Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Routines treating GW and RPA calculations with kpoints
10 : !> \par History
11 : !> since 2018 continuous development [J. Wilhelm]
12 : ! **************************************************************************************************
13 : MODULE rpa_gw_kpoints_util
14 : USE cell_types, ONLY: cell_type,&
15 : get_cell,&
16 : pbc
17 : USE cp_blacs_env, ONLY: cp_blacs_env_type
18 : USE cp_cfm_basic_linalg, ONLY: cp_cfm_column_scale,&
19 : cp_cfm_scale_and_add_fm,&
20 : cp_cfm_uplo_to_full
21 : USE cp_cfm_cholesky, ONLY: cp_cfm_cholesky_decompose,&
22 : cp_cfm_cholesky_invert
23 : USE cp_cfm_diag, ONLY: cp_cfm_geeig,&
24 : cp_cfm_geeig_canon,&
25 : cp_cfm_heevd
26 : USE cp_cfm_types, ONLY: cp_cfm_create,&
27 : cp_cfm_get_info,&
28 : cp_cfm_release,&
29 : cp_cfm_set_all,&
30 : cp_cfm_to_cfm,&
31 : cp_cfm_to_fm,&
32 : cp_cfm_type
33 : USE cp_control_types, ONLY: dft_control_type
34 : USE cp_dbcsr_api, ONLY: &
35 : dbcsr_copy, dbcsr_create, dbcsr_deallocate_matrix, dbcsr_desymmetrize, dbcsr_filter, &
36 : dbcsr_get_block_p, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
37 : dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, &
38 : dbcsr_release, dbcsr_set, dbcsr_transposed, dbcsr_type, dbcsr_type_no_symmetry
39 : USE cp_dbcsr_contrib, ONLY: dbcsr_reserve_all_blocks
40 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
41 : copy_fm_to_dbcsr,&
42 : dbcsr_allocate_matrix_set
43 : USE cp_fm_basic_linalg, ONLY: cp_fm_scale_and_add
44 : USE cp_fm_struct, ONLY: cp_fm_struct_type
45 : USE cp_fm_types, ONLY: cp_fm_copy_general,&
46 : cp_fm_create,&
47 : cp_fm_release,&
48 : cp_fm_set_all,&
49 : cp_fm_type
50 : USE hfx_types, ONLY: hfx_release
51 : USE input_constants, ONLY: cholesky_off,&
52 : kp_weights_W_auto,&
53 : kp_weights_W_tailored,&
54 : kp_weights_W_uniform
55 : USE kinds, ONLY: dp
56 : USE kpoint_methods, ONLY: kpoint_env_initialize,&
57 : kpoint_initialize_mo_set,&
58 : kpoint_initialize_mos
59 : USE kpoint_types, ONLY: get_kpoint_info,&
60 : kpoint_env_type,&
61 : kpoint_type
62 : USE machine, ONLY: m_walltime
63 : USE mathconstants, ONLY: gaussi,&
64 : twopi,&
65 : z_one,&
66 : z_zero
67 : USE mathlib, ONLY: invmat
68 : USE message_passing, ONLY: mp_para_env_type
69 : USE parallel_gemm_api, ONLY: parallel_gemm
70 : USE particle_types, ONLY: particle_type
71 : USE qs_band_structure, ONLY: calculate_kpoints_for_bs
72 : USE qs_environment_types, ONLY: get_qs_env,&
73 : qs_environment_type
74 : USE qs_mo_types, ONLY: get_mo_set
75 : USE qs_scf_types, ONLY: qs_scf_env_type
76 : USE rpa_gw_im_time_util, ONLY: compute_weight_re_im,&
77 : get_atom_index_from_basis_function_index
78 : USE rpa_im_time, ONLY: init_cell_index_rpa
79 : USE scf_control_types, ONLY: scf_control_type
80 : #include "./base/base_uses.f90"
81 :
82 : IMPLICIT NONE
83 :
84 : PRIVATE
85 :
86 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'rpa_gw_kpoints_util'
87 :
88 : PUBLIC :: invert_eps_compute_W_and_Erpa_kp, cp_cfm_power, real_space_to_kpoint_transform_rpa, &
89 : get_mat_cell_T_from_mat_gamma, get_bandstruc_and_k_dependent_MOs, &
90 : compute_wkp_W, mat_kp_from_mat_gamma
91 :
92 : CONTAINS
93 :
94 : ! **************************************************************************************************
95 : !> \brief ...
96 : !> \param dimen_RI ...
97 : !> \param num_integ_points ...
98 : !> \param jquad ...
99 : !> \param nkp ...
100 : !> \param count_ev_sc_GW ...
101 : !> \param para_env ...
102 : !> \param Erpa ...
103 : !> \param tau_tj ...
104 : !> \param tj ...
105 : !> \param wj ...
106 : !> \param weights_cos_tf_w_to_t ...
107 : !> \param wkp_W ...
108 : !> \param do_gw_im_time ...
109 : !> \param do_ri_Sigma_x ...
110 : !> \param do_kpoints_from_Gamma ...
111 : !> \param cfm_mat_Q ...
112 : !> \param ikp_local ...
113 : !> \param mat_P_omega ...
114 : !> \param mat_P_omega_kp ...
115 : !> \param qs_env ...
116 : !> \param eps_filter_im_time ...
117 : !> \param unit_nr ...
118 : !> \param kpoints ...
119 : !> \param fm_mat_Minv_L_kpoints ...
120 : !> \param fm_matrix_L_kpoints ...
121 : !> \param fm_mat_W ...
122 : !> \param fm_mat_RI_global_work ...
123 : !> \param mat_MinvVMinv ...
124 : !> \param fm_matrix_Minv ...
125 : !> \param fm_matrix_Minv_Vtrunc_Minv ...
126 : ! **************************************************************************************************
127 120 : SUBROUTINE invert_eps_compute_W_and_Erpa_kp(dimen_RI, num_integ_points, jquad, nkp, count_ev_sc_GW, para_env, &
128 120 : Erpa, tau_tj, tj, wj, weights_cos_tf_w_to_t, wkp_W, do_gw_im_time, &
129 : do_ri_Sigma_x, do_kpoints_from_Gamma, &
130 120 : cfm_mat_Q, ikp_local, mat_P_omega, mat_P_omega_kp, &
131 : qs_env, eps_filter_im_time, unit_nr, kpoints, fm_mat_Minv_L_kpoints, &
132 144 : fm_matrix_L_kpoints, fm_mat_W, &
133 : fm_mat_RI_global_work, mat_MinvVMinv, fm_matrix_Minv, &
134 : fm_matrix_Minv_Vtrunc_Minv)
135 :
136 : INTEGER, INTENT(IN) :: dimen_RI, num_integ_points, jquad, nkp, &
137 : count_ev_sc_GW
138 : TYPE(mp_para_env_type), POINTER :: para_env
139 : REAL(KIND=dp), INTENT(INOUT) :: Erpa
140 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: tau_tj, tj, wj
141 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
142 : INTENT(IN) :: weights_cos_tf_w_to_t
143 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: wkp_W
144 : LOGICAL, INTENT(IN) :: do_gw_im_time, do_ri_Sigma_x, &
145 : do_kpoints_from_Gamma
146 : TYPE(cp_cfm_type), INTENT(IN) :: cfm_mat_Q
147 : INTEGER, INTENT(IN) :: ikp_local
148 : TYPE(dbcsr_p_type), DIMENSION(:, :), INTENT(INOUT) :: mat_P_omega, mat_P_omega_kp
149 : TYPE(qs_environment_type), POINTER :: qs_env
150 : REAL(KIND=dp), INTENT(IN) :: eps_filter_im_time
151 : INTEGER, INTENT(IN) :: unit_nr
152 : TYPE(kpoint_type), POINTER :: kpoints
153 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_mat_Minv_L_kpoints, &
154 : fm_matrix_L_kpoints
155 : TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_mat_W
156 : TYPE(cp_fm_type) :: fm_mat_RI_global_work
157 : TYPE(dbcsr_p_type), INTENT(IN) :: mat_MinvVMinv
158 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_matrix_Minv, &
159 : fm_matrix_Minv_Vtrunc_Minv
160 :
161 : CHARACTER(LEN=*), PARAMETER :: routineN = 'invert_eps_compute_W_and_Erpa_kp'
162 :
163 : INTEGER :: handle, ikp
164 : LOGICAL :: do_this_ikp
165 : REAL(KIND=dp) :: t1, t2
166 120 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: trace_Qomega
167 :
168 120 : CALL timeset(routineN, handle)
169 :
170 120 : t1 = m_walltime()
171 :
172 120 : IF (do_kpoints_from_Gamma) THEN
173 96 : CALL get_mat_cell_T_from_mat_gamma(mat_P_omega(jquad, :), qs_env, kpoints, jquad, unit_nr)
174 : END IF
175 :
176 : CALL transform_P_from_real_space_to_kpoints(mat_P_omega, mat_P_omega_kp, &
177 120 : kpoints, eps_filter_im_time, jquad)
178 :
179 360 : ALLOCATE (trace_Qomega(dimen_RI))
180 :
181 120 : IF (unit_nr > 0) WRITE (unit_nr, '(/T3,A,1X,I3)') &
182 60 : 'GW_INFO| Computing chi and W frequency point', jquad
183 :
184 2664 : DO ikp = 1, nkp
185 :
186 : ! parallization, we either have all kpoints on all processors or a single kpoint per group
187 2544 : do_this_ikp = (ikp_local == -1) .OR. (ikp_local == 0 .AND. ikp == 1) .OR. (ikp_local == ikp)
188 : IF (.NOT. do_this_ikp) CYCLE
189 :
190 : ! 1. remove all spurious negative eigenvalues from P(iw,k), multiplication Q(iw,k) = K^H(k)P(iw,k)K(k)
191 : CALL compute_Q_kp_RPA(cfm_mat_Q, &
192 : mat_P_omega_kp, &
193 : fm_mat_Minv_L_kpoints(ikp, 1), &
194 : fm_mat_Minv_L_kpoints(ikp, 2), &
195 : fm_mat_RI_global_work, &
196 : dimen_RI, ikp, nkp, ikp_local, para_env, &
197 2544 : qs_env%mp2_env%ri_rpa_im_time%make_chi_pos_definite)
198 :
199 : ! 2. Cholesky decomposition of Id + Q(iw,k)
200 2544 : CALL cholesky_decomp_Q(cfm_mat_Q, para_env, trace_Qomega, dimen_RI)
201 :
202 : ! 3. Computing E_c^RPA = E_c^RPA + a_w/N_k*sum_k ln[det(1+Q(iw,k))-Tr(Q(iw,k))]
203 : CALL frequency_and_kpoint_integration(Erpa, cfm_mat_Q, para_env, trace_Qomega, &
204 2544 : dimen_RI, wj(jquad), kpoints%wkp(ikp))
205 :
206 2664 : IF (do_gw_im_time) THEN
207 :
208 : ! compute S^-1*V*S^-1 for exchange part of the self-energy in real space as W in real space
209 2496 : IF (do_ri_Sigma_x .AND. jquad == 1 .AND. count_ev_sc_GW == 1 .AND. do_kpoints_from_Gamma) THEN
210 :
211 312 : CALL dbcsr_set(mat_MinvVMinv%matrix, 0.0_dp)
212 312 : CALL copy_fm_to_dbcsr(fm_matrix_Minv_Vtrunc_Minv(1, 1), mat_MinvVMinv%matrix, keep_sparsity=.FALSE.)
213 :
214 : END IF
215 2496 : IF (do_kpoints_from_Gamma) THEN
216 : CALL compute_Wc_real_space_tau_GW(fm_mat_W, cfm_mat_Q, &
217 : fm_matrix_L_kpoints(ikp, 1), &
218 : fm_matrix_L_kpoints(ikp, 2), &
219 : dimen_RI, num_integ_points, jquad, &
220 : ikp, tj, tau_tj, weights_cos_tf_w_to_t, &
221 2496 : ikp_local, para_env, kpoints, qs_env, wkp_W)
222 : END IF
223 :
224 : END IF
225 : END DO
226 :
227 : ! after the transform of (eps(iw)-1)^-1 from iw to it is done, multiply with V^1/2 to obtain W(it)
228 120 : IF (do_gw_im_time .AND. do_kpoints_from_Gamma .AND. jquad == num_integ_points) THEN
229 16 : CALL Wc_to_Minv_Wc_Minv(fm_mat_W, fm_matrix_Minv, para_env, dimen_RI, num_integ_points)
230 16 : CALL deallocate_kp_matrices(fm_matrix_L_kpoints, fm_mat_Minv_L_kpoints)
231 : END IF
232 :
233 120 : DEALLOCATE (trace_Qomega)
234 :
235 120 : t2 = m_walltime()
236 :
237 120 : IF (unit_nr > 0) WRITE (unit_nr, '(T6,A,T56,F25.1)') 'Execution time (s):', t2 - t1
238 :
239 120 : CALL timestop(handle)
240 :
241 120 : END SUBROUTINE invert_eps_compute_W_and_Erpa_kp
242 :
243 : ! **************************************************************************************************
244 : !> \brief ...
