LCOV - code coverage report
Current view: top level - src - xas_tdp_atom.F (source / functions) Coverage Total Hit
Test: CP2K Regtests (git:42dac4a) Lines: 96.2 % 1135 1092
Test Date: 2025-07-25 12:55:17 Functions: 95.0 % 20 19

            Line data    Source code
       1              : !--------------------------------------------------------------------------------------------------!
       2              : !   CP2K: A general program to perform molecular dynamics simulations                              !
       3              : !   Copyright 2000-2025 CP2K developers group <https://cp2k.org>                                   !
       4              : !                                                                                                  !
       5              : !   SPDX-License-Identifier: GPL-2.0-or-later                                                      !
       6              : !--------------------------------------------------------------------------------------------------!
       7              : 
       8              : ! **************************************************************************************************
       9              : !> \brief This module deals with all the integrals done on local atomic grids in xas_tdp. This is
      10              : !>        mostly used to compute the xc kernel matrix elements wrt two RI basis elements (centered
      11              : !>        on the same excited atom) <P|fxc(r)|Q>, where the kernel fxc is purely a function of the
      12              : !>        ground state density and r. This is also used to compute the SOC matrix elements in the
      13              : !>        orbital basis
      14              : ! **************************************************************************************************
      15              : MODULE xas_tdp_atom
      16              :    USE ai_contraction_sphi,             ONLY: ab_contract
      17              :    USE atom_operators,                  ONLY: calculate_model_potential
      18              :    USE basis_set_types,                 ONLY: get_gto_basis_set,&
      19              :                                               gto_basis_set_p_type,&
      20              :                                               gto_basis_set_type
      21              :    USE cell_types,                      ONLY: cell_type,&
      22              :                                               pbc
      23              :    USE cp_array_utils,                  ONLY: cp_1d_i_p_type,&
      24              :                                               cp_1d_r_p_type,&
      25              :                                               cp_2d_r_p_type,&
      26              :                                               cp_3d_r_p_type
      27              :    USE cp_blacs_env,                    ONLY: cp_blacs_env_type
      28              :    USE cp_control_types,                ONLY: dft_control_type,&
      29              :                                               qs_control_type
      30              :    USE cp_dbcsr_api,                    ONLY: &
      31              :         dbcsr_copy, dbcsr_create, dbcsr_distribution_get, dbcsr_distribution_new, &
      32              :         dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_filter, dbcsr_finalize, &
      33              :         dbcsr_get_block_p, dbcsr_get_stored_coordinates, dbcsr_iterator_blocks_left, &
      34              :         dbcsr_iterator_next_block, dbcsr_iterator_readonly_start, dbcsr_iterator_start, &
      35              :         dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_p_type, dbcsr_put_block, dbcsr_release, &
      36              :         dbcsr_replicate_all, dbcsr_set, dbcsr_type, dbcsr_type_antisymmetric, &
      37              :         dbcsr_type_no_symmetry, dbcsr_type_symmetric
      38              :    USE cp_dbcsr_cholesky,               ONLY: cp_dbcsr_cholesky_decompose,&
      39              :                                               cp_dbcsr_cholesky_invert
      40              :    USE cp_dbcsr_operations,             ONLY: dbcsr_deallocate_matrix_set
      41              :    USE cp_log_handling,                 ONLY: cp_logger_get_default_io_unit
      42              :    USE dbt_api,                         ONLY: dbt_destroy,&
      43              :                                               dbt_get_block,&
      44              :                                               dbt_iterator_blocks_left,&
      45              :                                               dbt_iterator_next_block,&
      46              :                                               dbt_iterator_start,&
      47              :                                               dbt_iterator_stop,&
      48              :                                               dbt_iterator_type,&
      49              :                                               dbt_type
      50              :    USE input_constants,                 ONLY: do_potential_id
      51              :    USE input_section_types,             ONLY: section_vals_get_subs_vals,&
