z_zero
    5491         248 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points))
    5492       12378 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5493         186 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points))
    5494       12378 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5495         186 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points))
    5496       12378 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5497         186 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points))
    5498       12378 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5499             : 
    5500         186 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points))
    5501       12378 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5502         186 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points))
    5503       12378 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5504             : 
    5505         248 :       ALLOCATE (delta_corr_omega(1 + homo - gw_corr_lev_occ:homo + gw_corr_lev_virt, num_integ_points))
    5506       12378 :       delta_corr_omega(:, :) = z_zero
    5507             : 
    5508             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5509             :                         template=matrix_s(1)%matrix, &
    5510          62 :                         matrix_type=dbcsr_type_no_symmetry)
    5511             : 
    5512             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5513             :                         template=matrix_s(1)%matrix, &
    5514          62 :                         matrix_type=dbcsr_type_no_symmetry)
    5515             : 
    5516          62 :       e_fermi = 0.5_dp*(Eigenval(homo) + Eigenval(homo + 1))
    5517             : 
    5518          62 :       nblk_mo = dbt_nblks_total(t_3c_overl_int_gw_AO, 3)
    5519         186 :       ALLOCATE (mo_offsets(nblk_mo))
    5520         124 :       ALLOCATE (mo_bsizes(nblk_mo))
    5521         186 :       ALLOCATE (batch_range_mo(nblk_mo - 1))
    5522          62 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_offset_3=mo_offsets, blk_size_3=mo_bsizes)
    5523             : 
    5524          62 :       pdims_2d = 0
    5525          62 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5526         186 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_overl_int_gw_RI, 1)))
    5527          62 :       CALL dbt_get_info(t_3c_overl_int_gw_RI, blk_size_1=sizes_RI)
    5528             : 
    5529             :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5530             : 
    5531          62 :       DEALLOCATE (dist1, dist2)
    5532             : 
    5533          62 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5534             : 
    5535          62 :       CALL dbt_create(t_3c_overl_int_gw_RI, t_3c_ctr_RI)
    5536          62 :       CALL dbt_create(t_3c_overl_int_gw_AO, t_3c_ctr_AO)
    5537             : 
    5538         186 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_overl_int_gw_AO, 1)))
    5539          62 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, blk_size_1=sizes_AO)
    5540             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5541          62 :       DEALLOCATE (dist1, dist2)
    5542             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5543          62 :       DEALLOCATE (dist1, dist2)
    5544             : 
    5545        1010 :       DO jquad = 1, num_integ_points
    5546             : 
    5547             :          CALL compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, &
    5548             :                                            fm_mo_coeff_occ, fm_mo_coeff_virt, &
    5549             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    5550             :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, &
    5551         948 :                                            nmo, eps_filter, e_fermi, tau_tj(jquad), para_env)
    5552             : 
    5553         948 :          CALL dbcsr_set(mat_W, 0.0_dp)
    5554         948 :          CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    5555             : 
    5556         948 :          IF (jquad == 1) CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5557             : 
    5558         948 :          CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    5559         948 :          CALL dbt_copy(t_RI_tmp, t_W)
    5560         948 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    5561         948 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    5562         948 :          CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    5563         948 :          CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    5564             : 
    5565        4740 :          batch_range_mo(:) = [(i, i=2, nblk_mo)]
    5566         948 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5567         948 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5568         948 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5569         948 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5570         948 :          CALL dbt_batched_contract_init(t_W)
    5571         948 :          CALL dbt_batched_contract_init(t_greens_fct_occ)
    5572         948 :          CALL dbt_batched_contract_init(t_greens_fct_virt)
    5573             : 
    5574             :          ! in iteration over MO blocks skip first and last block because they correspond to the MO s
    5575             :          ! outside of the GW range of required MOs
    5576        1896 :          DO iblk_mo = 2, nblk_mo - 1
    5577        2844 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5578             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5579             :                                    t_greens_fct_occ, t_W, [1.0_dp, -1.0_dp], &
    5580             :                                    mo_bounds, unit_nr_prv, &
    5581         948 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5582         948 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_neg_tau(:, jquad), mo_start, mo_bounds, para_env)
    5583             : 
    5584             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5585             :                                    t_greens_fct_virt, t_W, [1.0_dp, 1.0_dp], &
    5586             :                                    mo_bounds, unit_nr_prv, &
    5587         948 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.FALSE.)
    5588             : 
    5589        1896 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_c_gw_pos_tau(:, jquad), mo_start, mo_bounds, para_env)
    5590             :          END DO
    5591         948 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5592         948 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5593         948 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5594         948 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5595         948 :          CALL dbt_batched_contract_finalize(t_W)
    5596         948 :          CALL dbt_batched_contract_finalize(t_greens_fct_occ)
    5597         948 :          CALL dbt_batched_contract_finalize(t_greens_fct_virt)
    5598             : 
    5599         948 :          CALL dbt_clear(t_3c_ctr_AO)
    5600         948 :          CALL dbt_clear(t_3c_ctr_RI)
    5601             : 
    5602             :          vec_Sigma_c_gw_cos_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) + &
    5603       12316 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5604             : 
    5605             :          vec_Sigma_c_gw_sin_tau(:, jquad) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad) - &
    5606       12378 :                                                     vec_Sigma_c_gw_neg_tau(:, jquad))
    5607             : 
    5608             :       END DO ! jquad (tau)
    5609          62 :       CALL dbt_destroy(t_W)
    5610             : 
    5611          62 :       CALL dbt_destroy(t_greens_fct_occ)
    5612          62 :       CALL dbt_destroy(t_greens_fct_virt)
    5613             : 
    5614             :       ! Fourier transform from time to frequency
    5615         634 :       DO jquad = 1, num_fit_points
    5616             : 
    5617       14254 :          DO iquad = 1, num_integ_points
    5618             : 
    5619       13620 :             omega = tj(jquad)
    5620       13620 :             tau = tau_tj(iquad)
    5621       13620 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    5622       13620 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    5623             : 
    5624             :             vec_Sigma_c_gw_cos_omega(:, jquad) = vec_Sigma_c_gw_cos_omega(:, jquad) + &
    5625      199900 :                                                  weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad)
    5626             : 
    5627             :             vec_Sigma_c_gw_sin_omega(:, jquad) = vec_Sigma_c_gw_sin_omega(:, jquad) + &
    5628      200472 :                                                  weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad)
    5629             : 
    5630             :          END DO
    5631             : 
    5632             :       END DO
    5633             : 
    5634             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    5635             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    5636        4226 :       vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :) = -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ, :)
    5637             : 
    5638             :       vec_Sigma_c_gw(:, 1:num_fit_points, 1) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points) + &
    5639        7878 :                                                gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points)
    5640             : 
    5641          62 :       CALL dbcsr_release(mat_greens_fct_occ)
    5642          62 :       CALL dbcsr_release(mat_greens_fct_virt)
    5643             : 
    5644          66 :       IF (do_ri_Sigma_x .AND. count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    5645             : 
    5646           2 :          CALL timeset(routineN//"_RI_HFX_operation_1", handle3)
    5647             : 
    5648             :          ! get density matrix
    5649             :          CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    5650             :                             matrix_a=fm_mo_coeff_occ, matrix_b=fm_mo_coeff_occ, beta=0.0_dp, &
    5651           2 :                             matrix_c=fm_scaled_dm_occ_tau)
    5652             : 
    5653           2 :          CALL timestop(handle3)
    5654             : 
    5655           2 :          CALL timeset(routineN//"_RI_HFX_operation_2", handle3)
    5656             : 
    5657             :          CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    5658             :                                mat_dm%matrix, &
    5659           2 :                                keep_sparsity=.FALSE.)
    5660             : 
    5661           2 :          CALL timestop(handle3)
    5662             : 
    5663             :          CALL create_2c_tensor(t_dm, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5664           2 :          DEALLOCATE (dist1, dist2)
    5665             : 
    5666           2 :          CALL dbt_copy_matrix_to_tensor(mat_dm%matrix, t_AO_tmp)
    5667           2 :          CALL dbt_copy(t_AO_tmp, t_dm)
    5668             : 
    5669             :          CALL create_2c_tensor(t_SinvVSinv, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5670           2 :          DEALLOCATE (dist1, dist2)
    5671             : 
    5672           2 :          CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    5673           2 :          CALL dbt_copy(t_RI_tmp, t_SinvVSinv)
    5674             : 
    5675           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_AO, batch_range_3=batch_range_mo)
    5676           2 :          CALL dbt_batched_contract_init(t_3c_overl_int_gw_RI, batch_range_3=batch_range_mo)
    5677           2 :          CALL dbt_batched_contract_init(t_3c_ctr_RI, batch_range_3=batch_range_mo)
    5678           2 :          CALL dbt_batched_contract_init(t_3c_ctr_AO, batch_range_3=batch_range_mo)
    5679           2 :          CALL dbt_batched_contract_init(t_dm)
    5680           2 :          CALL dbt_batched_contract_init(t_SinvVSinv)
    5681             : 
    5682           4 :          DO iblk_mo = 2, nblk_mo - 1
    5683           6 :             mo_bounds = [mo_offsets(iblk_mo), mo_offsets(iblk_mo) + mo_bsizes(iblk_mo) - 1]
    5684             : 
    5685             :             CALL contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    5686             :                                    t_dm, t_SinvVSinv, [1.0_dp, -1.0_dp], &
    5687             :                                    mo_bounds, unit_nr_prv, &
    5688           2 :                                    t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_ri=.TRUE.)