245 : !> \param fm_matrix_L_kpoints ...
246 : !> \param fm_mat_Minv_L_kpoints ...
247 : ! **************************************************************************************************
248 16 : SUBROUTINE deallocate_kp_matrices(fm_matrix_L_kpoints, fm_mat_Minv_L_kpoints)
249 :
250 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:, :) :: fm_matrix_L_kpoints, &
251 : fm_mat_Minv_L_kpoints
252 :
253 : CHARACTER(LEN=*), PARAMETER :: routineN = 'deallocate_kp_matrices'
254 :
255 : INTEGER :: handle
256 :
257 16 : CALL timeset(routineN, handle)
258 :
259 16 : CALL cp_fm_release(fm_mat_Minv_L_kpoints)
260 16 : CALL cp_fm_release(fm_matrix_L_kpoints)
261 :
262 16 : CALL timestop(handle)
263 :
264 16 : END SUBROUTINE deallocate_kp_matrices
265 :
266 : ! **************************************************************************************************
267 : !> \brief ...
268 : !> \param matrix ...
269 : !> \param threshold ...
270 : !> \param exponent ...
271 : !> \param min_eigval ...
272 : ! **************************************************************************************************
273 4892 : SUBROUTINE cp_cfm_power(matrix, threshold, exponent, min_eigval)
274 : TYPE(cp_cfm_type), INTENT(INOUT) :: matrix
275 : REAL(KIND=dp) :: threshold, exponent
276 : REAL(KIND=dp), OPTIONAL :: min_eigval
277 :
278 : CHARACTER(LEN=*), PARAMETER :: routineN = 'cp_cfm_power'
279 : COMPLEX(KIND=dp), PARAMETER :: czero = CMPLX(0.0_dp, 0.0_dp, KIND=dp)
280 :
281 : COMPLEX(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues_exponent
282 : INTEGER :: handle, i, ncol_global, nrow_global
283 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: eigenvalues
284 : TYPE(cp_cfm_type) :: cfm_work
285 :
286 4892 : CALL timeset(routineN, handle)
287 :
288 4892 : CALL cp_cfm_create(cfm_work, matrix%matrix_struct)
289 4892 : CALL cp_cfm_set_all(cfm_work, z_zero)
290 :
291 : ! Test that matrix is square
292 4892 : CALL cp_cfm_get_info(matrix, nrow_global=nrow_global, ncol_global=ncol_global)
293 4892 : CPASSERT(nrow_global == ncol_global)
294 14676 : ALLOCATE (eigenvalues(nrow_global))
295 254424 : eigenvalues(:) = 0.0_dp
296 14676 : ALLOCATE (eigenvalues_exponent(nrow_global))
297 254424 : eigenvalues_exponent(:) = czero
298 :
299 : ! Diagonalize matrix: get eigenvectors and eigenvalues
300 4892 : CALL cp_cfm_heevd(matrix, cfm_work, eigenvalues)
301 :
302 254424 : DO i = 1, nrow_global
303 254424 : IF (eigenvalues(i) > threshold) THEN
304 237030 : eigenvalues_exponent(i) = CMPLX((eigenvalues(i))**(0.5_dp*exponent), threshold, KIND=dp)
305 : ELSE
306 12502 : IF (PRESENT(min_eigval)) THEN
307 0 : eigenvalues_exponent(i) = CMPLX(min_eigval, 0.0_dp, KIND=dp)
308 : ELSE
309 12502 : eigenvalues_exponent(i) = czero
310 : END IF
311 : END IF
312 : END DO
313 :
314 4892 : CALL cp_cfm_column_scale(cfm_work, eigenvalues_exponent)
315 :
316 : CALL parallel_gemm("N", "C", nrow_global, nrow_global, nrow_global, z_one, &
317 4892 : cfm_work, cfm_work, z_zero, matrix)
318 :
319 4892 : DEALLOCATE (eigenvalues, eigenvalues_exponent)
320 :
321 4892 : CALL cp_cfm_release(cfm_work)
322 :
323 4892 : CALL timestop(handle)
324 :
325 9784 : END SUBROUTINE cp_cfm_power
326 :
327 : ! **************************************************************************************************
328 : !> \brief ...
329 : !> \param cfm_mat_Q ...
330 : !> \param mat_P_omega_kp ...
331 : !> \param fm_mat_L_re ...
332 : !> \param fm_mat_L_im ...
333 : !> \param fm_mat_RI_global_work ...
334 : !> \param dimen_RI ...
335 : !> \param ikp ...
336 : !> \param nkp ...
337 : !> \param ikp_local ...
338 : !> \param para_env ...
339 : !> \param make_chi_pos_definite ...
340 : ! **************************************************************************************************
341 2544 : SUBROUTINE compute_Q_kp_RPA(cfm_mat_Q, mat_P_omega_kp, fm_mat_L_re, fm_mat_L_im, &
342 : fm_mat_RI_global_work, dimen_RI, ikp, nkp, ikp_local, para_env, &
343 : make_chi_pos_definite)
344 :
345 : TYPE(cp_cfm_type) :: cfm_mat_Q
346 : TYPE(dbcsr_p_type), DIMENSION(:, :), INTENT(INOUT) :: mat_P_omega_kp
347 : TYPE(cp_fm_type) :: fm_mat_L_re, fm_mat_L_im, &
348 : fm_mat_RI_global_work
349 : INTEGER, INTENT(IN) :: dimen_RI, ikp, nkp, ikp_local
350 : TYPE(mp_para_env_type), POINTER :: para_env
351 : LOGICAL, INTENT(IN) :: make_chi_pos_definite
352 :
353 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Q_kp_RPA'
354 :
355 : INTEGER :: handle
356 : TYPE(cp_cfm_type) :: cfm_mat_L, cfm_mat_work
357 : TYPE(cp_fm_type) :: fm_mat_work
358 :
359 2544 : CALL timeset(routineN, handle)
360 :
361 2544 : CALL cp_cfm_create(cfm_mat_work, fm_mat_L_re%matrix_struct)
362 2544 : CALL cp_cfm_set_all(cfm_mat_work, z_zero)
363 :
364 2544 : CALL cp_cfm_create(cfm_mat_L, fm_mat_L_re%matrix_struct)
365 2544 : CALL cp_cfm_set_all(cfm_mat_L, z_zero)
366 :
367 2544 : CALL cp_fm_create(fm_mat_work, fm_mat_L_re%matrix_struct)
368 2544 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
369 :
370 : ! 1. Convert the dbcsr matrix mat_P_omega_kp (that is chi(k,iw)) to a full matrix and
371 : ! distribute it to subgroups
372 : CALL mat_P_to_subgroup(mat_P_omega_kp, fm_mat_RI_global_work, &
373 2544 : fm_mat_work, cfm_mat_Q, ikp, nkp, ikp_local, para_env)
374 :
375 : ! 2. Remove all negative eigenvalues from chi(k,iw)
376 2544 : IF (make_chi_pos_definite) THEN
377 2544 : CALL cp_cfm_power(cfm_mat_Q, threshold=0.0_dp, exponent=1.0_dp)
378 : END IF
379 :
380 : ! 3. Copy fm_mat_L_re and fm_mat_L_re to cfm_mat_L
381 2544 : CALL cp_cfm_scale_and_add_fm(z_zero, cfm_mat_L, z_one, fm_mat_L_re)
382 2544 : CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_L, gaussi, fm_mat_L_im)
383 :
384 : ! 4. work = P(iw,k)*L(k)
385 : CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, z_one, cfm_mat_Q, cfm_mat_L, &
386 2544 : z_zero, cfm_mat_work)
387 :
388 : ! 5. Q(iw,k) = L^H(k)*work
389 : CALL parallel_gemm('C', 'N', dimen_RI, dimen_RI, dimen_RI, z_one, cfm_mat_L, cfm_mat_work, &
390 2544 : z_zero, cfm_mat_Q)
391 :
392 2544 : CALL cp_cfm_release(cfm_mat_work)
393 2544 : CALL cp_cfm_release(cfm_mat_L)
394 2544 : CALL cp_fm_release(fm_mat_work)
395 :
396 2544 : CALL timestop(handle)
397 :
398 2544 : END SUBROUTINE compute_Q_kp_RPA
399 :
400 : ! **************************************************************************************************
401 : !> \brief ...
402 : !> \param mat_P_omega_kp ...
403 : !> \param fm_mat_RI_global_work ...
404 : !> \param fm_mat_work ...
405 : !> \param cfm_mat_Q ...
406 : !> \param ikp ...
407 : !> \param nkp ...
408 : !> \param ikp_local ...
409 : !> \param para_env ...
410 : ! **************************************************************************************************
411 2544 : SUBROUTINE mat_P_to_subgroup(mat_P_omega_kp, fm_mat_RI_global_work, &
412 : fm_mat_work, cfm_mat_Q, ikp, nkp, ikp_local, para_env)
413 :
414 : TYPE(dbcsr_p_type), DIMENSION(:, :), INTENT(INOUT) :: mat_P_omega_kp
415 : TYPE(cp_fm_type), INTENT(INOUT) :: fm_mat_RI_global_work, fm_mat_work
416 : TYPE(cp_cfm_type), INTENT(IN) :: cfm_mat_Q
417 : INTEGER, INTENT(IN) :: ikp, nkp, ikp_local
418 : TYPE(mp_para_env_type), POINTER :: para_env
419 :
420 : CHARACTER(LEN=*), PARAMETER :: routineN = 'mat_P_to_subgroup'
421 :
422 : INTEGER :: handle, jkp
423 : TYPE(cp_fm_type) :: fm_dummy
424 : TYPE(dbcsr_type), POINTER :: mat_P_omega_im, mat_P_omega_re
425 :
426 2544 : CALL timeset(routineN, handle)
427 :
428 2544 : IF (ikp_local == -1) THEN
429 :
430 2544 : mat_P_omega_re => mat_P_omega_kp(1, ikp)%matrix
431 2544 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
432 2544 : CALL copy_dbcsr_to_fm(mat_P_omega_re, fm_mat_work)
433 2544 : CALL cp_cfm_scale_and_add_fm(z_zero, cfm_mat_Q, z_one, fm_mat_work)
434 :
435 2544 : mat_P_omega_im => mat_P_omega_kp(2, ikp)%matrix
436 2544 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
437 2544 : CALL copy_dbcsr_to_fm(mat_P_omega_im, fm_mat_work)
438 2544 : CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_Q, gaussi, fm_mat_work)
439 :
440 : ELSE
441 :
442 0 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
443 :
444 0 : DO jkp = 1, nkp
445 :
446 0 : mat_P_omega_re => mat_P_omega_kp(1, jkp)%matrix
447 :
448 0 : CALL cp_fm_set_all(fm_mat_RI_global_work, 0.0_dp)
449 0 : CALL copy_dbcsr_to_fm(mat_P_omega_re, fm_mat_RI_global_work)
450 :
451 0 : CALL para_env%sync()
452 :
453 0 : IF (ikp_local == jkp) THEN
454 0 : CALL cp_fm_copy_general(fm_mat_RI_global_work, fm_mat_work, para_env)
455 : ELSE
456 0 : CALL cp_fm_copy_general(fm_mat_RI_global_work, fm_dummy, para_env)
457 : END IF
458 :
459 0 : CALL para_env%sync()
460 :
461 : END DO
462 :
463 0 : CALL cp_cfm_scale_and_add_fm(z_zero, cfm_mat_Q, z_one, fm_mat_work)
464 :
465 0 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
466 :
467 0 : DO jkp = 1, nkp
468 :
469 0 : mat_P_omega_im => mat_P_omega_kp(2, jkp)%matrix
470 :
471 0 : CALL cp_fm_set_all(fm_mat_RI_global_work, 0.0_dp)
472 0 : CALL copy_dbcsr_to_fm(mat_P_omega_im, fm_mat_RI_global_work)
473 :
474 0 : CALL para_env%sync()
475 :
476 0 : IF (ikp_local == jkp) THEN
477 0 : CALL cp_fm_copy_general(fm_mat_RI_global_work, fm_mat_work, para_env)
478 : ELSE
479 0 : CALL cp_fm_copy_general(fm_mat_RI_global_work, fm_dummy, para_env)
480 : END IF
481 :
482 0 : CALL para_env%sync()
483 :
484 : END DO
485 :
486 0 : CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_Q, gaussi, fm_mat_work)
487 :
488 0 : CALL cp_fm_set_all(fm_mat_work, 0.0_dp)
489 :
490 : END IF
491 :
492 2544 : CALL para_env%sync()
493 :
494 2544 : CALL timestop(handle)
495 :
496 2544 : END SUBROUTINE mat_P_to_subgroup
497 :
498 : ! **************************************************************************************************
499 : !> \brief ...