      52              :                                               section_vals_type
      53              :    USE kinds,                           ONLY: default_string_length,&
      54              :                                               dp
      55              :    USE lebedev,                         ONLY: deallocate_lebedev_grids,&
      56              :                                               get_number_of_lebedev_grid,&
      57              :                                               init_lebedev_grids,&
      58              :                                               lebedev_grid
      59              :    USE libint_2c_3c,                    ONLY: libint_potential_type
      60              :    USE mathlib,                         ONLY: get_diag,&
      61              :                                               invmat_symm
      62              :    USE memory_utilities,                ONLY: reallocate
      63              :    USE message_passing,                 ONLY: mp_comm_type,&
      64              :                                               mp_para_env_type,&
      65              :                                               mp_request_type,&
      66              :                                               mp_waitall
      67              :    USE orbital_pointers,                ONLY: indco,&
      68              :                                               indso,&
      69              :                                               nco,&
      70              :                                               ncoset,&
      71              :                                               nso,&
      72              :                                               nsoset
      73              :    USE orbital_transformation_matrices, ONLY: orbtramat
      74              :    USE particle_methods,                ONLY: get_particle_set
      75              :    USE particle_types,                  ONLY: particle_type
      76              :    USE physcon,                         ONLY: c_light_au
      77              :    USE qs_environment_types,            ONLY: get_qs_env,&
      78              :                                               qs_environment_type
      79              :    USE qs_grid_atom,                    ONLY: allocate_grid_atom,&
      80              :                                               create_grid_atom,&
      81              :                                               grid_atom_type
      82              :    USE qs_harmonics_atom,               ONLY: allocate_harmonics_atom,&
      83              :                                               create_harmonics_atom,&
      84              :                                               get_maxl_CG,&
      85              :                                               get_none0_cg_list,&
      86              :                                               harmonics_atom_type
      87              :    USE qs_integral_utils,               ONLY: basis_set_list_setup
      88              :    USE qs_kind_types,                   ONLY: get_qs_kind,&
      89              :                                               get_qs_kind_set,&
      90              :                                               qs_kind_type
      91              :    USE qs_neighbor_list_types,          ONLY: neighbor_list_set_p_type,&
      92              :                                               release_neighbor_list_sets
      93              :    USE qs_overlap,                      ONLY: build_overlap_matrix_simple
      94              :    USE qs_rho_types,                    ONLY: qs_rho_get,&
      95              :                                               qs_rho_type
      96              :    USE qs_tddfpt2_soc_types,            ONLY: soc_atom_env_type
      97              :    USE spherical_harmonics,             ONLY: clebsch_gordon,&
      98              :                                               clebsch_gordon_deallocate,&
      99              :                                               clebsch_gordon_init
     100              :    USE util,                            ONLY: get_limit,&
     101              :                                               sort_unique
     102              :    USE xas_tdp_integrals,               ONLY: build_xas_tdp_3c_nl,&
     103              :                                               build_xas_tdp_ovlp_nl,&
     104              :                                               create_pqX_tensor,&
     105              :                                               fill_pqx_tensor
     106              :    USE xas_tdp_types,                   ONLY: batch_info_type,&
     107              :                                               get_proc_batch_sizes,&
     108              :                                               release_batch_info,&
     109              :                                               xas_atom_env_type,&
     110              :                                               xas_tdp_control_type,&
     111              :                                               xas_tdp_env_type