    5689             : 
    5690           4 :             CALL trace_sigma_gw(t_3c_ctr_AO, t_3c_ctr_RI, vec_Sigma_x_gw(mo_start:mo_end, 1), mo_start, mo_bounds, para_env)
    5691             :          END DO
    5692           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_AO)
    5693           2 :          CALL dbt_batched_contract_finalize(t_3c_overl_int_gw_RI)
    5694           2 :          CALL dbt_batched_contract_finalize(t_dm)
    5695           2 :          CALL dbt_batched_contract_finalize(t_SinvVSinv)
    5696           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_RI)
    5697           2 :          CALL dbt_batched_contract_finalize(t_3c_ctr_AO)
    5698             : 
    5699           2 :          CALL dbt_destroy(t_dm)
    5700           2 :          CALL dbt_destroy(t_SinvVSinv)
    5701             : 
    5702             :          mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) = &
    5703             :             mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, 1) + &
    5704          48 :             vec_Sigma_x_gw(:, 1)
    5705             : 
    5706             :       END IF
    5707             : 
    5708          62 :       CALL dbt_pgrid_destroy(pgrid_2d)
    5709             : 
    5710          62 :       CALL dbt_destroy(t_3c_ctr_RI)
    5711          62 :       CALL dbt_destroy(t_3c_ctr_AO)
    5712          62 :       CALL dbt_destroy(t_AO_tmp)
    5713          62 :       CALL dbt_destroy(t_RI_tmp)
    5714             : 
    5715             :       ! compute and add the periodic correction
    5716          62 :       IF (do_periodic) THEN
    5717             : 
    5718           4 :          ext_scaling = 0.2_dp
    5719             : 
    5720             :          ! loop over omega' (integration)
    5721          24 :          DO iquad = 1, num_points_corr
    5722             : 
    5723             :             ! use the Clenshaw-grid
    5724          20 :             t_i_Clenshaw = iquad*pi/(2.0_dp*num_points_corr)
    5725          20 :             omega_i = ext_scaling/TAN(t_i_Clenshaw)
    5726             : 
    5727          20 :             IF (iquad < num_points_corr) THEN
    5728          16 :                weight_i = ext_scaling*pi/(num_points_corr*SIN(t_i_Clenshaw)**2)
    5729             :             ELSE
    5730           4 :                weight_i = ext_scaling*pi/(2.0_dp*num_points_corr*SIN(t_i_Clenshaw)**2)
    5731             :             END IF
    5732             : 
    5733             :             CALL calc_periodic_correction(delta_corr, qs_env, para_env, para_env_RPA, &
    5734             :                                           mp2_env%ri_g0w0%kp_grid, homo, nmo, gw_corr_lev_occ, &
    5735             :                                           gw_corr_lev_virt, omega_i, fm_mo_coeff, Eigenval, &
    5736             :                                           matrix_berry_re_mo_mo, matrix_berry_im_mo_mo, &
    5737             :                                           first_cycle_periodic_correction, kpoints, &
    5738             :                                           mp2_env%ri_g0w0%do_mo_coeff_gamma, &
    5739             :                                           mp2_env%ri_g0w0%num_kp_grids, mp2_env%ri_g0w0%eps_kpoint, &
    5740             :                                           mp2_env%ri_g0w0%do_extra_kpoints, &
    5741          20 :                                           mp2_env%ri_g0w0%do_aux_bas_gw, mp2_env%ri_g0w0%frac_aux_mos)
    5742             : 
    5743         204 :             DO n_level_gw = 1, gw_corr_lev_tot
    5744             : 
    5745         180 :                n_level_gw_ref = n_level_gw + homo - gw_corr_lev_occ
    5746             : 
    5747         180 :                IF (n_level_gw <= gw_corr_lev_occ) THEN
    5748             :                   sign_occ_virt = -1.0_dp
    5749             :                ELSE
    5750         100 :                   sign_occ_virt = 1.0_dp
    5751             :                END IF
    5752             : 
    5753        2160 :                DO jquad = 1, num_integ_points
    5754             : 
    5755        1960 :                   omega_sign = tj(jquad)*sign_occ_virt
    5756             : 
    5757             :                   delta_corr_omega(n_level_gw_ref, jquad) = &
    5758             :                      delta_corr_omega(n_level_gw_ref, jquad) - &
    5759             :                      0.5_dp/pi*weight_i/2.0_dp*delta_corr(n_level_gw_ref)* &
    5760             :                      (1.0_dp/(gaussi*(omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)) + &
    5761        2140 :                       1.0_dp/(gaussi*(-omega_i + omega_sign) + e_fermi - Eigenval(n_level_gw_ref)))
    5762             : 
    5763             :                END DO
    5764             : 
    5765             :             END DO
    5766             : 
    5767             :          END DO
    5768             : 
    5769           4 :          gw_lev_start = 1 + homo - gw_corr_lev_occ
    5770           4 :          gw_lev_end = homo + gw_corr_lev_virt
    5771             : 
    5772             :          ! add the periodic correction
    5773             :          vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) = vec_Sigma_c_gw(1:gw_corr_lev_tot, :, 1) + &
    5774         182 :                                                    delta_corr_omega(gw_lev_start:gw_lev_end, 1:num_fit_points)
    5775             : 
    5776             :       END IF
    5777             : 
    5778          62 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    5779          62 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    5780          62 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    5781          62 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    5782          62 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    5783          62 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    5784          62 :       DEALLOCATE (delta_corr_omega)
    5785             : 
    5786          62 :       CALL timestop(handle)
    5787             : 
    5788         372 :    END SUBROUTINE compute_self_energy_cubic_gw
    5789             : 
    5790             : ! **************************************************************************************************
    5791             : !> \brief ...
    5792             : !> \param num_integ_points ...
    5793             : !> \param tau_tj ...
    5794             : !> \param tj ...
    5795             : !> \param matrix_s ...
    5796             : !> \param Eigenval ...
    5797             : !> \param e_fermi ...
    5798             : !> \param fm_mat_W ...
    5799             : !> \param gw_corr_lev_tot ...
    5800             : !> \param gw_corr_lev_occ ...
    5801             : !> \param gw_corr_lev_virt ...
    5802             : !> \param homo ...
    5803             : !> \param count_ev_sc_GW ...
    5804             : !> \param count_sc_GW0 ...
    5805             : !> \param t_3c_O ...
    5806             : !> \param t_3c_M ...
    5807             : !> \param t_3c_O_compressed ...
    5808             : !> \param t_3c_O_ind ...
    5809             : !> \param mat_W ...
    5810             : !> \param mat_MinvVMinv ...
    5811             : !> \param weights_cos_tf_t_to_w ...
    5812             : !> \param weights_sin_tf_t_to_w ...
    5813             : !> \param vec_Sigma_c_gw ...
    5814             : !> \param qs_env ...
    5815             : !> \param para_env ...
    5816             : !> \param mp2_env ...
    5817             : !> \param num_fit_points ...
    5818             : !> \param fm_mo_coeff ...
    5819             : !> \param do_ri_Sigma_x ...
    5820             : !> \param vec_Sigma_x_gw ...
    5821             : !> \param unit_nr ...
    5822             : !> \param nspins ...
    5823             : !> \param starts_array_mc ...
    5824             : !> \param ends_array_mc ...
    5825             : !> \param eps_filter ...
    5826             : ! **************************************************************************************************
    5827          16 :    SUBROUTINE compute_self_energy_cubic_gw_kpoints(num_integ_points, tau_tj, tj, &
    5828          16 :                                                    matrix_s, Eigenval, e_fermi, fm_mat_W, &
    5829          16 :                                                    gw_corr_lev_tot, gw_corr_lev_occ, gw_corr_lev_virt, homo, &
    5830             :                                                    count_ev_sc_GW, count_sc_GW0, &
    5831             :                                                    t_3c_O, t_3c_M, t_3c_O_compressed, t_3c_O_ind, &
    5832             :                                                    mat_W, mat_MinvVMinv, &
    5833          32 :                                                    weights_cos_tf_t_to_w, weights_sin_tf_t_to_w, vec_Sigma_c_gw, &
    5834             :                                                    qs_env, para_env, &
    5835             :                                                    mp2_env, num_fit_points, fm_mo_coeff, &
    5836          16 :                                                    do_ri_Sigma_x, vec_Sigma_x_gw, unit_nr, nspins, &
    5837          16 :                                                    starts_array_mc, ends_array_mc, eps_filter)
    5838             : 
    5839             :       INTEGER, INTENT(IN)                                :: num_integ_points
    5840             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
    5841             :          INTENT(IN)                                      :: tau_tj, tj
    5842             :       TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN)       :: matrix_s
    5843             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(IN)      :: Eigenval
    5844             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: e_fermi
    5845             :       TYPE(cp_fm_type), DIMENSION(:), INTENT(IN)         :: fm_mat_W
    5846             :       INTEGER, INTENT(IN)                                :: gw_corr_lev_tot
    5847             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: gw_corr_lev_occ, gw_corr_lev_virt, homo
    5848             :       INTEGER, INTENT(IN)                                :: count_ev_sc_GW, count_sc_GW0
    5849             :       TYPE(dbt_type), ALLOCATABLE, DIMENSION(:, :)       :: t_3c_O
    5850             :       TYPE(dbt_type)                                     :: t_3c_M
    5851             :       TYPE(hfx_compression_type), ALLOCATABLE, &
    5852             :          DIMENSION(:, :, :)                              :: t_3c_O_compressed
    5853             :       TYPE(block_ind_type), ALLOCATABLE, &
    5854             :          DIMENSION(:, :, :), INTENT(INOUT)               :: t_3c_O_ind
    5855             :       TYPE(dbcsr_type), INTENT(INOUT), TARGET            :: mat_W
    5856             :       TYPE(dbcsr_p_type)                                 :: mat_MinvVMinv
    5857             :       REAL(KIND=dp), DIMENSION(:, :), INTENT(IN)         :: weights_cos_tf_t_to_w, &