500 : !> \param cfm_mat_Q ...
501 : !> \param para_env ...
502 : !> \param trace_Qomega ...
503 : !> \param dimen_RI ...
504 : ! **************************************************************************************************
505 2544 : SUBROUTINE cholesky_decomp_Q(cfm_mat_Q, para_env, trace_Qomega, dimen_RI)
506 :
507 : TYPE(cp_cfm_type), INTENT(IN) :: cfm_mat_Q
508 : TYPE(mp_para_env_type), INTENT(IN) :: para_env
509 : REAL(KIND=dp), DIMENSION(:), INTENT(OUT) :: trace_Qomega
510 : INTEGER, INTENT(IN) :: dimen_RI
511 :
512 : CHARACTER(LEN=*), PARAMETER :: routineN = 'cholesky_decomp_Q'
513 :
514 : INTEGER :: handle, i_global, iiB, info_chol, &
515 : j_global, jjB, ncol_local, nrow_local
516 2544 : INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
517 : TYPE(cp_cfm_type) :: cfm_mat_Q_tmp, cfm_mat_work
518 :
519 2544 : CALL timeset(routineN, handle)
520 :
521 2544 : CALL cp_cfm_create(cfm_mat_work, cfm_mat_Q%matrix_struct)
522 2544 : CALL cp_cfm_set_all(cfm_mat_work, z_zero)
523 :
524 2544 : CALL cp_cfm_create(cfm_mat_Q_tmp, cfm_mat_Q%matrix_struct)
525 2544 : CALL cp_cfm_set_all(cfm_mat_Q_tmp, z_zero)
526 :
527 : ! get info of fm_mat_Q
528 : CALL cp_cfm_get_info(matrix=cfm_mat_Q, &
529 : nrow_local=nrow_local, &
530 : ncol_local=ncol_local, &
531 : row_indices=row_indices, &
532 2544 : col_indices=col_indices)
533 :
534 : ! calculate the trace of Q and add 1 on the diagonal
535 180624 : trace_Qomega = 0.0_dp
536 : !$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
537 2544 : !$OMP SHARED(ncol_local,nrow_local,col_indices,row_indices,trace_Qomega,cfm_mat_Q,dimen_RI)
538 : DO jjB = 1, ncol_local
539 : j_global = col_indices(jjB)
540 : DO iiB = 1, nrow_local
541 : i_global = row_indices(iiB)
542 : IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
543 : trace_Qomega(i_global) = REAL(cfm_mat_Q%local_data(iiB, jjB))
544 : cfm_mat_Q%local_data(iiB, jjB) = cfm_mat_Q%local_data(iiB, jjB) + z_one
545 : END IF
546 : END DO
547 : END DO
548 358704 : CALL para_env%sum(trace_Qomega)
549 :
550 2544 : CALL cp_cfm_to_cfm(cfm_mat_Q, cfm_mat_Q_tmp)
551 :
552 2544 : CALL cp_cfm_cholesky_decompose(matrix=cfm_mat_Q, n=dimen_RI, info_out=info_chol)
553 :
554 2544 : CPASSERT(info_chol == 0)
555 :
556 2544 : CALL cp_cfm_release(cfm_mat_work)
557 2544 : CALL cp_cfm_release(cfm_mat_Q_tmp)
558 :
559 2544 : CALL timestop(handle)
560 :
561 2544 : END SUBROUTINE cholesky_decomp_Q
562 :
563 : ! **************************************************************************************************
564 : !> \brief ...
565 : !> \param Erpa ...
566 : !> \param cfm_mat_Q ...
567 : !> \param para_env ...
568 : !> \param trace_Qomega ...
569 : !> \param dimen_RI ...
570 : !> \param freq_weight ...
571 : !> \param kp_weight ...
572 : ! **************************************************************************************************
573 2544 : SUBROUTINE frequency_and_kpoint_integration(Erpa, cfm_mat_Q, para_env, trace_Qomega, &
574 : dimen_RI, freq_weight, kp_weight)
575 :
576 : REAL(KIND=dp), INTENT(INOUT) :: Erpa
577 : TYPE(cp_cfm_type), INTENT(IN) :: cfm_mat_Q
578 : TYPE(mp_para_env_type), INTENT(IN) :: para_env
579 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: trace_Qomega
580 : INTEGER, INTENT(IN) :: dimen_RI
581 : REAL(KIND=dp), INTENT(IN) :: freq_weight, kp_weight
582 :
583 : CHARACTER(LEN=*), PARAMETER :: routineN = 'frequency_and_kpoint_integration'
584 :
585 : INTEGER :: handle, i_global, iiB, j_global, jjB, &
586 : ncol_local, nrow_local
587 2544 : INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
588 : REAL(KIND=dp) :: FComega
589 2544 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:) :: Q_log
590 :
591 2544 : CALL timeset(routineN, handle)
592 :
593 : ! get info of cholesky_decomposed(fm_mat_Q)
594 : CALL cp_cfm_get_info(matrix=cfm_mat_Q, &
595 : nrow_local=nrow_local, &
596 : ncol_local=ncol_local, &
597 : row_indices=row_indices, &
598 2544 : col_indices=col_indices)
599 :
600 7632 : ALLOCATE (Q_log(dimen_RI))
601 180624 : Q_log = 0.0_dp
602 : !$OMP PARALLEL DO DEFAULT(NONE) PRIVATE(jjB,iiB,i_global,j_global) &
603 2544 : !$OMP SHARED(ncol_local,nrow_local,col_indices,row_indices,Q_log,cfm_mat_Q,dimen_RI)
604 : DO jjB = 1, ncol_local
605 : j_global = col_indices(jjB)
606 : DO iiB = 1, nrow_local
607 : i_global = row_indices(iiB)
608 : IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
609 : Q_log(i_global) = 2.0_dp*LOG(REAL(cfm_mat_Q%local_data(iiB, jjB)))
610 : END IF
611 : END DO
612 : END DO
613 2544 : CALL para_env%sum(Q_log)
614 :
615 2544 : FComega = 0.0_dp
616 180624 : DO iiB = 1, dimen_RI
617 178080 : IF (MODULO(iiB, para_env%num_pe) /= para_env%mepos) CYCLE
618 : ! FComega=FComega+(LOG(Q_log(iiB))-trace_Qomega(iiB))/2.0_dp
619 180624 : FComega = FComega + (Q_log(iiB) - trace_Qomega(iiB))/2.0_dp
620 : END DO
621 :
622 2544 : Erpa = Erpa + FComega*freq_weight*kp_weight
623 :
624 2544 : DEALLOCATE (Q_log)
625 :
626 2544 : CALL timestop(handle)
627 :
628 5088 : END SUBROUTINE frequency_and_kpoint_integration
629 :
630 : ! **************************************************************************************************
631 : !> \brief ...
632 : !> \param tj_dummy ...
633 : !> \param tau_tj_dummy ...
634 : !> \param weights_cos_tf_w_to_t_dummy ...
635 : ! **************************************************************************************************
636 0 : SUBROUTINE get_dummys(tj_dummy, tau_tj_dummy, weights_cos_tf_w_to_t_dummy)
637 :
638 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
639 : INTENT(INOUT) :: tj_dummy, tau_tj_dummy
640 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
641 : INTENT(INOUT) :: weights_cos_tf_w_to_t_dummy
642 :
643 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_dummys'
644 :
645 : INTEGER :: handle
646 :
647 0 : CALL timeset(routineN, handle)
648 :
649 0 : ALLOCATE (weights_cos_tf_w_to_t_dummy(1, 1))
650 0 : ALLOCATE (tj_dummy(1))
651 0 : ALLOCATE (tau_tj_dummy(1))
652 :
653 0 : tj_dummy(1) = 0.0_dp
654 0 : tau_tj_dummy(1) = 0.0_dp
655 0 : weights_cos_tf_w_to_t_dummy(1, 1) = 1.0_dp
656 :
657 0 : CALL timestop(handle)
658 :
659 0 : END SUBROUTINE
660 :
661 : ! **************************************************************************************************
662 : !> \brief ...
663 : !> \param tj_dummy ...
664 : !> \param tau_tj_dummy ...
665 : !> \param weights_cos_tf_w_to_t_dummy ...
666 : ! **************************************************************************************************
667 0 : SUBROUTINE release_dummys(tj_dummy, tau_tj_dummy, weights_cos_tf_w_to_t_dummy)
668 :
669 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
670 : INTENT(INOUT) :: tj_dummy, tau_tj_dummy
671 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :), &
672 : INTENT(INOUT) :: weights_cos_tf_w_to_t_dummy
673 :
674 : CHARACTER(LEN=*), PARAMETER :: routineN = 'release_dummys'
675 :
676 : INTEGER :: handle
677 :
678 0 : CALL timeset(routineN, handle)
679 :
680 0 : DEALLOCATE (weights_cos_tf_w_to_t_dummy)
681 0 : DEALLOCATE (tj_dummy)
682 0 : DEALLOCATE (tau_tj_dummy)
683 :
684 0 : CALL timestop(handle)
685 :
686 0 : END SUBROUTINE
687 :
688 : ! **************************************************************************************************
689 : !> \brief ...
690 : !> \param mat_P_omega ...
691 : !> \param qs_env ...
692 : !> \param kpoints ...
693 : !> \param jquad ...
694 : !> \param unit_nr ...