     112              :    USE xc,                              ONLY: divide_by_norm_drho
     113              :    USE xc_atom,                         ONLY: xc_rho_set_atom_update
     114              :    USE xc_derivative_desc,              ONLY: deriv_norm_drho,&
     115              :                                               deriv_norm_drhoa,&
     116              :                                               deriv_norm_drhob,&
     117              :                                               deriv_rhoa,&
     118              :                                               deriv_rhob
     119              :    USE xc_derivative_set_types,         ONLY: xc_derivative_set_type,&
     120              :                                               xc_dset_create,&
     121              :                                               xc_dset_get_derivative,&
     122              :                                               xc_dset_release
     123              :    USE xc_derivative_types,             ONLY: xc_derivative_get,&
     124              :                                               xc_derivative_type
     125              :    USE xc_derivatives,                  ONLY: xc_functionals_eval,&
     126              :                                               xc_functionals_get_needs
     127              :    USE xc_rho_cflags_types,             ONLY: xc_rho_cflags_type
     128              :    USE xc_rho_set_types,                ONLY: xc_rho_set_create,&
     129              :                                               xc_rho_set_release,&
     130              :                                               xc_rho_set_type
     131              : 
     132              : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
     133              : #include "./base/base_uses.f90"
     134              : 
     135              :    IMPLICIT NONE
     136              : 
     137              :    PRIVATE
     138              : 
     139              :    CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'xas_tdp_atom'
     140              : 
     141              :    PUBLIC :: init_xas_atom_env, &
     142              :              integrate_fxc_atoms, &
     143              :              integrate_soc_atoms, &
     144              :              calculate_density_coeffs, &
     145              :              compute_sphi_so, &
     146              :              truncate_radial_grid, &
     147              :              init_xas_atom_grid_harmo
     148              : 
     149              : CONTAINS
     150              : 
     151              : ! **************************************************************************************************
     152              : !> \brief Initializes a xas_atom_env type given the qs_enxas_atom_env, qs_envv
     153              : !> \param xas_atom_env the xas_atom_env to initialize
     154              : !> \param xas_tdp_env ...
     155              : !> \param xas_tdp_control ...
     156              : !> \param qs_env ...
     157              : !> \param ltddfpt ...
     158              : ! **************************************************************************************************
     159           58 :    SUBROUTINE init_xas_atom_env(xas_atom_env, xas_tdp_env, xas_tdp_control, qs_env, ltddfpt)
     160              : 
     161              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     162              :       TYPE(xas_tdp_env_type), POINTER                    :: xas_tdp_env
     163              :       TYPE(xas_tdp_control_type), POINTER                :: xas_tdp_control
     164              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     165              :       LOGICAL, OPTIONAL                                  :: ltddfpt
     166              : 
     167              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'init_xas_atom_env'
     168              : 
     169              :       INTEGER                                            :: handle, ikind, natom, nex_atoms, &
     170              :                                                             nex_kinds, nkind, nspins
     171              :       LOGICAL                                            :: do_xc
     172           58 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     173           58 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     174              : 
     175           58 :       NULLIFY (qs_kind_set, particle_set)
     176              : 
     177           58 :       CALL timeset(routineN, handle)
     178              : 
     179              : !  Initializing the type
     180           58 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, natom=natom, particle_set=particle_set)
     181              : 
     182           58 :       nkind = SIZE(qs_kind_set)
     183           58 :       nex_kinds = xas_tdp_env%nex_kinds
     184           58 :       nex_atoms = xas_tdp_env%nex_atoms
     185           58 :       do_xc = xas_tdp_control%do_xc
     186           58 :       IF (PRESENT(ltddfpt)) THEN
     187            0 :          IF (ltddfpt) do_xc = .FALSE.