    5858             :                                                             weights_sin_tf_t_to_w
    5859             :       COMPLEX(KIND=dp), DIMENSION(:, :, :, :), &
    5860             :          INTENT(OUT)                                     :: vec_Sigma_c_gw
    5861             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    5862             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    5863             :       TYPE(mp2_type), INTENT(INOUT)                      :: mp2_env
    5864             :       INTEGER, INTENT(IN)                                :: num_fit_points
    5865             :       TYPE(cp_fm_type), INTENT(IN)                       :: fm_mo_coeff
    5866             :       LOGICAL, INTENT(IN)                                :: do_ri_Sigma_x
    5867             :       REAL(KIND=dp), DIMENSION(:, :, :), INTENT(INOUT)   :: vec_Sigma_x_gw
    5868             :       INTEGER, INTENT(IN)                                :: unit_nr, nspins
    5869             :       INTEGER, DIMENSION(:), INTENT(IN)                  :: starts_array_mc, ends_array_mc
    5870             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter
    5871             : 
    5872             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_self_energy_cubic_gw_kpoints'
    5873             : 
    5874             :       INTEGER                                            :: cut_memory, handle, handle2, i_mem, &
    5875             :                                                             iquad, ispin, j_mem, jquad, &
    5876             :                                                             nkp_self_energy, num_points, &
    5877             :                                                             unit_nr_prv
    5878          32 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: dist1, dist2, sizes_AO, sizes_RI
    5879             :       INTEGER, DIMENSION(2)                              :: mo_end, mo_start, pdims_2d
    5880             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    5881             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    5882             :       INTEGER, DIMENSION(3)                              :: dims_3c
    5883             :       LOGICAL                                            :: memory_info
    5884             :       REAL(KIND=dp)                                      :: omega, t1, t2, tau, weight_cos, &
    5885             :                                                             weight_sin
    5886          16 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :, :) :: vec_Sigma_c_gw_cos_omega, &
    5887          16 :          vec_Sigma_c_gw_cos_tau, vec_Sigma_c_gw_neg_tau, vec_Sigma_c_gw_pos_tau, &
    5888          16 :          vec_Sigma_c_gw_sin_omega, vec_Sigma_c_gw_sin_tau
    5889          16 :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_p_greens_fct_occ, &
    5890          16 :                                                             mat_p_greens_fct_virt
    5891             :       TYPE(dbcsr_type), TARGET :: mat_greens_fct_occ, mat_greens_fct_virt, mat_mo_coeff, &
    5892             :          mat_self_energy_ao_ao_neg_tau, mat_self_energy_ao_ao_pos_tau
    5893          48 :       TYPE(dbt_pgrid_type)                               :: pgrid_2d
    5894         304 :       TYPE(dbt_type)                                     :: t_3c_M_W_tmp, t_3c_O_all, t_3c_O_W, &
    5895         208 :                                                             t_AO_tmp, t_greens_fct_occ, &
    5896         304 :                                                             t_greens_fct_virt, t_RI_tmp, t_W
    5897             : 
    5898          16 :       CALL timeset(routineN, handle)
    5899             : 
    5900          16 :       memory_info = mp2_env%ri_rpa_im_time%memory_info
    5901          16 :       IF (memory_info) THEN
    5902           0 :          unit_nr_prv = unit_nr
    5903             :       ELSE
    5904          16 :          unit_nr_prv = 0
    5905             :       END IF
    5906             : 
    5907          16 :       cut_memory = mp2_env%ri_rpa_im_time%cut_memory
    5908             : 
    5909          34 :       DO ispin = 1, nspins
    5910          18 :          mo_start(ispin) = homo(ispin) - gw_corr_lev_occ(ispin) + 1
    5911          18 :          mo_end(ispin) = homo(ispin) + gw_corr_lev_virt(ispin)
    5912          34 :          CPASSERT(mo_end(ispin) - mo_start(ispin) + 1 == gw_corr_lev_tot)
    5913             :       END DO
    5914             : 
    5915          16 :       nkp_self_energy = mp2_env%ri_g0w0%nkp_self_energy
    5916             : 
    5917        1346 :       vec_Sigma_c_gw = z_zero
    5918          96 :       ALLOCATE (vec_Sigma_c_gw_pos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5919        2618 :       vec_Sigma_c_gw_pos_tau = 0.0_dp
    5920          80 :       ALLOCATE (vec_Sigma_c_gw_neg_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5921        2618 :       vec_Sigma_c_gw_neg_tau = 0.0_dp
    5922          80 :       ALLOCATE (vec_Sigma_c_gw_cos_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5923        2618 :       vec_Sigma_c_gw_cos_tau = 0.0_dp
    5924          80 :       ALLOCATE (vec_Sigma_c_gw_sin_tau(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5925        2618 :       vec_Sigma_c_gw_sin_tau = 0.0_dp
    5926             : 
    5927          80 :       ALLOCATE (vec_Sigma_c_gw_cos_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5928        2618 :       vec_Sigma_c_gw_cos_omega = 0.0_dp
    5929          80 :       ALLOCATE (vec_Sigma_c_gw_sin_omega(gw_corr_lev_tot, num_integ_points, nkp_self_energy, nspins))
    5930        2618 :       vec_Sigma_c_gw_sin_omega = 0.0_dp
    5931             : 
    5932             :       CALL dbcsr_create(matrix=mat_greens_fct_occ, &
    5933             :                         template=matrix_s(1)%matrix, &
    5934          16 :                         matrix_type=dbcsr_type_no_symmetry)
    5935             : 
    5936             :       CALL dbcsr_create(matrix=mat_greens_fct_virt, &
    5937             :                         template=matrix_s(1)%matrix, &
    5938          16 :                         matrix_type=dbcsr_type_no_symmetry)
    5939             : 
    5940             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_neg_tau, &
    5941             :                         template=matrix_s(1)%matrix, &
    5942          16 :                         matrix_type=dbcsr_type_no_symmetry)
    5943             : 
    5944             :       CALL dbcsr_create(matrix=mat_self_energy_ao_ao_pos_tau, &
    5945             :                         template=matrix_s(1)%matrix, &
    5946          16 :                         matrix_type=dbcsr_type_no_symmetry)
    5947             : 
    5948             :       CALL dbcsr_create(matrix=mat_mo_coeff, &
    5949             :                         template=matrix_s(1)%matrix, &
    5950          16 :                         matrix_type=dbcsr_type_no_symmetry)
    5951             : 
    5952          16 :       CALL copy_fm_to_dbcsr(fm_mo_coeff, mat_mo_coeff, keep_sparsity=.FALSE.)
    5953             : 
    5954          34 :       DO ispin = 1, nspins
    5955         664 :          e_fermi(ispin) = 0.5_dp*(MAXVAL(Eigenval(homo, :, ispin)) + MINVAL(Eigenval(homo + 1, :, ispin)))
    5956             :       END DO
    5957             : 
    5958          16 :       pdims_2d = 0
    5959          16 :       CALL dbt_pgrid_create(para_env, pdims_2d, pgrid_2d)
    5960          48 :       ALLOCATE (sizes_RI(dbt_nblks_total(t_3c_O(1, 1), 1)))
    5961          16 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_1=sizes_RI)
    5962             : 
    5963          16 :       CALL create_2c_tensor(t_W, dist1, dist2, pgrid_2d, sizes_RI, sizes_RI, name="(RI|RI)")
    5964          16 :       DEALLOCATE (dist1, dist2)
    5965             : 
    5966          16 :       CALL dbt_create(mat_W, t_RI_tmp, name="(RI|RI)")
    5967             : 
    5968          48 :       ALLOCATE (sizes_AO(dbt_nblks_total(t_3c_O(1, 1), 2)))
    5969          16 :       CALL dbt_get_info(t_3c_O(1, 1), blk_size_2=sizes_AO)
    5970             :       CALL create_2c_tensor(t_greens_fct_occ, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5971             : 
    5972          16 :       DEALLOCATE (dist1, dist2)
    5973             :       CALL create_2c_tensor(t_greens_fct_virt, dist1, dist2, pgrid_2d, sizes_AO, sizes_AO, name="(AO|AO)")
    5974          16 :       DEALLOCATE (dist1, dist2)
    5975             : 
    5976          16 :       CALL dbt_get_info(t_3c_M, nfull_total=dims_3c)
    5977             : 
    5978          16 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_all, name="O (RI AO | AO)")
    5979             : 
    5980             :       ! get full 3c tensor
    5981          74 :       DO i_mem = 1, cut_memory
    5982             :          CALL decompress_tensor(t_3c_O(1, 1), &
    5983             :                                 t_3c_O_ind(1, 1, i_mem)%ind, &
    5984             :                                 t_3c_O_compressed(1, 1, i_mem), &
    5985          58 :                                 mp2_env%ri_rpa_im_time%eps_compress)
    5986          74 :          CALL dbt_copy(t_3c_O(1, 1), t_3c_O_all, summation=.TRUE., move_data=.TRUE.)
    5987             :       END DO
    5988             : 
    5989          16 :       CALL dbt_create(t_3c_M, t_3c_M_W_tmp, name="M W (RI | AO AO)")
    5990          16 :       CALL dbt_create(t_3c_O(1, 1), t_3c_O_W, name="M W (RI AO | AO)")
    5991             : 
    5992          16 :       CALL dbt_create(mat_greens_fct_occ, t_AO_tmp, name="(AO|AO)")
    5993             : 
    5994          16 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1 .AND. do_ri_Sigma_x) THEN
    5995          12 :          num_points = num_integ_points + 1
    5996             :       ELSE
    5997           4 :          num_points = num_integ_points
    5998             :       END IF
    5999             : 
    6000         124 :       DO jquad = 1, num_points
    6001             : 
    6002         108 :          t1 = m_walltime()
    6003             : 
    6004         108 :          IF (jquad <= num_integ_points) THEN
    6005          96 :             tau = tau_tj(jquad)
    6006             : 
    6007          96 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    6008          48 :                'GW_INFO| Computing self-energy time point', jquad
    6009             :          ELSE
    6010          12 :             tau = 0.0_dp
    6011             : 
    6012          12 :             IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
    6013           6 :                'GW_INFO| Computing exchange self-energy'
    6014             :          END IF
    6015             : 
    6016         108 :          IF (jquad <= num_integ_points) THEN
    6017          96 :             CALL dbcsr_set(mat_W, 0.0_dp)
    6018          96 :             CALL copy_fm_to_dbcsr(fm_mat_W(jquad), mat_W, keep_sparsity=.FALSE.)