695 : ! **************************************************************************************************
696 440 : SUBROUTINE get_mat_cell_T_from_mat_gamma(mat_P_omega, qs_env, kpoints, jquad, unit_nr)
697 : TYPE(dbcsr_p_type), DIMENSION(:), INTENT(IN) :: mat_P_omega
698 : TYPE(qs_environment_type), POINTER :: qs_env
699 : TYPE(kpoint_type), POINTER :: kpoints
700 : INTEGER, INTENT(IN) :: jquad, unit_nr
701 :
702 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_mat_cell_T_from_mat_gamma'
703 :
704 : INTEGER :: col, handle, i_cell, i_dim, j_cell, &
705 : num_cells_P, num_integ_points, row
706 : INTEGER, DIMENSION(3) :: cell_grid_P, periodic
707 440 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell_P
708 : LOGICAL :: i_cell_is_the_minimum_image_cell
709 : REAL(KIND=dp) :: abs_rab_cell_i, abs_rab_cell_j
710 : REAL(KIND=dp), DIMENSION(3) :: cell_vector, cell_vector_j, rab_cell_i, &
711 : rab_cell_j
712 : REAL(KIND=dp), DIMENSION(3, 3) :: hmat
713 440 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: data_block
714 : TYPE(cell_type), POINTER :: cell
715 : TYPE(dbcsr_iterator_type) :: iter
716 440 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
717 :
718 440 : CALL timeset(routineN, handle)
719 :
720 440 : NULLIFY (cell, particle_set)
721 : CALL get_qs_env(qs_env, cell=cell, &
722 440 : particle_set=particle_set)
723 440 : CALL get_cell(cell=cell, h=hmat, periodic=periodic)
724 :
725 1760 : DO i_dim = 1, 3
726 : ! we have at most 3 neigboring cells per dimension and at least one because
727 : ! the density response at Gamma is only divided to neighboring
728 1760 : IF (periodic(i_dim) == 1) THEN
729 880 : cell_grid_P(i_dim) = MAX(MIN((kpoints%nkp_grid(i_dim)/2)*2 - 1, 1), 3)
730 : ELSE
731 440 : cell_grid_P(i_dim) = 1
732 : END IF
733 : END DO
734 :
735 : ! overwrite the cell indices in kpoints
736 440 : CALL init_cell_index_rpa(cell_grid_P, kpoints%cell_to_index, kpoints%index_to_cell, cell)
737 :
738 440 : index_to_cell_P => kpoints%index_to_cell
739 :
740 440 : num_cells_P = SIZE(index_to_cell_P, 2)
741 :
742 440 : num_integ_points = SIZE(mat_P_omega, 1)
743 :
744 : ! first, copy the Gamma-only result from mat_P_omega(1) into all other matrices and
745 : ! remove the blocks later which do not belong to the cell index
746 3960 : DO i_cell = 2, num_cells_P
747 : CALL dbcsr_copy(mat_P_omega(i_cell)%matrix, &
748 3960 : mat_P_omega(1)%matrix)
749 : END DO
750 :
751 440 : IF (jquad == 1 .AND. unit_nr > 0) THEN
752 8 : WRITE (unit_nr, '(T3,A,T66,ES15.2)') 'GW_INFO| RI regularization parameter: ', &
753 16 : qs_env%mp2_env%ri_rpa_im_time%regularization_RI
754 8 : WRITE (unit_nr, '(T3,A,T66,ES15.2)') 'GW_INFO| eps_eigval_S: ', &
755 16 : qs_env%mp2_env%ri_rpa_im_time%eps_eigval_S
756 8 : IF (qs_env%mp2_env%ri_rpa_im_time%make_chi_pos_definite) THEN
757 : WRITE (unit_nr, '(T3,A,T81)') &
758 8 : 'GW_INFO| Make chi(iw,k) positive definite? TRUE'
759 : ELSE
760 : WRITE (unit_nr, '(T3,A,T81)') &
761 0 : 'GW_INFO| Make chi(iw,k) positive definite? FALSE'
762 : END IF
763 :
764 : END IF
765 :
766 4400 : DO i_cell = 1, num_cells_P
767 :
768 3960 : CALL dbcsr_iterator_start(iter, mat_P_omega(i_cell)%matrix)
769 20385 : DO WHILE (dbcsr_iterator_blocks_left(iter))
770 16425 : CALL dbcsr_iterator_next_block(iter, row, col, data_block)
771 :
772 262800 : cell_vector(1:3) = MATMUL(hmat, REAL(index_to_cell_P(1:3, i_cell), dp))
773 : rab_cell_i(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
774 65700 : (pbc(particle_set(col)%r(1:3), cell) + cell_vector(1:3))
775 16425 : abs_rab_cell_i = SQRT(rab_cell_i(1)**2 + rab_cell_i(2)**2 + rab_cell_i(3)**2)
776 :
777 : ! minimum image convention
778 16425 : i_cell_is_the_minimum_image_cell = .TRUE.
779 164250 : DO j_cell = 1, num_cells_P
780 2365200 : cell_vector_j(1:3) = MATMUL(hmat, REAL(index_to_cell_P(1:3, j_cell), dp))
781 : rab_cell_j(1:3) = pbc(particle_set(row)%r(1:3), cell) - &
782 591300 : (pbc(particle_set(col)%r(1:3), cell) + cell_vector_j(1:3))
783 147825 : abs_rab_cell_j = SQRT(rab_cell_j(1)**2 + rab_cell_j(2)**2 + rab_cell_j(3)**2)
784 :
785 164250 : IF (abs_rab_cell_i > abs_rab_cell_j + 1.0E-6_dp) THEN
786 53748 : i_cell_is_the_minimum_image_cell = .FALSE.
787 : END IF
788 : END DO
789 :
790 32850 : IF (.NOT. i_cell_is_the_minimum_image_cell) THEN
791 2809552 : data_block(:, :) = data_block(:, :)*0.0_dp
792 : END IF
793 :
794 : END DO
795 8360 : CALL dbcsr_iterator_stop(iter)
796 :
797 : END DO
798 :
799 440 : CALL timestop(handle)
800 :
801 440 : END SUBROUTINE get_mat_cell_T_from_mat_gamma
802 :
803 : ! **************************************************************************************************
804 : !> \brief ...
805 : !> \param mat_P_omega ...
806 : !> \param mat_P_omega_kp ...
807 : !> \param kpoints ...
808 : !> \param eps_filter_im_time ...
809 : !> \param jquad ...
810 : ! **************************************************************************************************
811 120 : SUBROUTINE transform_P_from_real_space_to_kpoints(mat_P_omega, mat_P_omega_kp, &
812 : kpoints, eps_filter_im_time, jquad)
813 :
814 : TYPE(dbcsr_p_type), DIMENSION(:, :), INTENT(INOUT) :: mat_P_omega, mat_P_omega_kp
815 : TYPE(kpoint_type), POINTER :: kpoints
816 : REAL(kind=dp), INTENT(IN) :: eps_filter_im_time
817 : INTEGER, INTENT(IN) :: jquad
818 :
819 : CHARACTER(LEN=*), PARAMETER :: routineN = 'transform_P_from_real_space_to_kpoints'
820 :
821 : INTEGER :: handle, icell, nkp, num_integ_points
822 :
823 120 : CALL timeset(routineN, handle)
824 :
825 120 : num_integ_points = SIZE(mat_P_omega, 1)
826 120 : nkp = SIZE(mat_P_omega, 2)
827 :
828 : CALL real_space_to_kpoint_transform_rpa(mat_P_omega_kp(1, :), mat_P_omega_kp(2, :), mat_P_omega(jquad, :), &
829 120 : kpoints, eps_filter_im_time)
830 :
831 2664 : DO icell = 1, SIZE(mat_P_omega, 2)
832 2544 : CALL dbcsr_set(mat_P_omega(jquad, icell)%matrix, 0.0_dp)
833 2664 : CALL dbcsr_filter(mat_P_omega(jquad, icell)%matrix, 1.0_dp)
834 : END DO
835 :
836 120 : CALL timestop(handle)
837 :
838 120 : END SUBROUTINE transform_P_from_real_space_to_kpoints
839 :
840 : ! **************************************************************************************************
841 : !> \brief ...
842 : !> \param real_mat_kp ...
843 : !> \param imag_mat_kp ...
844 : !> \param mat_real_space ...
845 : !> \param kpoints ...
846 : !> \param eps_filter_im_time ...
847 : !> \param real_mat_real_space ...
848 : ! **************************************************************************************************
849 464 : SUBROUTINE real_space_to_kpoint_transform_rpa(real_mat_kp, imag_mat_kp, mat_real_space, &
850 : kpoints, eps_filter_im_time, real_mat_real_space)
851 :
852 : TYPE(dbcsr_p_type), DIMENSION(:), INTENT(INOUT) :: real_mat_kp, imag_mat_kp, mat_real_space
853 : TYPE(kpoint_type), POINTER :: kpoints
854 : REAL(KIND=dp), INTENT(IN) :: eps_filter_im_time
855 : LOGICAL, INTENT(IN), OPTIONAL :: real_mat_real_space
856 :
857 : CHARACTER(LEN=*), PARAMETER :: routineN = 'real_space_to_kpoint_transform_rpa'
858 :
859 : INTEGER :: handle, i_cell, ik, nkp, num_cells
860 : INTEGER, DIMENSION(3) :: cell
861 464 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
862 : LOGICAL :: my_real_mat_real_space
863 : REAL(KIND=dp) :: arg, coskl, sinkl
864 464 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: xkp
865 : TYPE(dbcsr_type) :: mat_work
866 :
867 464 : CALL timeset(routineN, handle)
868 :
869 464 : my_real_mat_real_space = .TRUE.
870 464 : IF (PRESENT(real_mat_real_space)) my_real_mat_real_space = real_mat_real_space
871 :
872 : CALL dbcsr_create(matrix=mat_work, &
873 : template=real_mat_kp(1)%matrix, &
874 464 : matrix_type=dbcsr_type_no_symmetry)
875 464 : CALL dbcsr_reserve_all_blocks(mat_work)
876 464 : CALL dbcsr_set(mat_work, 0.0_dp)
877 :
878 : ! this kpoint environme t should be the kpoints for D(it) and X(it) created in init_cell_index_rpa
879 464 : CALL get_kpoint_info(kpoints, nkp=nkp, xkp=xkp)
880 :
881 464 : NULLIFY (index_to_cell)
882 464 : index_to_cell => kpoints%index_to_cell
883 :
884 464 : num_cells = SIZE(index_to_cell, 2)
885 :
886 464 : CPASSERT(SIZE(mat_real_space) >= num_cells/2 + 1)
887 :
888 5338 : DO ik = 1, nkp
889 :
890 4874 : CALL dbcsr_reserve_all_blocks(real_mat_kp(ik)%matrix)
891 4874 : CALL dbcsr_reserve_all_blocks(imag_mat_kp(ik)%matrix)
892 :
893 4874 : CALL dbcsr_set(real_mat_kp(ik)%matrix, 0.0_dp)
894 4874 : CALL dbcsr_set(imag_mat_kp(ik)%matrix, 0.0_dp)
895 :
896 29100 : DO i_cell = 1, num_cells/2 + 1
897 :
898 96904 : cell(:) = index_to_cell(:, i_cell)
899 :
900 24226 : arg = REAL(cell(1), dp)*xkp(1, ik) + REAL(cell(2), dp)*xkp(2, ik) + REAL(cell(3), dp)*xkp(3, ik)
901 24226 : coskl = COS(twopi*arg)
902 24226 : sinkl = SIN(twopi*arg)
903 :
904 24226 : IF (my_real_mat_real_space) THEN
905 23986 : CALL dbcsr_add_local(real_mat_kp(ik)%matrix, mat_real_space(i_cell)%matrix, 1.0_dp, coskl)
906 23986 : CALL dbcsr_add_local(imag_mat_kp(ik)%matrix, mat_real_space(i_cell)%matrix, 1.0_dp, sinkl)
907 : ELSE
908 240 : CALL dbcsr_add_local(real_mat_kp(ik)%matrix, mat_real_space(i_cell)%matrix, 1.0_dp, -sinkl)
909 240 : CALL dbcsr_add_local(imag_mat_kp(ik)%matrix, mat_real_space(i_cell)%matrix, 1.0_dp, coskl)
910 : END IF
911 :
912 29100 : IF (.NOT. (cell(1) == 0 .AND. cell(2) == 0 .AND. cell(3) == 0)) THEN
913 :
914 19352 : CALL dbcsr_transposed(mat_work, mat_real_space(i_cell)%matrix)
915 :
916 19352 : IF (my_real_mat_real_space) THEN
917 19160 : CALL dbcsr_add_local(real_mat_kp(ik)%matrix, mat_work, 1.0_dp, coskl)
918 19160 : CALL dbcsr_add_local(imag_mat_kp(ik)%matrix, mat_work, 1.0_dp, -sinkl)
919 : ELSE
920 : ! for an imaginary real-space matrix, we need to consider the imaginary unit
921 : ! and we need to take into account that the transposed gives an extra "-" sign
922 : ! because the transposed is actually Hermitian conjugate
923 192 : CALL dbcsr_add_local(real_mat_kp(ik)%matrix, mat_work, 1.0_dp, -sinkl)
924 192 : CALL dbcsr_add_local(imag_mat_kp(ik)%matrix, mat_work, 1.0_dp, -coskl)
925 : END IF
926 :
927 19352 : CALL dbcsr_set(mat_work, 0.0_dp)
928 :
929 : END IF
930 :
931 : END DO
932 :
933 4874 : CALL dbcsr_filter(real_mat_kp(ik)%matrix, eps_filter_im_time)
934 5338 : CALL dbcsr_filter(imag_mat_kp(ik)%matrix, eps_filter_im_time)
935 :
936 : END DO
937 :
938 464 : CALL dbcsr_release(mat_work)
939 :
940 464 : CALL timestop(handle)
941 :
942 464 : END SUBROUTINE real_space_to_kpoint_transform_rpa
943 :
944 : ! **************************************************************************************************
945 : !> \brief ...
946 : !> \param mat_a ...
947 : !> \param mat_b ...
948 : !> \param alpha ...
949 : !> \param beta ...