     188              :       END IF
     189           58 :       nspins = 1; IF (xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks) nspins = 2
     190              : 
     191           58 :       xas_atom_env%nspins = nspins
     192           58 :       xas_atom_env%ri_radius = xas_tdp_control%ri_radius
     193          264 :       ALLOCATE (xas_atom_env%grid_atom_set(nkind))
     194          264 :       ALLOCATE (xas_atom_env%harmonics_atom_set(nkind))
     195          264 :       ALLOCATE (xas_atom_env%ri_sphi_so(nkind))
     196          264 :       ALLOCATE (xas_atom_env%orb_sphi_so(nkind))
     197           58 :       IF (do_xc) THEN
     198          220 :          ALLOCATE (xas_atom_env%gr(nkind))
     199          220 :          ALLOCATE (xas_atom_env%ga(nkind))
     200          220 :          ALLOCATE (xas_atom_env%dgr1(nkind))
     201          220 :          ALLOCATE (xas_atom_env%dgr2(nkind))
     202          220 :          ALLOCATE (xas_atom_env%dga1(nkind))
     203          220 :          ALLOCATE (xas_atom_env%dga2(nkind))
     204              :       END IF
     205              : 
     206           58 :       xas_atom_env%excited_atoms => xas_tdp_env%ex_atom_indices
     207           58 :       xas_atom_env%excited_kinds => xas_tdp_env%ex_kind_indices
     208              : 
     209              : !  Allocate and initialize the atomic grids and harmonics
     210           58 :       CALL init_xas_atom_grid_harmo(xas_atom_env, xas_tdp_control%grid_info, do_xc, qs_env)
     211              : 
     212              : !  Compute the contraction coefficients for spherical orbitals
     213          148 :       DO ikind = 1, nkind
     214           90 :          NULLIFY (xas_atom_env%orb_sphi_so(ikind)%array, xas_atom_env%ri_sphi_so(ikind)%array)
     215           90 :          CALL compute_sphi_so(ikind, "ORB", xas_atom_env%orb_sphi_so(ikind)%array, qs_env)
     216          182 :          IF (ANY(xas_atom_env%excited_kinds == ikind)) THEN
     217           64 :             CALL compute_sphi_so(ikind, "RI_XAS", xas_atom_env%ri_sphi_so(ikind)%array, qs_env)
     218              :          END IF
     219              :       END DO !ikind
     220              : 
     221              : !  Compute the coefficients to expand the density in the RI_XAS basis, if requested
     222           58 :       IF (do_xc .AND. (.NOT. xas_tdp_control%xps_only)) THEN
     223           48 :          CALL calculate_density_coeffs(xas_atom_env=xas_atom_env, qs_env=qs_env)
     224              :       END IF
     225              : 
     226           58 :       CALL timestop(handle)
     227              : 
     228           58 :    END SUBROUTINE init_xas_atom_env
     229              : 
     230              : ! **************************************************************************************************
     231              : !> \brief Initializes the atomic grids and harmonics for the RI atomic calculations
     232              : !> \param xas_atom_env ...
     233              : !> \param grid_info ...
     234              : !> \param do_xc Whether the xc kernel will ne computed on the atomic grids. If not, the harmonics
     235              : !>        are built for the orbital basis for all kinds.
     236              : !> \param qs_env ...
     237              : !> \note Largely inspired by init_rho_atom subroutine
     238              : ! **************************************************************************************************
     239           58 :    SUBROUTINE init_xas_atom_grid_harmo(xas_atom_env, grid_info, do_xc, qs_env)
     240              : 
     241              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     242              :       CHARACTER(len=default_string_length), &
     243              :          DIMENSION(:, :), POINTER                        :: grid_info
     244              :       LOGICAL, INTENT(IN)                                :: do_xc
     245              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     246              : 
     247              :       CHARACTER(LEN=default_string_length)               :: kind_name
     248              :       INTEGER :: igrid, ikind, il, iso, iso1, iso2, l1, l1l2, l2, la, lc1, lc2, lcleb, ll, llmax, &
     249              :          lp, m1, m2, max_s_harm, max_s_set, maxl, maxlgto, maxs, mm, mp, na, nr, quadrature, stat
     250              :       REAL(dp)                                           :: kind_radius
     251           58 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: rga
     252           58 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: my_CG
     253              :       TYPE(dft_control_type), POINTER                    :: dft_control