    6019          96 :             CALL dbt_copy_matrix_to_tensor(mat_W, t_RI_tmp)
    6020             :          ELSE
    6021          12 :             CALL dbt_copy_matrix_to_tensor(mat_MinvVMinv%matrix, t_RI_tmp)
    6022             :          END IF
    6023             : 
    6024         108 :          CALL dbt_copy(t_RI_tmp, t_W)
    6025             : 
    6026         230 :          DO ispin = 1, nspins
    6027             : 
    6028             :             CALL compute_periodic_dm(mat_p_greens_fct_occ, qs_env, &
    6029             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    6030             :                                      remove_occ=.FALSE., remove_virt=.TRUE., &
    6031         228 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6032             : 
    6033             :             CALL compute_periodic_dm(mat_p_greens_fct_virt, qs_env, &
    6034             :                                      ispin, num_points, jquad, e_fermi(ispin), tau, &
    6035             :                                      remove_occ=.TRUE., remove_virt=.FALSE., &
    6036         228 :                                      alloc_dm=(jquad == 1 .AND. ispin == 1))
    6037             : 
    6038         122 :             CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6039         122 :             CALL dbcsr_copy(mat_greens_fct_occ, mat_p_greens_fct_occ(jquad, 1)%matrix)
    6040             : 
    6041         122 :             CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6042         122 :             CALL dbcsr_copy(mat_greens_fct_virt, mat_p_greens_fct_virt(jquad, 1)%matrix)
    6043             : 
    6044         122 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_occ, t_AO_tmp)
    6045         122 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_occ)
    6046             : 
    6047         122 :             CALL dbt_copy_matrix_to_tensor(mat_greens_fct_virt, t_AO_tmp)
    6048         122 :             CALL dbt_copy(t_AO_tmp, t_greens_fct_virt)
    6049             : 
    6050         122 :             CALL dbcsr_set(mat_self_energy_ao_ao_neg_tau, 0.0_dp)
    6051         122 :             CALL dbcsr_set(mat_self_energy_ao_ao_pos_tau, 0.0_dp)
    6052             : 
    6053         122 :             CALL dbt_copy(t_3c_O_all, t_3c_M)
    6054             : 
    6055         122 :             CALL dbt_batched_contract_init(t_3c_O_W)
    6056             :             !         CALL dbt_batched_contract_init(t_3c_O_G)
    6057             :             !         CALL dbt_batched_contract_init(t_self_energy)
    6058             : 
    6059         554 :             DO i_mem = 1, cut_memory ! memory cut for RI index
    6060             : 
    6061             :                !            CALL dbt_batched_contract_init(t_W)
    6062             :                !            CALL dbt_batched_contract_init(t_3c_M)
    6063             :                !            CALL dbt_batched_contract_init(t_3c_M_W_tmp)
    6064             : 
    6065             :                bounds_RI_i(:, 1) = [qs_env%mp2_env%ri_rpa_im_time%starts_array_mc_RI(i_mem), &
    6066        1296 :                                     qs_env%mp2_env%ri_rpa_im_time%ends_array_mc_RI(i_mem)]
    6067             : 
    6068        2142 :                DO j_mem = 1, cut_memory ! memory cut for ao index
    6069             : 
    6070        4764 :                   bounds_ao_ao_j(:, 1) = [starts_array_mc(j_mem), ends_array_mc(j_mem)]
    6071        4764 :                   bounds_ao_ao_j(:, 2) = [1, dims_3c(3)]
    6072             : 
    6073        1588 :                   CALL timeset("tensor_operation_3c_W", handle2)
    6074             : 
    6075             :                   CALL dbt_contract(1.0_dp, t_W, t_3c_M, 0.0_dp, &
    6076             :                                     t_3c_M_W_tmp, &
    6077             :                                     contract_1=[2], notcontract_1=[1], &
    6078             :                                     contract_2=[1], notcontract_2=[2, 3], &
    6079             :                                     map_1=[1], map_2=[2, 3], &
    6080             :                                     bounds_2=bounds_RI_i, &
    6081             :                                     bounds_3=bounds_ao_ao_j, &
    6082             :                                     filter_eps=eps_filter, &
    6083        1588 :                                     unit_nr=unit_nr_prv)
    6084             : 
    6085        1588 :                   CALL dbt_copy(t_3c_M_W_tmp, t_3c_O_W, order=[1, 2, 3], move_data=.TRUE.)
    6086             : 
    6087        1588 :                   CALL timestop(handle2)
    6088             : 
    6089             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_occ, t_3c_O_W, &
    6090             :                                                mat_self_energy_ao_ao_neg_tau, &
    6091             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6092        1588 :                                                eps_filter, do_occ=.TRUE., do_virt=.FALSE.)
    6093             : 
    6094             :                   CALL contract_to_self_energy(t_3c_O_all, t_greens_fct_virt, t_3c_O_W, &
    6095             :                                                mat_self_energy_ao_ao_pos_tau, &
    6096             :                                                bounds_ao_ao_j, bounds_RI_i, unit_nr_prv, &
    6097        3608 :                                                eps_filter, do_occ=.FALSE., do_virt=.TRUE.)
    6098             : 
    6099             :                END DO ! j_mem
    6100             : 
    6101             :                !            CALL dbt_batched_contract_finalize(t_W)
    6102             :                !            CALL dbt_batched_contract_finalize(t_3c_M)
    6103             :                !            CALL dbt_batched_contract_finalize(t_3c_M_W_tmp)
    6104             : 
    6105             :             END DO ! i_mem
    6106             : 
    6107         122 :             CALL dbt_batched_contract_finalize(t_3c_O_W)
    6108             :             !         CALL dbt_batched_contract_finalize(t_3c_O_G)
    6109             :             !         CALL dbt_batched_contract_finalize(t_self_energy)
    6110             : 
    6111         230 :             IF (jquad <= num_integ_points) THEN
    6112             : 
    6113             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin), &
    6114         108 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6115             : 
    6116             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_pos_tau, vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin), &
    6117         108 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6118             : 
    6119             :                vec_Sigma_c_gw_cos_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) + &
    6120        2556 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6121             : 
    6122             :                vec_Sigma_c_gw_sin_tau(:, jquad, :, ispin) = 0.5_dp*(vec_Sigma_c_gw_pos_tau(:, jquad, :, ispin) - &
    6123        2556 :                                                                     vec_Sigma_c_gw_neg_tau(:, jquad, :, ispin))
    6124             :             ELSE
    6125             : 
    6126             :                CALL trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao_neg_tau, &
    6127             :                                             vec_Sigma_x_gw(mo_start(ispin):mo_end(ispin), :, ispin), &
    6128          14 :                                             homo(ispin), gw_corr_lev_occ(ispin), gw_corr_lev_virt(ispin), ispin)
    6129             : 
    6130             :             END IF
    6131             : 
    6132             :          END DO ! spins
    6133             : 
    6134         108 :          t2 = m_walltime()
    6135             : 
    6136         124 :          IF (unit_nr > 0) WRITE (unit_nr, '(T6,A,T56,F25.1)') 'Execution time (s):', t2 - t1
    6137             : 
    6138             :       END DO ! jquad (tau)
    6139             : 
    6140          16 :       IF (count_ev_sc_GW == 1 .AND. count_sc_GW0 == 1) THEN
    6141             : 
    6142          16 :          CALL compute_minus_vxc_kpoints(qs_env)
    6143             : 
    6144          16 :          IF (do_ri_Sigma_x) THEN
    6145          26 :             DO ispin = 1, nspins
    6146             :                mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) = mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, :) + &
    6147        2154 :                                                                        vec_Sigma_x_gw(:, :, ispin)
    6148             :             END DO
    6149             :          END IF
    6150             : 
    6151             :       END IF
    6152             : 
    6153             :       ! Fourier transform from time to frequency
    6154          62 :       DO jquad = 1, num_fit_points
    6155             : 
    6156         338 :          DO iquad = 1, num_integ_points
    6157             : 
    6158         276 :             omega = tj(jquad)
    6159         276 :             tau = tau_tj(iquad)
    6160         276 :             weight_cos = weights_cos_tf_t_to_w(jquad, iquad)*COS(omega*tau)
    6161         276 :             weight_sin = weights_sin_tf_t_to_w(jquad, iquad)*SIN(omega*tau)
    6162             : 
    6163             :             vec_Sigma_c_gw_cos_omega(:, jquad, :, :) = vec_Sigma_c_gw_cos_omega(:, jquad, :, :) + &
    6164        7644 :                                                        weight_cos*vec_Sigma_c_gw_cos_tau(:, iquad, :, :)
    6165             : 
    6166             :             vec_Sigma_c_gw_sin_omega(:, jquad, :, :) = vec_Sigma_c_gw_sin_omega(:, jquad, :, :) + &
    6167        7690 :                                                        weight_sin*vec_Sigma_c_gw_sin_tau(:, iquad, :, :)
    6168             : 
    6169             :          END DO
    6170             : 
    6171             :       END DO
    6172             : 
    6173             :       ! for occupied levels, we need the correlation self-energy for negative omega. Therefore, weight_sin
    6174             :       ! should be computed with -omega, which results in an additional minus for vec_Sigma_c_gw_sin_omega:
    6175          34 :       DO ispin = 1, nspins
    6176             :          vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin) = &
    6177        1802 :             -vec_Sigma_c_gw_sin_omega(1:gw_corr_lev_occ(ispin), :, :, ispin)
    6178             :       END DO
    6179             : 
    6180             :       vec_Sigma_c_gw(:, 1:num_fit_points, :, :) = vec_Sigma_c_gw_cos_omega(:, 1:num_fit_points, :, :) + &
    6181        1346 :                                                   gaussi*vec_Sigma_c_gw_sin_omega(:, 1:num_fit_points, :, :)
    6182             : 
    6183          16 :       CALL dbt_pgrid_destroy(pgrid_2d)
    6184             : 
    6185          16 :       CALL dbcsr_release(mat_greens_fct_occ)
    6186          16 :       CALL dbcsr_release(mat_greens_fct_virt)
    6187          16 :       CALL dbcsr_release(mat_self_energy_ao_ao_neg_tau)
    6188          16 :       CALL dbcsr_release(mat_self_energy_ao_ao_pos_tau)
    6189          16 :       CALL dbcsr_release(mat_mo_coeff)
    6190             : 
    6191          16 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_occ)
    6192          16 :       CALL dbcsr_deallocate_matrix_set(mat_p_greens_fct_virt)
    6193             : 
    6194          16 :       CALL dbt_destroy(t_W)
    6195          16 :       CALL dbt_destroy(t_RI_tmp)
    6196          16 :       CALL dbt_destroy(t_greens_fct_occ)
    6197          16 :       CALL dbt_destroy(t_greens_fct_virt)
    6198          16 :       CALL dbt_destroy(t_AO_tmp)
    6199          16 :       CALL dbt_destroy(t_3c_O_all)
    6200          16 :       CALL dbt_destroy(t_3c_M_W_tmp)
    6201          16 :       CALL dbt_destroy(t_3c_O_W)
    6202             : 
    6203          16 :       DEALLOCATE (vec_Sigma_c_gw_pos_tau)
    6204          16 :       DEALLOCATE (vec_Sigma_c_gw_neg_tau)
    6205          16 :       DEALLOCATE (vec_Sigma_c_gw_cos_tau)
    6206          16 :       DEALLOCATE (vec_Sigma_c_gw_sin_tau)
    6207          16 :       DEALLOCATE (vec_Sigma_c_gw_cos_omega)
    6208          16 :       DEALLOCATE (vec_Sigma_c_gw_sin_omega)
    6209             : 
    6210          16 :       CALL timestop(handle)
    6211             : 
    6212          96 :    END SUBROUTINE compute_self_energy_cubic_gw_kpoints
    6213             : 
    6214             : ! **************************************************************************************************
    6215             : !> \brief ...
    6216             : !> \param qs_env ...