950 : ! **************************************************************************************************
951 87156 : SUBROUTINE dbcsr_add_local(mat_a, mat_b, alpha, beta)
952 : TYPE(dbcsr_type), INTENT(INOUT) :: mat_a, mat_b
953 : REAL(kind=dp), INTENT(IN) :: alpha, beta
954 :
955 : INTEGER :: col, row
956 : LOGICAL :: found
957 87156 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: block_to_compute, data_block
958 : TYPE(dbcsr_iterator_type) :: iter
959 :
960 87156 : CALL dbcsr_iterator_start(iter, mat_b)
961 455994 : DO WHILE (dbcsr_iterator_blocks_left(iter))
962 368838 : CALL dbcsr_iterator_next_block(iter, row, col, data_block)
963 :
964 368838 : NULLIFY (block_to_compute)
965 : CALL dbcsr_get_block_p(matrix=mat_a, &
966 368838 : row=row, col=col, block=block_to_compute, found=found)
967 :
968 368838 : CPASSERT(found)
969 :
970 275001360 : block_to_compute(:, :) = alpha*block_to_compute(:, :) + beta*data_block(:, :)
971 :
972 : END DO
973 87156 : CALL dbcsr_iterator_stop(iter)
974 :
975 87156 : END SUBROUTINE dbcsr_add_local
976 :
977 : ! **************************************************************************************************
978 : !> \brief ...
979 : !> \param fm_mat_W_tau ...
980 : !> \param cfm_mat_Q ...
981 : !> \param fm_mat_L_re ...
982 : !> \param fm_mat_L_im ...
983 : !> \param dimen_RI ...
984 : !> \param num_integ_points ...
985 : !> \param jquad ...
986 : !> \param ikp ...
987 : !> \param tj ...
988 : !> \param tau_tj ...
989 : !> \param weights_cos_tf_w_to_t ...
990 : !> \param ikp_local ...
991 : !> \param para_env ...
992 : !> \param kpoints ...
993 : !> \param qs_env ...
994 : !> \param wkp_W ...
995 : ! **************************************************************************************************
996 2496 : SUBROUTINE compute_Wc_real_space_tau_GW(fm_mat_W_tau, cfm_mat_Q, fm_mat_L_re, fm_mat_L_im, &
997 : dimen_RI, num_integ_points, jquad, &
998 2496 : ikp, tj, tau_tj, weights_cos_tf_w_to_t, ikp_local, &
999 2496 : para_env, kpoints, qs_env, wkp_W)
1000 :
1001 : TYPE(cp_fm_type), DIMENSION(:), INTENT(IN) :: fm_mat_W_tau
1002 : TYPE(cp_cfm_type), INTENT(IN) :: cfm_mat_Q
1003 : TYPE(cp_fm_type), INTENT(IN) :: fm_mat_L_re, fm_mat_L_im
1004 : INTEGER, INTENT(IN) :: dimen_RI, num_integ_points, jquad, ikp
1005 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: tj
1006 : REAL(KIND=dp), DIMENSION(num_integ_points), &
1007 : INTENT(IN) :: tau_tj
1008 : REAL(KIND=dp), DIMENSION(:, :), INTENT(IN) :: weights_cos_tf_w_to_t
1009 : INTEGER, INTENT(IN) :: ikp_local
1010 : TYPE(mp_para_env_type), INTENT(IN), POINTER :: para_env
1011 : TYPE(kpoint_type), INTENT(IN), POINTER :: kpoints
1012 : TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
1013 : REAL(KIND=dp), DIMENSION(:), INTENT(IN) :: wkp_W
1014 :
1015 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_Wc_real_space_tau_GW'
1016 :
1017 : INTEGER :: handle, handle2, i_global, iatom, iatom_old, iiB, iquad, irow, j_global, jatom, &
1018 : jatom_old, jcol, jjB, jkp, ncol_local, nkp, nrow_local, num_cells
1019 2496 : INTEGER, ALLOCATABLE, DIMENSION(:) :: atom_from_RI_index
1020 2496 : INTEGER, DIMENSION(:), POINTER :: col_indices, row_indices
1021 2496 : INTEGER, DIMENSION(:, :), POINTER :: index_to_cell
1022 : REAL(KIND=dp) :: contribution, omega, tau, weight, &
1023 : weight_im, weight_re
1024 : REAL(KIND=dp), DIMENSION(3, 3) :: hmat
1025 2496 : REAL(KIND=dp), DIMENSION(:), POINTER :: wkp
1026 2496 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: xkp
1027 : TYPE(cell_type), POINTER :: cell
1028 : TYPE(cp_cfm_type) :: cfm_mat_L, cfm_mat_work, cfm_mat_work_2
1029 : TYPE(cp_fm_type) :: fm_dummy, fm_mat_work_global, &
1030 : fm_mat_work_local
1031 2496 : TYPE(particle_type), DIMENSION(:), POINTER :: particle_set
1032 :
1033 2496 : CALL timeset(routineN, handle)
1034 :
1035 2496 : CALL timeset(routineN//"_1", handle2)
1036 :
1037 2496 : CALL cp_cfm_create(cfm_mat_work, cfm_mat_Q%matrix_struct)
1038 2496 : CALL cp_cfm_set_all(cfm_mat_work, z_zero)
1039 :
1040 2496 : CALL cp_cfm_create(cfm_mat_work_2, cfm_mat_Q%matrix_struct)
1041 2496 : CALL cp_cfm_set_all(cfm_mat_work_2, z_zero)
1042 :
1043 2496 : CALL cp_cfm_create(cfm_mat_L, cfm_mat_Q%matrix_struct)
1044 2496 : CALL cp_cfm_set_all(cfm_mat_L, z_zero)
1045 :
1046 : ! Copy fm_mat_L_re and fm_mat_L_re to cfm_mat_L
1047 2496 : CALL cp_cfm_scale_and_add_fm(z_zero, cfm_mat_L, z_one, fm_mat_L_re)
1048 2496 : CALL cp_cfm_scale_and_add_fm(z_one, cfm_mat_L, gaussi, fm_mat_L_im)
1049 :
1050 2496 : CALL cp_fm_create(fm_mat_work_global, fm_mat_W_tau(1)%matrix_struct)
1051 2496 : CALL cp_fm_set_all(fm_mat_work_global, 0.0_dp)
1052 :
1053 2496 : CALL cp_fm_create(fm_mat_work_local, cfm_mat_Q%matrix_struct)
1054 2496 : CALL cp_fm_set_all(fm_mat_work_local, 0.0_dp)
1055 :
1056 2496 : CALL timestop(handle2)
1057 :
1058 2496 : CALL timeset(routineN//"_2", handle2)
1059 :
1060 : ! calculate [1+Q(iw')]^-1
1061 2496 : CALL cp_cfm_cholesky_invert(cfm_mat_Q)
1062 :
1063 : ! symmetrize the result
1064 2496 : CALL cp_cfm_uplo_to_full(cfm_mat_Q)
1065 :
1066 : ! subtract exchange part by subtracing identity matrix from epsilon
1067 : CALL cp_cfm_get_info(matrix=cfm_mat_Q, &
1068 : nrow_local=nrow_local, &
1069 : ncol_local=ncol_local, &
1070 : row_indices=row_indices, &
1071 2496 : col_indices=col_indices)
1072 :
1073 176592 : DO jjB = 1, ncol_local
1074 174096 : j_global = col_indices(jjB)
1075 6950424 : DO iiB = 1, nrow_local
1076 6773832 : i_global = row_indices(iiB)
1077 6947928 : IF (j_global == i_global .AND. i_global <= dimen_RI) THEN
1078 87048 : cfm_mat_Q%local_data(iiB, jjB) = cfm_mat_Q%local_data(iiB, jjB) - z_one
1079 : END IF
1080 : END DO
1081 : END DO
1082 :
1083 2496 : CALL timestop(handle2)
1084 :
1085 2496 : CALL timeset(routineN//"_3", handle2)
1086 :
1087 : ! work = epsilon(iw,k)*V^1/2(k)
1088 : CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, z_one, cfm_mat_Q, cfm_mat_L, &
1089 2496 : z_zero, cfm_mat_work)
1090 :
1091 : ! W(iw,k) = V^1/2(k)*work
1092 : CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, z_one, cfm_mat_L, cfm_mat_work, &
1093 2496 : z_zero, cfm_mat_work_2)
1094 :
1095 2496 : CALL timestop(handle2)
1096 :
1097 2496 : CALL timeset(routineN//"_4", handle2)
1098 :
1099 2496 : CALL get_kpoint_info(kpoints, xkp=xkp, wkp=wkp, nkp=nkp)
1100 2496 : index_to_cell => kpoints%index_to_cell
1101 2496 : num_cells = SIZE(index_to_cell, 2)
1102 :
1103 2496 : CALL cp_cfm_set_all(cfm_mat_work, z_zero)
1104 :
1105 7488 : ALLOCATE (atom_from_RI_index(dimen_RI))
1106 :
1107 2496 : CALL get_atom_index_from_basis_function_index(qs_env, atom_from_RI_index, dimen_RI, "RI_AUX")
1108 :
1109 2496 : NULLIFY (cell, particle_set)
1110 2496 : CALL get_qs_env(qs_env, cell=cell, particle_set=particle_set)
1111 2496 : CALL get_cell(cell=cell, h=hmat)
1112 2496 : iatom_old = 0
1113 2496 : jatom_old = 0
1114 :
1115 : CALL cp_cfm_get_info(matrix=cfm_mat_Q, &
1116 : nrow_local=nrow_local, &
1117 : ncol_local=ncol_local, &
1118 : row_indices=row_indices, &
1119 2496 : col_indices=col_indices)
1120 :
1121 89544 : DO irow = 1, nrow_local
1122 6863376 : DO jcol = 1, ncol_local
1123 :
1124 6773832 : iatom = atom_from_RI_index(row_indices(irow))
1125 6773832 : jatom = atom_from_RI_index(col_indices(jcol))
1126 :
1127 6773832 : IF (iatom .NE. iatom_old .OR. jatom .NE. jatom_old) THEN
1128 :
1129 : ! symmetrize=.FALSE. necessary since we already have a symmetrized index_to_cell
1130 : CALL compute_weight_re_im(weight_re, weight_im, &
1131 : num_cells, iatom, jatom, xkp(1:3, ikp), wkp_W(ikp), &
1132 258336 : cell, index_to_cell, hmat, particle_set)
1133 :
1134 258336 : iatom_old = iatom
1135 258336 : jatom_old = jatom
1136 :
1137 : END IF
1138 :
1139 : contribution = weight_re*REAL(cfm_mat_work_2%local_data(irow, jcol)) + &
1140 6773832 : weight_im*AIMAG(cfm_mat_work_2%local_data(irow, jcol))
1141 :
1142 6860880 : fm_mat_work_local%local_data(irow, jcol) = fm_mat_work_local%local_data(irow, jcol) + contribution
1143 :
1144 : END DO
1145 : END DO
1146 :
1147 2496 : CALL timestop(handle2)
1148 :
1149 2496 : CALL timeset(routineN//"_5", handle2)
1150 :
1151 2496 : IF (ikp_local == -1) THEN
1152 :
1153 2496 : CALL cp_fm_copy_general(fm_mat_work_local, fm_mat_work_global, para_env)
1154 :
1155 17472 : DO iquad = 1, num_integ_points
1156 :
1157 14976 : omega = tj(jquad)
1158 14976 : tau = tau_tj(iquad)
1159 14976 : weight = weights_cos_tf_w_to_t(iquad, jquad)*COS(tau*omega)
1160 :
1161 14976 : IF (jquad == 1 .AND. ikp == 1) THEN
1162 96 : CALL cp_fm_set_all(matrix=fm_mat_W_tau(iquad), alpha=0.0_dp)
1163 : END IF
1164 :
1165 17472 : CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_mat_W_tau(iquad), beta=weight, matrix_b=fm_mat_work_global)
1166 :
1167 : END DO
1168 :
1169 : ELSE
1170 :
1171 0 : DO jkp = 1, nkp
1172 :
1173 0 : CALL para_env%sync()
1174 :
1175 0 : IF (ikp_local == jkp) THEN
1176 0 : CALL cp_fm_copy_general(fm_mat_work_local, fm_mat_work_global, para_env)
1177 : ELSE
1178 0 : CALL cp_fm_copy_general(fm_dummy, fm_mat_work_global, para_env)
1179 : END IF
1180 :
1181 0 : CALL para_env%sync()
1182 :
1183 0 : DO iquad = 1, num_integ_points
1184 :
1185 0 : omega = tj(jquad)
1186 0 : tau = tau_tj(iquad)
1187 0 : weight = weights_cos_tf_w_to_t(iquad, jquad)*COS(tau*omega)
1188 :
1189 0 : IF (jquad == 1 .AND. jkp == 1) THEN
1190 0 : CALL cp_fm_set_all(matrix=fm_mat_W_tau(iquad), alpha=0.0_dp)
1191 : END IF
1192 :
1193 : CALL cp_fm_scale_and_add(alpha=1.0_dp, matrix_a=fm_mat_W_tau(iquad), beta=weight, &
1194 0 : matrix_b=fm_mat_work_global)
1195 :
1196 : END DO
1197 :
1198 : END DO
1199 :
1200 : END IF
1201 :
1202 2496 : CALL cp_cfm_release(cfm_mat_work)
1203 2496 : CALL cp_cfm_release(cfm_mat_work_2)
1204 2496 : CALL cp_cfm_release(cfm_mat_L)
1205 2496 : CALL cp_fm_release(fm_mat_work_global)
1206 2496 : CALL cp_fm_release(fm_mat_work_local)
1207 :
1208 2496 : DEALLOCATE (atom_from_RI_index)
1209 :
1210 2496 : CALL timestop(handle2)
1211 :
1212 2496 : CALL timestop(handle)
1213 :
1214 27456 : END SUBROUTINE compute_Wc_real_space_tau_GW
1215 :
1216 : ! **************************************************************************************************
1217 : !> \brief ...