     254              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
     255              :       TYPE(gto_basis_set_type), POINTER                  :: tmp_basis
     256              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
     257              :       TYPE(qs_control_type), POINTER                     :: qs_control
     258           58 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     259              : 
     260           58 :       NULLIFY (my_CG, qs_kind_set, tmp_basis, grid_atom, harmonics, qs_control, dft_control)
     261              : 
     262              : !  Initialization of some integer for the CG coeff generation
     263           58 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
     264           58 :       IF (do_xc) THEN
     265           48 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, basis_type="RI_XAS")
     266              :       ELSE
     267           10 :          CALL get_qs_kind_set(qs_kind_set, maxlgto=maxlgto, basis_type="ORB")
     268              :       END IF
     269           58 :       qs_control => dft_control%qs_control
     270              : 
     271              :       !maximum expansion
     272           58 :       llmax = 2*maxlgto
     273           58 :       max_s_harm = nsoset(llmax)
     274           58 :       max_s_set = nsoset(maxlgto)
     275           58 :       lcleb = llmax
     276              : 
     277              : !  Allocate and compute the CG coeffs (copied from init_rho_atom)
     278           58 :       CALL clebsch_gordon_init(lcleb)
     279           58 :       CALL reallocate(my_CG, 1, max_s_set, 1, max_s_set, 1, max_s_harm)
     280              : 
     281          174 :       ALLOCATE (rga(lcleb, 2))
     282          272 :       DO lc1 = 0, maxlgto
     283         1110 :          DO iso1 = nsoset(lc1 - 1) + 1, nsoset(lc1)
     284          838 :             l1 = indso(1, iso1)
     285          838 :             m1 = indso(2, iso1)
     286         4566 :             DO lc2 = 0, maxlgto
     287        20190 :                DO iso2 = nsoset(lc2 - 1) + 1, nsoset(lc2)
     288        15838 :                   l2 = indso(1, iso2)
     289        15838 :                   m2 = indso(2, iso2)
     290        15838 :                   CALL clebsch_gordon(l1, m1, l2, m2, rga)
     291        15838 :                   IF (l1 + l2 > llmax) THEN
     292              :                      l1l2 = llmax
     293              :                   ELSE
     294              :                      l1l2 = l1 + l2
     295              :                   END IF
     296        15838 :                   mp = m1 + m2
     297        15838 :                   mm = m1 - m2
     298        15838 :                   IF (m1*m2 < 0 .OR. (m1*m2 == 0 .AND. (m1 < 0 .OR. m2 < 0))) THEN
     299         7500 :                      mp = -ABS(mp)
     300         7500 :                      mm = -ABS(mm)
     301              :                   ELSE
     302         8338 :                      mp = ABS(mp)
     303         8338 :                      mm = ABS(mm)
     304              :                   END IF
     305        73918 :                   DO lp = MOD(l1 + l2, 2), l1l2, 2
     306        54566 :                      il = lp/2 + 1
     307        54566 :                      IF (ABS(mp) <= lp) THEN
     308        37322 :                      IF (mp >= 0) THEN
     309        21462 :                         iso = nsoset(lp - 1) + lp + 1 + mp
     310              :                      ELSE
     311        15860 :                         iso = nsoset(lp - 1) + lp + 1 - ABS(mp)
     312              :                      END IF
     313        37322 :                      my_CG(iso1, iso2, iso) = rga(il, 1)
     314              :                      END IF
     315        70404 :                      IF (mp /= mm .AND. ABS(mm) <= lp) THEN
     316        24156 :                      IF (mm >= 0) THEN
     317        15616 :                         iso = nsoset(lp - 1) + lp + 1 + mm
     318              :                      ELSE
     319         8540 :                         iso = nsoset(lp - 1) + lp + 1 - ABS(mm)
     320              :                      END IF
     321        24156 :                      my_CG(iso1, iso2, iso) = rga(il, 2)
     322              :                      END IF
     323              :                   END DO
     324              :                END DO ! iso2
     325              :             END DO ! lc2
     326              :          END DO ! iso1
     327              :       END DO ! lc1
     328           58 :       DEALLOCATE (rga)