    6217             : ! **************************************************************************************************
    6218          16 :    SUBROUTINE compute_minus_vxc_kpoints(qs_env)
    6219             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6220             : 
    6221             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_minus_vxc_kpoints'
    6222             : 
    6223             :       INTEGER                                            :: handle, ikp, ispin, nkp_self_energy, &
    6224             :                                                             nmo, nspins
    6225             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_Sigma_x_minus_vxc_mo_mo
    6226             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, ks_mat_ao_ao, &
    6227             :                                                             ks_mat_no_xc_ao_ao, vxc_ao_ao, &
    6228             :                                                             vxc_ao_mo, vxc_mo_mo
    6229             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6230             :       TYPE(cp_fm_type)                                   :: fm_dummy, fm_Sigma_x_minus_vxc_mo_mo, &
    6231             :                                                             fm_tmp_im, fm_tmp_re
    6232             :       TYPE(dft_control_type), POINTER                    :: dft_control
    6233             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma, kpoints_Sigma_no_xc
    6234             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6235             : 
    6236          16 :       CALL timeset(routineN, handle)
    6237             : 
    6238          16 :       CALL get_qs_env(qs_env, para_env=para_env, dft_control=dft_control)
    6239             : 
    6240          16 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6241             : 
    6242          16 :       kpoints_Sigma_no_xc => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma_no_xc
    6243             : 
    6244          16 :       nkp_self_energy = kpoints_Sigma%nkp
    6245             : 
    6246          16 :       nspins = dft_control%nspins
    6247             : 
    6248          16 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%wmat(1, 1)%matrix_struct
    6249             : 
    6250          16 :       CALL cp_cfm_create(ks_mat_ao_ao, matrix_struct)
    6251          16 :       CALL cp_cfm_create(ks_mat_no_xc_ao_ao, matrix_struct)
    6252          16 :       CALL cp_cfm_create(vxc_ao_ao, matrix_struct)
    6253          16 :       CALL cp_cfm_create(vxc_ao_mo, matrix_struct)
    6254          16 :       CALL cp_cfm_create(vxc_mo_mo, matrix_struct)
    6255          16 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6256          16 :       CALL cp_fm_create(fm_Sigma_x_minus_vxc_mo_mo, matrix_struct)
    6257          16 :       CALL cp_fm_create(fm_tmp_re, matrix_struct)
    6258          16 :       CALL cp_fm_create(fm_tmp_im, matrix_struct)
    6259             : 
    6260          16 :       CALL cp_cfm_get_info(cfm_mo_coeff, nrow_global=nmo)
    6261          48 :       ALLOCATE (diag_Sigma_x_minus_vxc_mo_mo(nmo))
    6262             : 
    6263          16 :       DEALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw)
    6264             : 
    6265          64 :       ALLOCATE (qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(nmo, 2, nkp_self_energy))
    6266             : 
    6267         136 :       DO ikp = 1, nkp_self_energy
    6268             : 
    6269         272 :          DO ispin = 1, nspins
    6270             : 
    6271             :             ASSOCIATE (mos => kpoints_Sigma%kp_env(ikp)%kpoint_env%mos)
    6272         136 :             IF (ASSOCIATED(mos(1, ispin)%mo_coeff)) THEN
    6273         136 :                CALL cp_fm_copy_general(mos(1, ispin)%mo_coeff, fm_tmp_re, para_env)
    6274             :             ELSE
    6275           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6276             :             END IF
    6277         272 :             IF (ASSOCIATED(mos(2, ispin)%mo_coeff)) THEN
    6278         136 :                CALL cp_fm_copy_general(mos(2, ispin)%mo_coeff, fm_tmp_im, para_env)
    6279             :             ELSE
    6280           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6281             :             END IF
    6282             :             END ASSOCIATE
    6283             : 
    6284         136 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, cfm_mo_coeff)
    6285             : 
    6286             :             CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(1, ispin), &
    6287         136 :                               kpoints_Sigma%kp_env(ikp)%kpoint_env%wmat(2, ispin), ks_mat_ao_ao)
    6288             :             ASSOCIATE (wmat => kpoints_Sigma_no_xc%kp_env(ikp)%kpoint_env%wmat)
    6289         136 :             IF (ASSOCIATED(wmat(1, ispin)%matrix_struct)) THEN
    6290         136 :                CALL cp_fm_copy_general(wmat(1, ispin), fm_tmp_re, para_env)
    6291             :             ELSE
    6292           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_re, para_env)
    6293             :             END IF
    6294         272 :             IF (ASSOCIATED(wmat(2, ispin)%matrix_struct)) THEN
    6295         136 :                CALL cp_fm_copy_general(wmat(2, ispin), fm_tmp_im, para_env)
    6296             :             ELSE
    6297           0 :                CALL cp_fm_copy_general(fm_dummy, fm_tmp_im, para_env)
    6298             :             END IF
    6299             :             END ASSOCIATE
    6300             : 
    6301         136 :             CALL cp_fm_to_cfm(fm_tmp_re, fm_tmp_im, vxc_ao_ao)
    6302             : 
    6303         136 :             CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, vxc_ao_ao, cfm_mo_coeff, z_zero, vxc_ao_mo)
    6304         136 :             CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, vxc_ao_mo, z_zero, vxc_mo_mo)
    6305             : 
    6306         136 :             CALL cp_cfm_to_fm(vxc_mo_mo, fm_Sigma_x_minus_vxc_mo_mo)
    6307             : 
    6308         136 :             CALL cp_fm_get_diag(fm_Sigma_x_minus_vxc_mo_mo, diag_Sigma_x_minus_vxc_mo_mo)
    6309             : 
    6310        3016 :             qs_env%mp2_env%ri_g0w0%vec_Sigma_x_minus_vxc_gw(:, ispin, ikp) = diag_Sigma_x_minus_vxc_mo_mo(:)
    6311             : 
    6312             :          END DO
    6313             : 
    6314             :       END DO
    6315             : 
    6316          16 :       CALL cp_cfm_release(ks_mat_ao_ao)
    6317          16 :       CALL cp_cfm_release(ks_mat_no_xc_ao_ao)
    6318          16 :       CALL cp_cfm_release(vxc_ao_ao)
    6319          16 :       CALL cp_cfm_release(vxc_ao_mo)
    6320          16 :       CALL cp_cfm_release(vxc_mo_mo)
    6321          16 :       CALL cp_cfm_release(cfm_mo_coeff)
    6322          16 :       CALL cp_fm_release(fm_Sigma_x_minus_vxc_mo_mo)
    6323          16 :       CALL cp_fm_release(fm_tmp_re)
    6324          16 :       CALL cp_fm_release(fm_tmp_im)
    6325             : 
    6326          16 :       DEALLOCATE (diag_Sigma_x_minus_vxc_mo_mo)
    6327             : 
    6328          16 :       CALL timestop(handle)
    6329             : 
    6330          32 :    END SUBROUTINE compute_minus_vxc_kpoints
    6331             : 
    6332             : ! **************************************************************************************************
    6333             : !> \brief ...
    6334             : !> \param qs_env ...
    6335             : !> \param mat_self_energy_ao_ao ...
    6336             : !> \param vec_Sigma ...
    6337             : !> \param homo ...
    6338             : !> \param gw_corr_lev_occ ...
    6339             : !> \param gw_corr_lev_virt ...
    6340             : !> \param ispin ...
    6341             : ! **************************************************************************************************
    6342         230 :    SUBROUTINE trafo_to_mo_and_kpoints(qs_env, mat_self_energy_ao_ao, vec_Sigma, &
    6343             :                                       homo, gw_corr_lev_occ, gw_corr_lev_virt, ispin)
    6344             :       TYPE(qs_environment_type), POINTER                 :: qs_env
    6345             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6346             :       REAL(KIND=dp), DIMENSION(:, :)                     :: vec_Sigma
    6347             :       INTEGER                                            :: homo, gw_corr_lev_occ, gw_corr_lev_virt, &
    6348             :                                                             ispin
    6349             : 
    6350             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'trafo_to_mo_and_kpoints'
    6351             : 
    6352             :       INTEGER                                            :: handle, ikp, nkp_self_energy, nmo, &
    6353             :                                                             periodic(3), size_real_space
    6354             :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:)           :: diag_self_energy
    6355             :       TYPE(cell_type), POINTER                           :: cell
    6356             :       TYPE(cp_cfm_type)                                  :: cfm_mo_coeff, cfm_self_energy_ao_ao, &
    6357             :                                                             cfm_self_energy_ao_mo, &
    6358             :                                                             cfm_self_energy_mo_mo
    6359             :       TYPE(cp_fm_struct_type), POINTER                   :: matrix_struct
    6360             :       TYPE(cp_fm_type)                                   :: fm_self_energy_mo_mo
    6361         230 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_self_energy_ao_ao_kp_im, &
    6362         230 :          mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_real_space
    6363             :       TYPE(kpoint_type), POINTER                         :: kpoints_Sigma
    6364             :       TYPE(mp_para_env_type), POINTER                    :: para_env
    6365             : 
    6366         230 :       CALL timeset(routineN, handle)
    6367             : 
    6368         230 :       CALL get_qs_env(qs_env, cell=cell, para_env=para_env)
    6369         230 :       CALL get_cell(cell=cell, periodic=periodic)
    6370             : 
    6371         230 :       size_real_space = 3**(periodic(1) + periodic(2) + periodic(3))
    6372             : 
    6373         230 :       CALL alloc_mat_set(mat_self_energy_ao_ao_real_space, size_real_space, mat_self_energy_ao_ao)
    6374             : 
    6375         230 :       CALL dbcsr_copy(mat_self_energy_ao_ao_real_space(1)%matrix, mat_self_energy_ao_ao)
    6376             : 
    6377         230 :       kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
    6378             : 
    6379         230 :       CALL get_mat_cell_T_from_mat_gamma(mat_self_energy_ao_ao_real_space, qs_env, kpoints_Sigma, 0, 0)
    6380             : 
    6381         230 :       nkp_self_energy = kpoints_Sigma%nkp
    6382             : 
    6383         230 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_re, nkp_self_energy, mat_self_energy_ao_ao)
    6384         230 :       CALL alloc_mat_set(mat_self_energy_ao_ao_kp_im, nkp_self_energy, mat_self_energy_ao_ao)
    6385             : 
    6386             :       CALL real_space_to_kpoint_transform_rpa(mat_self_energy_ao_ao_kp_re, mat_self_energy_ao_ao_kp_im, &