1218 : !> \param fm_mat_W ...
1219 : !> \param fm_matrix_Minv ...
1220 : !> \param para_env ...
1221 : !> \param dimen_RI ...
1222 : !> \param num_integ_points ...
1223 : ! **************************************************************************************************
1224 16 : SUBROUTINE Wc_to_Minv_Wc_Minv(fm_mat_W, fm_matrix_Minv, para_env, dimen_RI, num_integ_points)
1225 : TYPE(cp_fm_type), DIMENSION(:) :: fm_mat_W
1226 : TYPE(cp_fm_type), DIMENSION(:, :) :: fm_matrix_Minv
1227 : TYPE(mp_para_env_type), INTENT(IN), POINTER :: para_env
1228 : INTEGER :: dimen_RI, num_integ_points
1229 :
1230 : CHARACTER(LEN=*), PARAMETER :: routineN = 'Wc_to_Minv_Wc_Minv'
1231 :
1232 : INTEGER :: handle, jquad
1233 : TYPE(cp_fm_type) :: fm_work_Minv, fm_work_Minv_W
1234 :
1235 16 : CALL timeset(routineN, handle)
1236 :
1237 16 : CALL cp_fm_create(fm_work_Minv, fm_mat_W(1)%matrix_struct)
1238 16 : CALL cp_fm_copy_general(fm_matrix_Minv(1, 1), fm_work_Minv, para_env)
1239 :
1240 16 : CALL cp_fm_create(fm_work_Minv_W, fm_mat_W(1)%matrix_struct)
1241 :
1242 112 : DO jquad = 1, num_integ_points
1243 :
1244 : CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_work_Minv, fm_mat_W(jquad), &
1245 96 : 0.0_dp, fm_work_Minv_W)
1246 : CALL parallel_gemm('N', 'N', dimen_RI, dimen_RI, dimen_RI, 1.0_dp, fm_work_Minv_W, fm_work_Minv, &
1247 112 : 0.0_dp, fm_mat_W(jquad))
1248 :
1249 : END DO
1250 :
1251 16 : CALL cp_fm_release(fm_work_Minv)
1252 :
1253 16 : CALL cp_fm_release(fm_work_Minv_W)
1254 :
1255 16 : CALL timestop(handle)
1256 :
1257 16 : END SUBROUTINE Wc_to_Minv_Wc_Minv
1258 :
1259 : ! **************************************************************************************************
1260 : !> \brief ...
1261 : !> \param qs_env ...
1262 : !> \param wkp_W ...
1263 : !> \param wkp_V ...
1264 : !> \param kpoints ...
1265 : !> \param h_inv ...
1266 : !> \param periodic ...
1267 : ! **************************************************************************************************
1268 20 : SUBROUTINE compute_wkp_W(qs_env, wkp_W, wkp_V, kpoints, h_inv, periodic)
1269 :
1270 : TYPE(qs_environment_type), POINTER :: qs_env
1271 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:), &
1272 : INTENT(OUT) :: wkp_W, wkp_V
1273 : TYPE(kpoint_type), POINTER :: kpoints
1274 : REAL(KIND=dp), DIMENSION(3, 3) :: h_inv
1275 : INTEGER, DIMENSION(3) :: periodic
1276 :
1277 : CHARACTER(LEN=*), PARAMETER :: routineN = 'compute_wkp_W'
1278 :
1279 : INTEGER :: handle, i_x, ikp, info, j_y, k_z, &
1280 : kpoint_weights_W_method, n_x, n_y, &
1281 : n_z, nkp, nsuperfine, num_lin_eqs
1282 : REAL(KIND=dp) :: exp_kpoints, integral, k_sq, weight
1283 : REAL(KIND=dp), DIMENSION(3) :: k_vec, x_vec
1284 20 : REAL(KIND=dp), DIMENSION(:), POINTER :: right_side, wkp, wkp_tmp
1285 20 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: matrix_lin_eqs, xkp
1286 :
1287 20 : CALL timeset(routineN, handle)
1288 :
1289 20 : kpoint_weights_W_method = qs_env%mp2_env%ri_rpa_im_time%kpoint_weights_W_method
1290 :
1291 20 : CALL get_kpoint_info(kpoints, xkp=xkp, wkp=wkp, nkp=nkp)
1292 :
1293 : ! we determine the kpoint weights of the Monkhors Pack mesh new
1294 : ! such that the functions 1/k^2, 1/k and const are integrated exactly
1295 : ! in the Brillouin zone
1296 : ! this is done by minimizing sum_i |w_i|^2 where w_i are the weights of
1297 : ! the i-th kpoint under the following constraints:
1298 : ! 1) 1/k^2, 1/k and const are integrated exactly
1299 : ! 2) the kpoint weights of kpoints with identical absolute value are
1300 : ! the same, of e.g. (1/8,3/8,3/8) same weight as for (3/8,1/8,3/8)
1301 : ! for 1d and 2d materials: we use ordinary Monkhorst-Pack weights, checked
1302 : ! by SUM(periodic) == 3
1303 80 : ALLOCATE (wkp_V(nkp), wkp_W(nkp))
1304 :
1305 : ! for exchange part of self-energy, we use truncated Coulomb operator that should be fine
1306 : ! with uniform weights (without k-point extrapolation)
1307 20 : IF (ALLOCATED(qs_env%mp2_env%ri_rpa_im_time%wkp_V)) THEN
1308 432 : wkp_V(:) = qs_env%mp2_env%ri_rpa_im_time%wkp_V(:)
1309 : ELSE
1310 12 : wkp_V(:) = wkp(:)
1311 : END IF
1312 :
1313 20 : IF (kpoint_weights_W_method == kp_weights_W_uniform) THEN
1314 :
1315 : ! in the k-point weights wkp, there might be k-point extrapolation included
1316 444 : wkp_W(:) = wkp(:)
1317 :
1318 0 : ELSE IF (kpoint_weights_W_method == kp_weights_W_tailored .OR. &
1319 : kpoint_weights_W_method == kp_weights_W_auto) THEN
1320 :
1321 0 : IF (kpoint_weights_W_method == kp_weights_W_tailored) &
1322 0 : exp_kpoints = qs_env%mp2_env%ri_rpa_im_time%exp_tailored_weights
1323 :
1324 0 : IF (kpoint_weights_W_method == kp_weights_W_auto) THEN
1325 0 : IF (SUM(periodic) == 2) exp_kpoints = -1.0_dp
1326 : END IF
1327 :
1328 : ! first, compute the integral of f(k)=1/k^2 and 1/k on super fine grid
1329 0 : nsuperfine = 500
1330 0 : integral = 0.0_dp
1331 :
1332 0 : IF (periodic(1) == 1) THEN
1333 : n_x = nsuperfine
1334 : ELSE
1335 0 : n_x = 1
1336 : END IF
1337 0 : IF (periodic(2) == 1) THEN
1338 : n_y = nsuperfine
1339 : ELSE
1340 0 : n_y = 1
1341 : END IF
1342 0 : IF (periodic(3) == 1) THEN
1343 : n_z = nsuperfine
1344 : ELSE
1345 0 : n_z = 1
1346 : END IF
1347 :
1348 : ! actually, there is the factor *det_3x3(h_inv) missing to account for the
1349 : ! integration volume but for wkp det_3x3(h_inv) is needed
1350 0 : weight = 1.0_dp/(REAL(n_x, dp)*REAL(n_y, dp)*REAL(n_z, dp))
1351 0 : DO i_x = 1, n_x
1352 0 : DO j_y = 1, n_y
1353 0 : DO k_z = 1, n_z
1354 :
1355 0 : IF (periodic(1) == 1) THEN
1356 0 : x_vec(1) = (REAL(i_x - nsuperfine/2, dp) - 0.5_dp)/REAL(nsuperfine, dp)
1357 : ELSE
1358 0 : x_vec(1) = 0.0_dp
1359 : END IF
1360 0 : IF (periodic(2) == 1) THEN
1361 0 : x_vec(2) = (REAL(j_y - nsuperfine/2, dp) - 0.5_dp)/REAL(nsuperfine, dp)
1362 : ELSE
1363 0 : x_vec(2) = 0.0_dp
1364 : END IF
1365 0 : IF (periodic(3) == 1) THEN
1366 0 : x_vec(3) = (REAL(k_z - nsuperfine/2, dp) - 0.5_dp)/REAL(nsuperfine, dp)
1367 : ELSE
1368 0 : x_vec(3) = 0.0_dp
1369 : END IF
1370 :
1371 0 : k_vec = MATMUL(h_inv(1:3, 1:3), x_vec)
1372 0 : k_sq = k_vec(1)**2 + k_vec(2)**2 + k_vec(3)**2
1373 0 : integral = integral + weight*k_sq**(exp_kpoints*0.5_dp)
1374 :
1375 : END DO
1376 : END DO
1377 : END DO
1378 :
1379 0 : num_lin_eqs = nkp + 2
1380 :
1381 0 : ALLOCATE (matrix_lin_eqs(num_lin_eqs, num_lin_eqs))
1382 0 : matrix_lin_eqs(:, :) = 0.0_dp
1383 :
1384 0 : DO ikp = 1, nkp
1385 :
1386 0 : k_vec = MATMUL(h_inv(1:3, 1:3), xkp(1:3, ikp))
1387 0 : k_sq = k_vec(1)**2 + k_vec(2)**2 + k_vec(3)**2
1388 :
1389 0 : matrix_lin_eqs(ikp, ikp) = 2.0_dp
1390 0 : matrix_lin_eqs(ikp, nkp + 1) = 1.0_dp
1391 0 : matrix_lin_eqs(nkp + 1, ikp) = 1.0_dp
1392 :
1393 0 : matrix_lin_eqs(ikp, nkp + 2) = k_sq**(exp_kpoints*0.5_dp)
1394 0 : matrix_lin_eqs(nkp + 2, ikp) = k_sq**(exp_kpoints*0.5_dp)
1395 :
1396 : END DO
1397 :
1398 0 : CALL invmat(matrix_lin_eqs, info)
1399 : ! check whether inversion was successful
1400 0 : CPASSERT(info == 0)
1401 :
1402 0 : ALLOCATE (right_side(num_lin_eqs))
1403 0 : right_side = 0.0_dp
1404 0 : right_side(nkp + 1) = 1.0_dp
1405 : ! divide integral by two because CP2K k-mesh already considers symmetry k <-> -k
1406 0 : right_side(nkp + 2) = integral
1407 :
1408 0 : ALLOCATE (wkp_tmp(num_lin_eqs))
1409 :
1410 0 : wkp_tmp(1:num_lin_eqs) = MATMUL(matrix_lin_eqs, right_side)
1411 :
1412 0 : wkp_W(1:nkp) = wkp_tmp(1:nkp)
1413 :
1414 0 : DEALLOCATE (matrix_lin_eqs, right_side, wkp_tmp)
1415 :
1416 : END IF
1417 :
1418 20 : CALL timestop(handle)
1419 :
1420 20 : END SUBROUTINE
1421 :
1422 : ! **************************************************************************************************
1423 : !> \brief ...
1424 : !> \param qs_env ...
1425 : !> \param Eigenval_kp ...
1426 : ! **************************************************************************************************
1427 16 : SUBROUTINE get_bandstruc_and_k_dependent_MOs(qs_env, Eigenval_kp)
1428 : TYPE(qs_environment_type), POINTER :: qs_env
1429 : REAL(KIND=dp), ALLOCATABLE, DIMENSION(:, :, :) :: Eigenval_kp
1430 :
1431 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_bandstruc_and_k_dependent_MOs'
1432 :
1433 : INTEGER :: handle, ikp, ispin, nmo, nspins
1434 : INTEGER, DIMENSION(3) :: nkp_grid_G
1435 16 : REAL(KIND=dp), DIMENSION(:), POINTER :: ev
1436 16 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: kpgeneral
1437 : TYPE(kpoint_type), POINTER :: kpoints_Sigma
1438 : TYPE(mp_para_env_type), POINTER :: para_env
1439 :
1440 16 : CALL timeset(routineN, handle)
1441 :
1442 : NULLIFY (qs_env%mp2_env%ri_rpa_im_time%kpoints_G, &
1443 16 : qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma, &
1444 16 : qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma_no_xc, &
1445 16 : para_env)
1446 :
1447 16 : nkp_grid_G(1:3) = (/1, 1, 1/)
1448 :
1449 16 : CALL get_qs_env(qs_env=qs_env, para_env=para_env)
1450 :
1451 : CALL create_kp_and_calc_kp_orbitals(qs_env, qs_env%mp2_env%ri_rpa_im_time%kpoints_G, &
1452 : "MONKHORST-PACK", para_env%num_pe, &
1453 16 : mp_grid=nkp_grid_G(1:3))
1454 :
1455 16 : IF (qs_env%mp2_env%ri_g0w0%do_kpoints_Sigma) THEN
1456 :
1457 : ! set up k-points for GW band structure calculation, will be completed later
1458 16 : CALL get_kpgeneral_for_Sigma_kpoints(qs_env, kpgeneral)
1459 :
1460 : CALL create_kp_and_calc_kp_orbitals(qs_env, qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma, &
1461 : "GENERAL", para_env%num_pe, &
1462 16 : kpgeneral=kpgeneral)
1463 :
1464 : CALL create_kp_and_calc_kp_orbitals(qs_env, qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma_no_xc, &
1465 : "GENERAL", para_env%num_pe, &
1466 16 : kpgeneral=kpgeneral, with_xc_terms=.FALSE.)
1467 :
1468 16 : kpoints_Sigma => qs_env%mp2_env%ri_rpa_im_time%kpoints_Sigma
1469 16 : nmo = SIZE(Eigenval_kp, 1)
1470 16 : nspins = SIZE(Eigenval_kp, 3)
1471 :
1472 48 : ALLOCATE (qs_env%mp2_env%ri_rpa_im_time%Eigenval_Gamma(nmo))
1473 340 : qs_env%mp2_env%ri_rpa_im_time%Eigenval_Gamma(:) = Eigenval_kp(:, 1, 1)
1474 :
1475 16 : DEALLOCATE (Eigenval_kp)
1476 :
1477 80 : ALLOCATE (Eigenval_kp(nmo, kpoints_Sigma%nkp, nspins))
1478 :
1479 136 : DO ikp = 1, kpoints_Sigma%nkp
1480 :
1481 272 : DO ispin = 1, nspins
1482 :
1483 136 : ev => kpoints_Sigma%kp_env(ikp)%kpoint_env%mos(1, ispin)%eigenvalues
1484 :
1485 3016 : Eigenval_kp(:, ikp, ispin) = ev(:)
1486 :
1487 : END DO
1488 :
1489 : END DO
1490 :
1491 16 : DEALLOCATE (kpgeneral)
1492 :
1493 : END IF
1494 :
1495 16 : CALL release_hfx_stuff(qs_env)
1496 :
1497 16 : CALL timestop(handle)
1498 :
1499 16 : END SUBROUTINE get_bandstruc_and_k_dependent_MOs
1500 :
1501 : ! **************************************************************************************************
1502 : !> \brief releases part of the given qs_env in order to save memory
1503 : !> \param qs_env the object to release
1504 : ! **************************************************************************************************
1505 16 : SUBROUTINE release_hfx_stuff(qs_env)
1506 : TYPE(qs_environment_type), POINTER :: qs_env
1507 :
1508 16 : IF (ASSOCIATED(qs_env%x_data) .AND. .NOT. qs_env%mp2_env%ri_g0w0%do_ri_Sigma_x) THEN
1509 2 : CALL hfx_release(qs_env%x_data)
1510 : END IF
1511 :
1512 16 : END SUBROUTINE release_hfx_stuff
1513 :
1514 : ! **************************************************************************************************
1515 : !> \brief ...
1516 : !> \param qs_env ...
1517 : !> \param kpoints ...
1518 : !> \param scheme ...
1519 : !> \param group_size_ext ...
1520 : !> \param mp_grid ...
1521 : !> \param kpgeneral ...
1522 : !> \param with_xc_terms ...
1523 : ! **************************************************************************************************
1524 336 : SUBROUTINE create_kp_and_calc_kp_orbitals(qs_env, kpoints, scheme, &
1525 48 : group_size_ext, mp_grid, kpgeneral, with_xc_terms)
1526 :
1527 : TYPE(qs_environment_type), POINTER :: qs_env
1528 : TYPE(kpoint_type), POINTER :: kpoints
1529 : CHARACTER(LEN=*), INTENT(IN) :: scheme
1530 : INTEGER :: group_size_ext
1531 : INTEGER, DIMENSION(3), INTENT(IN), OPTIONAL :: mp_grid
1532 : REAL(KIND=dp), DIMENSION(:, :), INTENT(IN), &
1533 : OPTIONAL :: kpgeneral
1534 : LOGICAL, OPTIONAL :: with_xc_terms
1535 :
1536 : CHARACTER(LEN=*), PARAMETER :: routineN = 'create_kp_and_calc_kp_orbitals'
1537 : COMPLEX(KIND=dp), PARAMETER :: cone = CMPLX(1.0_dp, 0.0_dp, KIND=dp), &
1538 : czero = CMPLX(0.0_dp, 0.0_dp, KIND=dp), ione = CMPLX(0.0_dp, 1.0_dp, KIND=dp)
1539 :
1540 : INTEGER :: handle, i_dim, i_re_im, ikp, ispin, nkp, &
1541 : nspins
1542 : INTEGER, DIMENSION(3) :: cell_grid, periodic
1543 : LOGICAL :: my_with_xc_terms
1544 48 : REAL(KIND=dp), DIMENSION(:), POINTER :: eigenvalues
1545 : TYPE(cell_type), POINTER :: cell
1546 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1547 : TYPE(cp_cfm_type) :: cksmat, cmos, csmat, cwork
1548 : TYPE(cp_fm_struct_type), POINTER :: matrix_struct
1549 : TYPE(cp_fm_type) :: fm_work
1550 : TYPE(cp_fm_type), POINTER :: imos, rmos
1551 48 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s, matrix_s_desymm
1552 48 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_ks_kp, mat_s_kp
1553 : TYPE(dft_control_type), POINTER :: dft_control
1554 : TYPE(kpoint_env_type), POINTER :: kp
1555 : TYPE(mp_para_env_type), POINTER :: para_env
1556 : TYPE(qs_scf_env_type), POINTER :: scf_env
1557 : TYPE(scf_control_type), POINTER :: scf_control
1558 :
1559 48 : CALL timeset(routineN, handle)
1560 :
1561 48 : my_with_xc_terms = .TRUE.
1562 48 : IF (PRESENT(with_xc_terms)) my_with_xc_terms = with_xc_terms
1563 :
1564 : CALL get_qs_env(qs_env, &
1565 : para_env=para_env, &
1566 : blacs_env=blacs_env, &
1567 : matrix_s=matrix_s, &
1568 : scf_env=scf_env, &
1569 : scf_control=scf_control, &
1570 48 : cell=cell)
1571 :
1572 : ! get kpoints
1573 : CALL calculate_kpoints_for_bs(kpoints, scheme, kpgeneral=kpgeneral, mp_grid=mp_grid, &
1574 64 : group_size_ext=group_size_ext)
1575 :
1576 48 : CALL kpoint_env_initialize(kpoints, para_env, blacs_env)
1577 :
1578 : ! calculate all MOs that are accessible in the given
1579 : ! Gaussian AO basis, therefore nadd=1E10
1580 48 : CALL kpoint_initialize_mos(kpoints, qs_env%mos, 2000000000)
1581 48 : CALL kpoint_initialize_mo_set(kpoints)
1582 :
1583 48 : CALL get_cell(cell=cell, periodic=periodic)
1584 :
1585 192 : DO i_dim = 1, 3
1586 : ! we have at most 3 neigboring cells per dimension and at least one because
1587 : ! the density response at Gamma is only divided to neighboring
1588 192 : IF (periodic(i_dim) == 1) THEN
1589 96 : cell_grid(i_dim) = MAX(MIN((kpoints%nkp_grid(i_dim)/2)*2 - 1, 1), 3)
1590 : ELSE
1591 48 : cell_grid(i_dim) = 1
1592 : END IF
1593 : END DO
1594 48 : CALL init_cell_index_rpa(cell_grid, kpoints%cell_to_index, kpoints%index_to_cell, cell)
1595 :
1596 : ! get S(k)
1597 48 : CALL get_qs_env(qs_env, matrix_s=matrix_s, scf_env=scf_env, scf_control=scf_control, dft_control=dft_control)
1598 :
1599 48 : NULLIFY (matrix_s_desymm)
1600 48 : CALL dbcsr_allocate_matrix_set(matrix_s_desymm, 1)
1601 48 : ALLOCATE (matrix_s_desymm(1)%matrix)
1602 : CALL dbcsr_create(matrix=matrix_s_desymm(1)%matrix, template=matrix_s(1)%matrix, &
1603 48 : matrix_type=dbcsr_type_no_symmetry)
1604 48 : CALL dbcsr_desymmetrize(matrix_s(1)%matrix, matrix_s_desymm(1)%matrix)
1605 :
1606 48 : CALL mat_kp_from_mat_gamma(qs_env, mat_s_kp, matrix_s_desymm(1)%matrix, kpoints, 1)
1607 :
1608 48 : CALL get_kpoint_info(kpoints, nkp=nkp)
1609 :
1610 48 : matrix_struct => kpoints%kp_env(1)%kpoint_env%wmat(1, 1)%matrix_struct
1611 :
1612 48 : CALL cp_cfm_create(cksmat, matrix_struct)
1613 48 : CALL cp_cfm_create(csmat, matrix_struct)
1614 48 : CALL cp_cfm_create(cmos, matrix_struct)
1615 48 : CALL cp_cfm_create(cwork, matrix_struct)
1616 48 : CALL cp_fm_create(fm_work, matrix_struct)
1617 :
1618 48 : nspins = dft_control%nspins
1619 :
1620 102 : DO ispin = 1, nspins
1621 :
1622 : ! get H(k)
1623 54 : IF (my_with_xc_terms) THEN
1624 36 : CALL mat_kp_from_mat_gamma(qs_env, mat_ks_kp, qs_env%mp2_env%ri_g0w0%matrix_ks(ispin)%matrix, kpoints, ispin)
1625 : ELSE
1626 : CALL mat_kp_from_mat_gamma(qs_env, mat_ks_kp, qs_env%mp2_env%ri_g0w0%matrix_sigma_x_minus_vxc(ispin)%matrix, &
1627 18 : kpoints, ispin)
1628 : END IF
1629 :
1630 392 : DO ikp = 1, nkp
1631 :
1632 290 : CALL copy_dbcsr_to_fm(mat_ks_kp(ikp, 1)%matrix, kpoints%kp_env(ikp)%kpoint_env%wmat(1, ispin))
1633 290 : CALL cp_cfm_scale_and_add_fm(czero, cksmat, cone, kpoints%kp_env(ikp)%kpoint_env%wmat(1, ispin))
1634 :
1635 290 : CALL copy_dbcsr_to_fm(mat_ks_kp(ikp, 2)%matrix, kpoints%kp_env(ikp)%kpoint_env%wmat(2, ispin))
1636 290 : CALL cp_cfm_scale_and_add_fm(cone, cksmat, ione, kpoints%kp_env(ikp)%kpoint_env%wmat(2, ispin))
1637 :
1638 290 : CALL copy_dbcsr_to_fm(mat_s_kp(ikp, 1)%matrix, fm_work)
1639 290 : CALL cp_cfm_scale_and_add_fm(czero, csmat, cone, fm_work)
1640 :
1641 290 : CALL copy_dbcsr_to_fm(mat_s_kp(ikp, 2)%matrix, fm_work)
1642 290 : CALL cp_cfm_scale_and_add_fm(cone, csmat, ione, fm_work)
1643 :
1644 290 : kp => kpoints%kp_env(ikp)%kpoint_env
1645 :
1646 290 : CALL get_mo_set(kp%mos(1, ispin), mo_coeff=rmos, eigenvalues=eigenvalues)
1647 290 : CALL get_mo_set(kp%mos(2, ispin), mo_coeff=imos)
1648 :
1649 290 : IF (scf_env%cholesky_method == cholesky_off .OR. &
1650 : qs_env%mp2_env%ri_rpa_im_time%make_overlap_mat_ao_pos_definite) THEN
1651 0 : CALL cp_cfm_geeig_canon(cksmat, csmat, cmos, eigenvalues, cwork, scf_control%eps_eigval)
1652 : ELSE
1653 290 : CALL cp_cfm_geeig(cksmat, csmat, cmos, eigenvalues, cwork)
1654 : END IF
1655 :
1656 290 : CALL cp_cfm_to_fm(cmos, rmos, imos)
1657 :
1658 12382 : kp%mos(2, ispin)%eigenvalues = eigenvalues
1659 :
1660 : END DO
1661 :
1662 : END DO
1663 :
1664 304 : DO ikp = 1, nkp
1665 816 : DO i_re_im = 1, 2
1666 768 : CALL dbcsr_deallocate_matrix(mat_ks_kp(ikp, i_re_im)%matrix)
1667 : END DO
1668 : END DO
1669 48 : DEALLOCATE (mat_ks_kp)
1670 :
1671 304 : DO ikp = 1, nkp
1672 816 : DO i_re_im = 1, 2
1673 768 : CALL dbcsr_deallocate_matrix(mat_s_kp(ikp, i_re_im)%matrix)
1674 : END DO
1675 : END DO
1676 48 : DEALLOCATE (mat_s_kp)
1677 :
1678 48 : CALL dbcsr_deallocate_matrix(matrix_s_desymm(1)%matrix)
1679 48 : DEALLOCATE (matrix_s_desymm)
1680 :
1681 48 : CALL cp_cfm_release(cksmat)
1682 48 : CALL cp_cfm_release(csmat)
1683 48 : CALL cp_cfm_release(cwork)
1684 48 : CALL cp_cfm_release(cmos)
1685 48 : CALL cp_fm_release(fm_work)
1686 :
1687 48 : CALL timestop(handle)
1688 :
1689 48 : END SUBROUTINE create_kp_and_calc_kp_orbitals
1690 :
1691 : ! **************************************************************************************************
1692 : !> \brief ...