    6387         230 :                                               mat_self_energy_ao_ao_real_space, kpoints_Sigma, 1.0E-50_dp)
    6388             : 
    6389         230 :       CALL dbcsr_get_info(mat_self_energy_ao_ao, nfullrows_total=nmo)
    6390         690 :       ALLOCATE (diag_self_energy(nmo))
    6391             : 
    6392         230 :       matrix_struct => kpoints_Sigma%kp_env(1)%kpoint_env%mos(1, 1)%mo_coeff%matrix_struct
    6393             : 
    6394         230 :       CALL cp_cfm_create(cfm_self_energy_ao_ao, matrix_struct)
    6395         230 :       CALL cp_cfm_create(cfm_self_energy_ao_mo, matrix_struct)
    6396         230 :       CALL cp_cfm_create(cfm_self_energy_mo_mo, matrix_struct)
    6397         230 :       CALL cp_cfm_set_all(cfm_self_energy_ao_ao, z_zero)
    6398         230 :       CALL cp_cfm_set_all(cfm_self_energy_ao_mo, z_zero)
    6399         230 :       CALL cp_cfm_set_all(cfm_self_energy_mo_mo, z_zero)
    6400             : 
    6401         230 :       CALL cp_fm_create(fm_self_energy_mo_mo, matrix_struct)
    6402         230 :       CALL cp_cfm_create(cfm_mo_coeff, matrix_struct)
    6403             : 
    6404        1966 :       DO ikp = 1, nkp_self_energy
    6405             : 
    6406             :          CALL dbcsr_to_cfm(mat_self_energy_ao_ao_kp_re(ikp)%matrix, &
    6407        1736 :                            mat_self_energy_ao_ao_kp_im(ikp)%matrix, cfm_self_energy_ao_ao)
    6408             : 
    6409             :          CALL cp_fm_to_cfm(kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, ispin)%mo_coeff, &
    6410        1736 :                            kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(2, ispin)%mo_coeff, cfm_mo_coeff)
    6411             : 
    6412             :          CALL parallel_gemm('N', 'N', nmo, nmo, nmo, z_one, cfm_self_energy_ao_ao, cfm_mo_coeff, &
    6413        1736 :                             z_zero, cfm_self_energy_ao_mo)
    6414             : 
    6415             :          CALL parallel_gemm('C', 'N', nmo, nmo, nmo, z_one, cfm_mo_coeff, cfm_self_energy_ao_mo, &
    6416        1736 :                             z_zero, cfm_self_energy_mo_mo)
    6417             : 
    6418        1736 :          CALL cp_cfm_to_fm(cfm_self_energy_mo_mo, fm_self_energy_mo_mo)
    6419             : 
    6420        1736 :          CALL cp_fm_get_diag(fm_self_energy_mo_mo, diag_self_energy)
    6421             : 
    6422        5438 :          vec_Sigma(:, ikp) = diag_self_energy(homo - gw_corr_lev_occ + 1:homo + gw_corr_lev_virt)
    6423             : 
    6424             :       END DO
    6425             : 
    6426         230 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_real_space)
    6427         230 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_re)
    6428         230 :       CALL dbcsr_deallocate_matrix_set(mat_self_energy_ao_ao_kp_im)
    6429             : 
    6430         230 :       CALL cp_cfm_release(cfm_self_energy_ao_ao)
    6431         230 :       CALL cp_cfm_release(cfm_self_energy_ao_mo)
    6432         230 :       CALL cp_cfm_release(cfm_self_energy_mo_mo)
    6433         230 :       CALL cp_cfm_release(cfm_mo_coeff)
    6434         230 :       CALL cp_fm_release(fm_self_energy_mo_mo)
    6435             : 
    6436         230 :       DEALLOCATE (diag_self_energy)
    6437             : 
    6438         230 :       CALL timestop(handle)
    6439             : 
    6440         920 :    END SUBROUTINE trafo_to_mo_and_kpoints
    6441             : 
    6442             : ! **************************************************************************************************
    6443             : !> \brief ...
    6444             : !> \param dbcsr_re ...
    6445             : !> \param dbcsr_im ...
    6446             : !> \param cfm_mat ...
    6447             : ! **************************************************************************************************
    6448        5208 :    SUBROUTINE dbcsr_to_cfm(dbcsr_re, dbcsr_im, cfm_mat)
    6449             : 
    6450             :       TYPE(dbcsr_type), POINTER                          :: dbcsr_re, dbcsr_im
    6451             :       TYPE(cp_cfm_type), INTENT(IN)                      :: cfm_mat
    6452             : 
    6453             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'dbcsr_to_cfm'
    6454             : 
    6455             :       INTEGER                                            :: handle
    6456             :       TYPE(cp_fm_type)                                   :: fm_mat_im, fm_mat_re
    6457             : 
    6458        1736 :       CALL timeset(routineN, handle)
    6459             : 
    6460        1736 :       CALL cp_fm_create(fm_mat_re, cfm_mat%matrix_struct)
    6461        1736 :       CALL cp_fm_create(fm_mat_im, cfm_mat%matrix_struct)
    6462        1736 :       CALL cp_fm_set_all(fm_mat_re, 0.0_dp)
    6463        1736 :       CALL cp_fm_set_all(fm_mat_im, 0.0_dp)
    6464             : 
    6465        1736 :       CALL copy_dbcsr_to_fm(dbcsr_re, fm_mat_re)
    6466        1736 :       CALL copy_dbcsr_to_fm(dbcsr_im, fm_mat_im)
    6467             : 
    6468        1736 :       CALL cp_fm_to_cfm(fm_mat_re, fm_mat_im, cfm_mat)
    6469             : 
    6470        1736 :       CALL cp_fm_release(fm_mat_re)
    6471        1736 :       CALL cp_fm_release(fm_mat_im)
    6472             : 
    6473        1736 :       CALL timestop(handle)
    6474             : 
    6475        1736 :    END SUBROUTINE dbcsr_to_cfm
    6476             : 
    6477             : ! **************************************************************************************************
    6478             : !> \brief ...
    6479             : !> \param mat_set ...
    6480             : !> \param mat_size ...
    6481             : !> \param template ...
    6482             : !> \param explicitly_no_symmetry ...
    6483             : ! **************************************************************************************************
    6484         690 :    SUBROUTINE alloc_mat_set(mat_set, mat_size, template, explicitly_no_symmetry)
    6485             :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: mat_set
    6486             :       INTEGER, INTENT(IN)                                :: mat_size
    6487             :       TYPE(dbcsr_type), TARGET                           :: template
    6488             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6489             : 
    6490             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set'
    6491             : 
    6492             :       INTEGER                                            :: handle, i_size
    6493             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6494             : 
    6495         690 :       CALL timeset(routineN, handle)
    6496             : 
    6497         690 :       my_explicitly_no_symmetry = .FALSE.
    6498         690 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6499             : 
    6500         690 :       NULLIFY (mat_set)
    6501         690 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size)
    6502        6232 :       DO i_size = 1, mat_size
    6503        5542 :          ALLOCATE (mat_set(i_size)%matrix)
    6504        5542 :          IF (my_explicitly_no_symmetry) THEN
    6505             :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template, &
    6506           0 :                               matrix_type=dbcsr_type_no_symmetry)
    6507             :          ELSE
    6508        5542 :             CALL dbcsr_create(matrix=mat_set(i_size)%matrix, template=template)
    6509             :          END IF
    6510        5542 :          CALL dbcsr_copy(mat_set(i_size)%matrix, template)
    6511        6232 :          CALL dbcsr_set(mat_set(i_size)%matrix, 0.0_dp)
    6512             :       END DO
    6513             : 
    6514         690 :       CALL timestop(handle)
    6515             : 
    6516         690 :    END SUBROUTINE alloc_mat_set
    6517             : 
    6518             : ! **************************************************************************************************
    6519             : !> \brief ...
    6520             : !> \param mat_set ...
    6521             : !> \param mat_size_1 ...
    6522             : !> \param mat_size_2 ...
    6523             : !> \param template ...
    6524             : !> \param explicitly_no_symmetry ...
    6525             : ! **************************************************************************************************
    6526           4 :    SUBROUTINE alloc_mat_set_2d(mat_set, mat_size_1, mat_size_2, template, explicitly_no_symmetry)
    6527             :       TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER       :: mat_set
    6528             :       INTEGER, INTENT(IN)                                :: mat_size_1, mat_size_2
    6529             :       TYPE(dbcsr_type), TARGET                           :: template
    6530             :       LOGICAL, OPTIONAL                                  :: explicitly_no_symmetry
    6531             : 
    6532             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'alloc_mat_set_2d'
    6533             : 
    6534             :       INTEGER                                            :: handle, i_size, j_size
    6535             :       LOGICAL                                            :: my_explicitly_no_symmetry
    6536             : 
    6537           4 :       CALL timeset(routineN, handle)
    6538             : 
    6539           4 :       my_explicitly_no_symmetry = .FALSE.
    6540           4 :       IF (PRESENT(explicitly_no_symmetry)) my_explicitly_no_symmetry = explicitly_no_symmetry
    6541             : 
    6542           4 :       NULLIFY (mat_set)
    6543           4 :       CALL dbcsr_allocate_matrix_set(mat_set, mat_size_1, mat_size_2)
    6544          16 :       DO i_size = 1, mat_size_1
    6545         124 :          DO j_size = 1, mat_size_2
    6546         108 :             ALLOCATE (mat_set(i_size, j_size)%matrix)
    6547         108 :             IF (my_explicitly_no_symmetry) THEN
    6548             :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template, &
    6549         108 :                                  matrix_type=dbcsr_type_no_symmetry)
    6550             :             ELSE
    6551           0 :                CALL dbcsr_create(matrix=mat_set(i_size, j_size)%matrix, template=template)
    6552             :             END IF
    6553         108 :             CALL dbcsr_copy(mat_set(i_size, j_size)%matrix, template)
    6554         120 :             CALL dbcsr_set(mat_set(i_size, j_size)%matrix, 0.0_dp)
    6555             :          END DO
    6556             :       END DO
    6557             : 
    6558           4 :       CALL timestop(handle)
    6559             : 
    6560           4 :    END SUBROUTINE alloc_mat_set_2d
    6561             : 
    6562             : ! **************************************************************************************************
    6563             : !> \brief ...
    6564             : !> \param t_3c_O_all ...
    6565             : !> \param t_greens_fct ...
    6566             : !> \param t_3c_O_W ...
    6567             : !> \param mat_self_energy_ao_ao ...
    6568             : !> \param bounds_ao_ao_j ...
    6569             : !> \param bounds_RI_i ...
    6570             : !> \param unit_nr ...
    6571             : !> \param eps_filter ...
    6572             : !> \param do_occ ...
    6573             : !> \param do_virt ...
    6574             : ! **************************************************************************************************
    6575        3176 :    SUBROUTINE contract_to_self_energy(t_3c_O_all, t_greens_fct, t_3c_O_W, &
    6576             :                                       mat_self_energy_ao_ao, bounds_ao_ao_j, bounds_RI_i, &
    6577             :                                       unit_nr, eps_filter, do_occ, do_virt)
    6578             : 
    6579             :       TYPE(dbt_type)                                     :: t_3c_O_all, t_greens_fct, t_3c_O_W
    6580             :       TYPE(dbcsr_type), TARGET                           :: mat_self_energy_ao_ao
    6581             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_ao_j
    6582             :       INTEGER, DIMENSION(2, 1)                           :: bounds_RI_i
    6583             :       INTEGER                                            :: unit_nr
    6584             :       REAL(KIND=dp)                                      :: eps_filter
    6585             :       LOGICAL                                            :: do_occ, do_virt
    6586             : 
    6587             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'contract_to_self_energy'
    6588             : 
    6589             :       INTEGER                                            :: handle
    6590             :       INTEGER, DIMENSION(2, 1)                           :: bounds_ao_j
    6591             :       INTEGER, DIMENSION(2, 2)                           :: bounds_ao_all_RI_i, bounds_RI_i_ao_j
    6592             :       REAL(KIND=dp)                                      :: sign_self_energy
    6593       79400 :       TYPE(dbt_type)                                     :: t_3c_O_G, t_3c_O_G_tmp, t_self_energy, &
    6594       28584 :                                                             t_self_energy_tmp
    6595             : 
    6596        3176 :       CALL timeset(routineN, handle)
    6597             : 
    6598        3176 :       CPASSERT(do_occ .EQV. (.NOT. do_virt))
    6599             : 
    6600        3176 :       CALL dbt_create(t_3c_O_all, t_3c_O_G, name="M occ (RI AO | AO)")
    6601        3176 :       CALL dbt_create(t_3c_O_all, t_3c_O_G_tmp, name="M occ (RI AO | AO)")
    6602        3176 :       CALL dbt_create(t_greens_fct, t_self_energy, name="(AO|AO)")
    6603        3176 :       CALL dbt_create(mat_self_energy_ao_ao, t_self_energy_tmp)
    6604             : 
    6605        9528 :       bounds_ao_j(:, 1) = bounds_ao_ao_j(:, 1)
    6606        9528 :       bounds_ao_all_RI_i(:, 1) = bounds_RI_i(:, 1)
    6607        9528 :       bounds_ao_all_RI_i(:, 2) = bounds_ao_ao_j(:, 2)
    6608             : 
    6609             :       CALL dbt_contract(1.0_dp, t_greens_fct, t_3c_O_all, 0.0_dp, &
    6610             :                         t_3c_O_G_tmp, &
    6611             :                         contract_1=[2], notcontract_1=[1], &
    6612             :                         contract_2=[3], notcontract_2=[1, 2], &
    6613             :                         map_1=[3], map_2=[1, 2], &
    6614             :                         bounds_2=bounds_ao_j, &
    6615             :                         bounds_3=bounds_ao_all_RI_i, &
    6616             :                         filter_eps=eps_filter, &
    6617        3176 :                         unit_nr=unit_nr)
    6618             : 
    6619        3176 :       CALL dbt_copy(t_3c_O_G_tmp, t_3c_O_G, order=[1, 3, 2], move_data=.TRUE.)
    6620             : 
    6621        3176 :       IF (do_occ) sign_self_energy = -1.0_dp
    6622        3176 :       IF (do_virt) sign_self_energy = 1.0_dp
    6623             : 
    6624        9528 :       bounds_RI_i_ao_j(:, 1) = bounds_RI_i(:, 1)
    6625        9528 :       bounds_RI_i_ao_j(:, 2) = bounds_ao_ao_j(:, 1)
    6626             : 
    6627             :       CALL dbt_contract(sign_self_energy, t_3c_O_W, t_3c_O_G, 0.0_dp, &
    6628             :                         t_self_energy, &
    6629             :                         contract_1=[1, 2], notcontract_1=[3], &
    6630             :                         contract_2=[1, 2], notcontract_2=[3], &
    6631             :                         map_1=[1], map_2=[2], &
    6632             :                         bounds_1=bounds_RI_i_ao_j, &
    6633             :                         filter_eps=eps_filter, &
    6634        3176 :                         unit_nr=unit_nr)
    6635             : 
    6636        3176 :       CALL dbt_copy(t_self_energy, t_self_energy_tmp)
    6637        3176 :       CALL dbt_clear(t_self_energy)
    6638             : 
    6639        3176 :       CALL dbt_copy_tensor_to_matrix(t_self_energy_tmp, mat_self_energy_ao_ao, summation=.TRUE.)
    6640             : 
    6641        3176 :       CALL dbt_destroy(t_3c_O_G)
    6642        3176 :       CALL dbt_destroy(t_3c_O_G_tmp)
    6643        3176 :       CALL dbt_destroy(t_self_energy)
    6644        3176 :       CALL dbt_destroy(t_self_energy_tmp)
    6645             : 
    6646        3176 :       CALL timestop(handle)
    6647             : 
    6648        3176 :    END SUBROUTINE contract_to_self_energy
    6649             : 
    6650             : ! **************************************************************************************************
    6651             : !> \brief ...
    6652             : !> \param t_3c_overl_int_gw_AO ...
    6653             : !> \param t_3c_overl_int_gw_RI ...
    6654             : !> \param t_AO ...
    6655             : !> \param t_RI ...
    6656             : !> \param prefac ...
    6657             : !> \param mo_bounds ...
    6658             : !> \param unit_nr ...
    6659             : !> \param t_3c_ctr_RI ...
    6660             : !> \param t_3c_ctr_AO ...
    6661             : !> \param calculate_ctr_RI ...
    6662             : ! **************************************************************************************************
    6663        1898 :    SUBROUTINE contract_cubic_gw(t_3c_overl_int_gw_AO, t_3c_overl_int_gw_RI, &
    6664             :                                 t_AO, t_RI, prefac, &
    6665             :                                 mo_bounds, unit_nr, &
    6666             :                                 t_3c_ctr_RI, t_3c_ctr_AO, calculate_ctr_RI)
    6667             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_overl_int_gw_AO, &
    6668             :                                                             t_3c_overl_int_gw_RI, t_AO, t_RI
    6669             :       REAL(dp), DIMENSION(2), INTENT(IN)                 :: prefac
    6670             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6671             :       INTEGER, INTENT(IN)                                :: unit_nr
    6672             :       TYPE(dbt_type), INTENT(INOUT)                      :: t_3c_ctr_RI, t_3c_ctr_AO
    6673             :       LOGICAL, INTENT(IN)                                :: calculate_ctr_RI
    6674             : 
    6675             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'contract_cubic_gw'
    6676             : 
    6677             :       INTEGER                                            :: handle
    6678             :       INTEGER, DIMENSION(2, 2)                           :: ctr_bounds_mo
    6679             :       INTEGER, DIMENSION(3)                              :: bounds_3c
    6680             : 
    6681        1898 :       CALL timeset(routineN, handle)
    6682             : 
    6683        1898 :       IF (calculate_ctr_RI) THEN
    6684         950 :          CALL dbt_get_info(t_3c_overl_int_gw_RI, nfull_total=bounds_3c)
    6685        2850 :          ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6686        2850 :          ctr_bounds_mo(:, 2) = mo_bounds
    6687             : 
    6688             :          CALL dbt_contract(prefac(1), t_RI, t_3c_overl_int_gw_RI, 0.0_dp, &
    6689             :                            t_3c_ctr_RI, &
    6690             :                            contract_1=[2], notcontract_1=[1], &
    6691             :                            contract_2=[1], notcontract_2=[2, 3], &
    6692             :                            map_1=[1], map_2=[2, 3], &
    6693             :                            bounds_3=ctr_bounds_mo, &
    6694         950 :                            unit_nr=unit_nr)
    6695             : 
    6696             :       END IF
    6697             : 
    6698        1898 :       CALL dbt_get_info(t_3c_overl_int_gw_AO, nfull_total=bounds_3c)
    6699        5694 :       ctr_bounds_mo(:, 1) = [1, bounds_3c(2)]
    6700        5694 :       ctr_bounds_mo(:, 2) = mo_bounds
    6701             : 
    6702             :       CALL dbt_contract(prefac(2), t_AO, t_3c_overl_int_gw_AO, 0.0_dp, &
    6703             :                         t_3c_ctr_AO, &
    6704             :                         contract_1=[2], notcontract_1=[1], &
    6705             :                         contract_2=[1], notcontract_2=[2, 3], &
    6706             :                         map_1=[1], map_2=[2, 3], &
    6707             :                         bounds_3=ctr_bounds_mo, &
    6708        1898 :                         unit_nr=unit_nr)
    6709             : 
    6710        1898 :       CALL timestop(handle)
    6711             : 
    6712        1898 :    END SUBROUTINE
    6713             : 
    6714             : ! **************************************************************************************************
    6715             : !> \brief ...
    6716             : !> \param t3c_1 ...
    6717             : !> \param t3c_2 ...
    6718             : !> \param vec_sigma ...
    6719             : !> \param mo_offset ...
    6720             : !> \param mo_bounds ...
    6721             : !> \param para_env ...
    6722             : ! **************************************************************************************************
    6723        1898 :    SUBROUTINE trace_sigma_gw(t3c_1, t3c_2, vec_sigma, mo_offset, mo_bounds, para_env)
    6724             :       TYPE(dbt_type), INTENT(INOUT)                      :: t3c_1, t3c_2
    6725             :       REAL(KIND=dp), DIMENSION(:), INTENT(INOUT)         :: vec_Sigma
    6726             :       INTEGER, INTENT(IN)                                :: mo_offset
    6727             :       INTEGER, DIMENSION(2), INTENT(IN)                  :: mo_bounds
    6728             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6729             : 
    6730             :       CHARACTER(LEN=*), PARAMETER                        :: routineN = 'trace_sigma_gw'
    6731             : 
    6732             :       INTEGER                                            :: handle, n, n_end, n_end_block, n_start, &
    6733             :                                                             n_start_block
    6734             :       INTEGER, DIMENSION(1)                              :: trace_shape
    6735             :       INTEGER, DIMENSION(2)                              :: mo_bounds_off
    6736             :       INTEGER, DIMENSION(3)                              :: boff, bsize, ind
    6737             :       LOGICAL                                            :: found
    6738        1898 :       REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :)     :: block_1, block_2
    6739             :       REAL(KIND=dp), &
    6740        3796 :          DIMENSION(mo_bounds(2)-mo_bounds(1)+1)          :: vec_Sigma_prv
    6741             :       TYPE(dbt_iterator_type)                            :: iter
    6742       17082 :       TYPE(dbt_type)                                     :: t3c_1_redist
    6743             : 
    6744        1898 :       CALL timeset(routineN, handle)
    6745             : 
    6746        1898 :       CALL dbt_create(t3c_2, t3c_1_redist)
    6747        1898 :       CALL dbt_copy(t3c_1, t3c_1_redist, order=[2, 1, 3], move_data=.TRUE.)