1693 : !> \param qs_env ...
1694 : !> \param mat_kp ...
1695 : !> \param mat_gamma ...
1696 : !> \param kpoints ...
1697 : !> \param ispin ...
1698 : !> \param real_mat_real_space ...
1699 : ! **************************************************************************************************
1700 114 : SUBROUTINE mat_kp_from_mat_gamma(qs_env, mat_kp, mat_gamma, kpoints, ispin, real_mat_real_space)
1701 :
1702 : TYPE(qs_environment_type), POINTER :: qs_env
1703 : TYPE(dbcsr_p_type), DIMENSION(:, :), POINTER :: mat_kp
1704 : TYPE(dbcsr_type) :: mat_gamma
1705 : TYPE(kpoint_type), POINTER :: kpoints
1706 : INTEGER :: ispin
1707 : LOGICAL, INTENT(IN), OPTIONAL :: real_mat_real_space
1708 :
1709 : CHARACTER(LEN=*), PARAMETER :: routineN = 'mat_kp_from_mat_gamma'
1710 :
1711 : INTEGER :: handle, i_cell, i_re_im, ikp, nkp, &
1712 : num_cells
1713 : INTEGER, DIMENSION(3) :: periodic
1714 114 : INTEGER, DIMENSION(:, :, :), POINTER :: cell_to_index
1715 114 : REAL(KIND=dp), DIMENSION(:, :), POINTER :: xkp
1716 : TYPE(cell_type), POINTER :: cell
1717 114 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: mat_real_space
1718 :
1719 114 : CALL timeset(routineN, handle)
1720 :
1721 114 : CALL get_qs_env(qs_env, cell=cell)
1722 114 : CALL get_cell(cell=cell, periodic=periodic)
1723 114 : num_cells = 3**(periodic(1) + periodic(2) + periodic(3))
1724 :
1725 114 : NULLIFY (mat_real_space)
1726 114 : CALL dbcsr_allocate_matrix_set(mat_real_space, num_cells)
1727 1140 : DO i_cell = 1, num_cells
1728 1026 : ALLOCATE (mat_real_space(i_cell)%matrix)
1729 : CALL dbcsr_create(matrix=mat_real_space(i_cell)%matrix, &
1730 1026 : template=mat_gamma)
1731 1026 : CALL dbcsr_reserve_all_blocks(mat_real_space(i_cell)%matrix)
1732 1140 : CALL dbcsr_set(mat_real_space(i_cell)%matrix, 0.0_dp)
1733 : END DO
1734 :
1735 114 : CALL dbcsr_copy(mat_real_space(1)%matrix, mat_gamma)
1736 :
1737 114 : CALL get_mat_cell_T_from_mat_gamma(mat_real_space, qs_env, kpoints, 2, 0)
1738 :
1739 114 : NULLIFY (xkp, cell_to_index)
1740 114 : CALL get_kpoint_info(kpoints, nkp=nkp, xkp=xkp, cell_to_index=cell_to_index)
1741 :
1742 114 : IF (ispin == 1) THEN
1743 108 : NULLIFY (mat_kp)
1744 108 : CALL dbcsr_allocate_matrix_set(mat_kp, nkp, 2)
1745 668 : DO ikp = 1, nkp
1746 1788 : DO i_re_im = 1, 2
1747 1120 : ALLOCATE (mat_kp(ikp, i_re_im)%matrix)
1748 1120 : CALL dbcsr_create(matrix=mat_kp(ikp, i_re_im)%matrix, template=mat_gamma)
1749 1120 : CALL dbcsr_reserve_all_blocks(mat_kp(ikp, i_re_im)%matrix)
1750 1680 : CALL dbcsr_set(mat_kp(ikp, i_re_im)%matrix, 0.0_dp)
1751 : END DO
1752 : END DO
1753 : END IF
1754 :
1755 114 : IF (PRESENT(real_mat_real_space)) THEN
1756 : CALL real_space_to_kpoint_transform_rpa(mat_kp(:, 1), mat_kp(:, 2), mat_real_space, kpoints, 0.0_dp, &
1757 12 : real_mat_real_space)
1758 : ELSE
1759 102 : CALL real_space_to_kpoint_transform_rpa(mat_kp(:, 1), mat_kp(:, 2), mat_real_space, kpoints, 0.0_dp)
1760 : END IF
1761 :
1762 1140 : DO i_cell = 1, num_cells
1763 1140 : CALL dbcsr_deallocate_matrix(mat_real_space(i_cell)%matrix)
1764 : END DO
1765 114 : DEALLOCATE (mat_real_space)
1766 :
1767 114 : CALL timestop(handle)
1768 :
1769 114 : END SUBROUTINE mat_kp_from_mat_gamma
1770 :
1771 : ! **************************************************************************************************
1772 : !> \brief ...
1773 : !> \param qs_env ...
1774 : !> \param kpgeneral ...
1775 : ! **************************************************************************************************
1776 16 : SUBROUTINE get_kpgeneral_for_Sigma_kpoints(qs_env, kpgeneral)
1777 : TYPE(qs_environment_type), INTENT(IN), POINTER :: qs_env
1778 : REAL(kind=dp), DIMENSION(:, :), POINTER :: kpgeneral
1779 :
1780 : CHARACTER(LEN=*), PARAMETER :: routineN = 'get_kpgeneral_for_Sigma_kpoints'
1781 :
1782 : INTEGER :: handle, i_kp_in_kp_line, i_special_kp, &
1783 : i_x, ikk, j_y, k_z, n_kp_in_kp_line, &
1784 : n_special_kp
1785 16 : INTEGER, DIMENSION(:), POINTER :: nkp_grid
1786 :
1787 16 : CALL timeset(routineN, handle)
1788 :
1789 16 : n_special_kp = qs_env%mp2_env%ri_g0w0%n_special_kp
1790 16 : n_kp_in_kp_line = qs_env%mp2_env%ri_g0w0%n_kp_in_kp_line
1791 16 : IF (n_special_kp > 0) THEN
1792 14 : qs_env%mp2_env%ri_g0w0%nkp_self_energy_special_kp = n_kp_in_kp_line*(n_special_kp - 1) + 1
1793 : ELSE
1794 2 : qs_env%mp2_env%ri_g0w0%nkp_self_energy_special_kp = 0
1795 : END IF
1796 :
1797 : qs_env%mp2_env%ri_g0w0%nkp_self_energy_monkh_pack = qs_env%mp2_env%ri_g0w0%kp_grid_Sigma(1)* &
1798 : qs_env%mp2_env%ri_g0w0%kp_grid_Sigma(2)* &
1799 16 : qs_env%mp2_env%ri_g0w0%kp_grid_Sigma(3)
1800 :
1801 : qs_env%mp2_env%ri_g0w0%nkp_self_energy = qs_env%mp2_env%ri_g0w0%nkp_self_energy_special_kp + &
1802 16 : qs_env%mp2_env%ri_g0w0%nkp_self_energy_monkh_pack
1803 :
1804 48 : ALLOCATE (kpgeneral(3, qs_env%mp2_env%ri_g0w0%nkp_self_energy))
1805 :
1806 16 : IF (n_special_kp > 0) THEN
1807 :
1808 112 : kpgeneral(1:3, 1) = qs_env%mp2_env%ri_g0w0%xkp_special_kp(1:3, 1)
1809 :
1810 14 : ikk = 1
1811 :
1812 28 : DO i_special_kp = 2, n_special_kp
1813 70 : DO i_kp_in_kp_line = 1, n_kp_in_kp_line
1814 :
1815 42 : ikk = ikk + 1
1816 : kpgeneral(1:3, ikk) = qs_env%mp2_env%ri_g0w0%xkp_special_kp(1:3, i_special_kp - 1) + &
1817 : REAL(i_kp_in_kp_line, KIND=dp)/REAL(n_kp_in_kp_line, KIND=dp)* &
1818 : (qs_env%mp2_env%ri_g0w0%xkp_special_kp(1:3, i_special_kp) - &
1819 350 : qs_env%mp2_env%ri_g0w0%xkp_special_kp(1:3, i_special_kp - 1))
1820 :
1821 : END DO
1822 : END DO
1823 :
1824 : ELSE
1825 :
1826 : ikk = 0
1827 :
1828 : END IF
1829 :
1830 16 : nkp_grid => qs_env%mp2_env%ri_g0w0%kp_grid_Sigma
1831 :
1832 48 : DO i_x = 1, nkp_grid(1)
1833 112 : DO j_y = 1, nkp_grid(2)
1834 160 : DO k_z = 1, nkp_grid(3)
1835 64 : ikk = ikk + 1
1836 64 : kpgeneral(1, ikk) = REAL(2*i_x - nkp_grid(1) - 1, KIND=dp)/(2._dp*REAL(nkp_grid(1), KIND=dp))
1837 64 : kpgeneral(2, ikk) = REAL(2*j_y - nkp_grid(2) - 1, KIND=dp)/(2._dp*REAL(nkp_grid(2), KIND=dp))
1838 128 : kpgeneral(3, ikk) = REAL(2*k_z - nkp_grid(3) - 1, KIND=dp)/(2._dp*REAL(nkp_grid(3), KIND=dp))
1839 : END DO
1840 : END DO
1841 : END DO
1842 :
1843 16 : CALL timestop(handle)
1844 :
1845 16 : END SUBROUTINE get_kpgeneral_for_Sigma_kpoints
1846 :
1847 0 : END MODULE rpa_gw_kpoints_util
|