    6748             : 
    6749       24638 :       vec_Sigma_prv = 0.0_dp
    6750             : 
    6751             : !$OMP PARALLEL DEFAULT(NONE) REDUCTION(+:vec_Sigma_prv) &
    6752             : !$OMP SHARED(t3c_1_redist,t3c_2,mo_bounds) &
    6753             : !$OMP PRIVATE(iter,ind,bsize,boff,block_1,block_2,found) &
    6754        1898 : !$OMP PRIVATE(n_start_block,n_start,n_end_block,n_end,trace_shape)
    6755             :       CALL dbt_iterator_start(iter, t3c_1_redist)
    6756             :       DO WHILE (dbt_iterator_blocks_left(iter))
    6757             :          CALL dbt_iterator_next_block(iter, ind, blk_size=bsize, blk_offset=boff)
    6758             :          CALL dbt_get_block(t3c_1_redist, ind, block_1, found)
    6759             :          CPASSERT(found)
    6760             :          CALL dbt_get_block(t3c_2, ind, block_2, found)
    6761             :          IF (.NOT. found) CYCLE
    6762             : 
    6763             :          IF (boff(3) < mo_bounds(1)) THEN
    6764             :             n_start_block = mo_bounds(1) - boff(3) + 1
    6765             :             n_start = 1
    6766             :          ELSE
    6767             :             n_start_block = 1
    6768             :             n_start = boff(3) - mo_bounds(1) + 1
    6769             :          END IF
    6770             : 
    6771             :          IF (boff(3) + bsize(3) - 1 > mo_bounds(2)) THEN
    6772             :             n_end_block = mo_bounds(2) - boff(3) + 1
    6773             :             n_end = mo_bounds(2) - mo_bounds(1) + 1
    6774             :          ELSE
    6775             :             n_end_block = bsize(3)
    6776             :             n_end = boff(3) + bsize(3) - mo_bounds(1)
    6777             :          END IF
    6778             : 
    6779             :          trace_shape(1) = SIZE(block_1, 1)*SIZE(block_1, 2)
    6780             :          vec_Sigma_prv(n_start:n_end) = &
    6781             :             vec_Sigma_prv(n_start:n_end) + &
    6782             :             (/(DOT_PRODUCT(RESHAPE(block_1(:, :, n), trace_shape), &
    6783             :                            RESHAPE(block_2(:, :, n), trace_shape)), &
    6784             :                n=n_start_block, n_end_block)/)
    6785             :          DEALLOCATE (block_1, block_2)
    6786             :       END DO
    6787             :       CALL dbt_iterator_stop(iter)
    6788             : !$OMP END PARALLEL
    6789             : 
    6790        1898 :       CALL dbt_destroy(t3c_1_redist)
    6791             : 
    6792        1898 :       CALL para_env%sum(vec_Sigma_prv)
    6793             : 
    6794        5694 :       mo_bounds_off = mo_bounds - mo_offset + 1
    6795             :       vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) = &
    6796       24638 :          vec_Sigma(mo_bounds_off(1):mo_bounds_off(2)) + vec_Sigma_prv
    6797             : 
    6798        1898 :       CALL timestop(handle)
    6799        3796 :    END SUBROUTINE
    6800             : 
    6801             : ! **************************************************************************************************
    6802             : !> \brief ...
    6803             : !> \param mat_greens_fct_occ ...
    6804             : !> \param mat_greens_fct_virt ...
    6805             : !> \param fm_mo_coeff_occ ...
    6806             : !> \param fm_mo_coeff_virt ...
    6807             : !> \param fm_mo_coeff_occ_scaled ...
    6808             : !> \param fm_mo_coeff_virt_scaled ...
    6809             : !> \param fm_scaled_dm_occ_tau ...
    6810             : !> \param fm_scaled_dm_virt_tau ...
    6811             : !> \param Eigenval ...
    6812             : !> \param nmo ...
    6813             : !> \param eps_filter ...
    6814             : !> \param e_fermi ...
    6815             : !> \param tau ...
    6816             : !> \param para_env ...
    6817             : ! **************************************************************************************************
    6818        2844 :    SUBROUTINE compute_Greens_function_time(mat_greens_fct_occ, mat_greens_fct_virt, fm_mo_coeff_occ, fm_mo_coeff_virt, &
    6819             :                                            fm_mo_coeff_occ_scaled, fm_mo_coeff_virt_scaled, &
    6820         948 :                                            fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau, Eigenval, nmo, &
    6821             :                                            eps_filter, e_fermi, tau, para_env)
    6822             : 
    6823             :       TYPE(dbcsr_type), INTENT(INOUT)                    :: mat_greens_fct_occ, mat_greens_fct_virt
    6824             :       TYPE(cp_fm_type), INTENT(IN) :: fm_mo_coeff_occ, fm_mo_coeff_virt, fm_mo_coeff_occ_scaled, &
    6825             :          fm_mo_coeff_virt_scaled, fm_scaled_dm_occ_tau, fm_scaled_dm_virt_tau
    6826             :       REAL(KIND=dp), DIMENSION(:), INTENT(IN)            :: Eigenval
    6827             :       INTEGER, INTENT(IN)                                :: nmo
    6828             :       REAL(KIND=dp), INTENT(IN)                          :: eps_filter, e_fermi, tau
    6829             :       TYPE(mp_para_env_type), INTENT(IN)                 :: para_env
    6830             : 
    6831             :       CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Greens_function_time'
    6832             : 
    6833             :       INTEGER                                            :: handle, i_global, iiB, jjB, ncol_local, &
    6834             :                                                             nrow_local
    6835         948 :       INTEGER, DIMENSION(:), POINTER                     :: col_indices, row_indices
    6836             :       REAL(KIND=dp)                                      :: stabilize_exp
    6837             : 
    6838         948 :       CALL timeset(routineN, handle)
    6839             : 
    6840         948 :       CALL para_env%sync()
    6841             : 
    6842             :       ! get info of fm_mo_coeff_occ
    6843             :       CALL cp_fm_get_info(matrix=fm_mo_coeff_occ, &
    6844             :                           nrow_local=nrow_local, &
    6845             :                           ncol_local=ncol_local, &
    6846             :                           row_indices=row_indices, &
    6847         948 :                           col_indices=col_indices)
    6848             : 
    6849             :       ! Multiply the occupied and the virtual MO coefficients with the factor exp((-e_i-e_F)*tau/2).
    6850             :       ! Then, we simply get the sum over all occ states and virt. states by a simple matrix-matrix
    6851             :       ! multiplication.
    6852             : 
    6853         948 :       stabilize_exp = 70.0_dp
    6854             : 
    6855             :       ! first, the occ
    6856       13060 :       DO jjB = 1, nrow_local
    6857      392516 :          DO iiB = 1, ncol_local
    6858      379456 :             i_global = col_indices(iiB)
    6859             : 
    6860      391568 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6861             :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = &
    6862      281084 :                   fm_mo_coeff_occ%local_data(jjB, iiB)*EXP(tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6863             :             ELSE
    6864       98372 :                fm_mo_coeff_occ_scaled%local_data(jjB, iiB) = 0.0_dp
    6865             :             END IF
    6866             : 
    6867             :          END DO
    6868             :       END DO
    6869             : 
    6870             :       ! the same for virt
    6871       13060 :       DO jjB = 1, nrow_local
    6872      392516 :          DO iiB = 1, ncol_local
    6873      379456 :             i_global = col_indices(iiB)
    6874             : 
    6875      391568 :             IF (ABS(tau*0.5_dp*(Eigenval(i_global) - e_fermi)) < stabilize_exp) THEN
    6876             :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = &
    6877      281084 :                   fm_mo_coeff_virt%local_data(jjB, iiB)*EXP(-tau*0.5_dp*(Eigenval(i_global) - e_fermi))
    6878             :             ELSE
    6879       98372 :                fm_mo_coeff_virt_scaled%local_data(jjB, iiB) = 0.0_dp
    6880             :             END IF
    6881             : 
    6882             :          END DO
    6883             :       END DO
    6884             : 
    6885         948 :       CALL para_env%sync()
    6886             : 
    6887             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6888             :                          matrix_a=fm_mo_coeff_occ_scaled, matrix_b=fm_mo_coeff_occ_scaled, beta=0.0_dp, &
    6889         948 :                          matrix_c=fm_scaled_dm_occ_tau)
    6890             : 
    6891             :       CALL parallel_gemm(transa="N", transb="T", m=nmo, n=nmo, k=nmo, alpha=1.0_dp, &
    6892             :                          matrix_a=fm_mo_coeff_virt_scaled, matrix_b=fm_mo_coeff_virt_scaled, beta=0.0_dp, &
    6893         948 :                          matrix_c=fm_scaled_dm_virt_tau)
    6894             : 
    6895         948 :       CALL dbcsr_set(mat_greens_fct_occ, 0.0_dp)
    6896             : 
    6897             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_occ_tau, &
    6898             :                             mat_greens_fct_occ, &
    6899         948 :                             keep_sparsity=.FALSE.)
    6900             : 
    6901         948 :       CALL dbcsr_filter(mat_greens_fct_occ, eps_filter)
    6902             : 
    6903         948 :       CALL dbcsr_set(mat_greens_fct_virt, 0.0_dp)
    6904             : 
    6905             :       CALL copy_fm_to_dbcsr(fm_scaled_dm_virt_tau, &
    6906             :                             mat_greens_fct_virt, &
    6907         948 :                             keep_sparsity=.FALSE.)
    6908             : 
    6909         948 :       CALL dbcsr_filter(mat_greens_fct_virt, eps_filter)
    6910             : 
    6911         948 :       CALL timestop(handle)
    6912             : 
    6913         948 :    END SUBROUTINE compute_Greens_function_time
    6914             : 
    6915             : END MODULE rpa_gw
    6916             : 

Generated by: LCOV version 1.15