     329           58 :       CALL clebsch_gordon_deallocate()
     330              : 
     331              : !  Create the Lebedev grids and compute the spherical harmonics
     332           58 :       CALL init_lebedev_grids()
     333           58 :       quadrature = qs_control%gapw_control%quadrature
     334              : 
     335          148 :       DO ikind = 1, SIZE(xas_atom_env%grid_atom_set)
     336              : 
     337              : !        Allocate the grid and the harmonics for this kind
     338           90 :          NULLIFY (xas_atom_env%grid_atom_set(ikind)%grid_atom)
     339           90 :          NULLIFY (xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom)
     340           90 :          CALL allocate_grid_atom(xas_atom_env%grid_atom_set(ikind)%grid_atom)
     341           90 :          CALL allocate_harmonics_atom(xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom)
     342              : 
     343           90 :          NULLIFY (grid_atom, harmonics)
     344           90 :          grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
     345           90 :          harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
     346              : 
     347              : !        Initialize some integers
     348           90 :          CALL get_qs_kind(qs_kind_set(ikind), ngrid_rad=nr, ngrid_ang=na, name=kind_name)
     349              : 
     350              :          !take the grid dimension given as input, if none, take the GAPW ones above
     351          264 :          IF (ANY(grid_info == kind_name)) THEN
     352           64 :             DO igrid = 1, SIZE(grid_info, 1)
     353           64 :                IF (grid_info(igrid, 1) == kind_name) THEN
     354              : 
     355              :                   !hack to convert string into integer
     356           58 :                   READ (grid_info(igrid, 2), *, iostat=stat) na
     357           58 :                   IF (stat .NE. 0) CPABORT("The 'na' value for the GRID keyword must be an integer")
     358           58 :                   READ (grid_info(igrid, 3), *, iostat=stat) nr
     359           58 :                   IF (stat .NE. 0) CPABORT("The 'nr' value for the GRID keyword must be an integer")
     360              :                   EXIT
     361              :                END IF
     362              :             END DO
     363           60 :          ELSE IF (do_xc .AND. ANY(xas_atom_env%excited_kinds == ikind)) THEN
     364              :             !need good integration grids for the xc kernel, but taking the default GAPW grid
     365            0 :             CPWARN("The default (and possibly small) GAPW grid is being used for one excited KIND")
     366              :          END IF
     367              : 
     368           90 :          ll = get_number_of_lebedev_grid(n=na)
     369           90 :          na = lebedev_grid(ll)%n
     370           90 :          la = lebedev_grid(ll)%l
     371           90 :          grid_atom%ng_sphere = na
     372           90 :          grid_atom%nr = nr
     373              : 
     374              : !        If this is an excited kind, create the harmonics with the RI_XAS basis, otherwise the ORB
     375          124 :          IF (ANY(xas_atom_env%excited_kinds == ikind) .AND. do_xc) THEN
     376           54 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=tmp_basis, basis_type="RI_XAS")
     377              :          ELSE
     378           36 :             CALL get_qs_kind(qs_kind_set(ikind), basis_set=tmp_basis, basis_type="ORB")
     379              :          END IF
     380           90 :          CALL get_gto_basis_set(gto_basis_set=tmp_basis, maxl=maxl, kind_radius=kind_radius)
     381              : 
     382           90 :          CALL create_grid_atom(grid_atom, nr, na, llmax, ll, quadrature)
     383           90 :          CALL truncate_radial_grid(grid_atom, kind_radius)
     384              : 
     385           90 :          maxs = nsoset(maxl)
     386              :          CALL create_harmonics_atom(harmonics, &
     387              :                                     my_CG, na, llmax, maxs, max_s_harm, ll, grid_atom%wa, &
     388           90 :                                     grid_atom%azi, grid_atom%pol)
     389          328 :          CALL get_maxl_CG(harmonics, tmp_basis, llmax, max_s_harm)
     390              :       END DO
     391              : 
     392           58 :       CALL deallocate_lebedev_grids()
     393           58 :       DEALLOCATE (my_CG)
     394              : 
     395           58 :    END SUBROUTINE init_xas_atom_grid_harmo
     396              : 
     397              : ! **************************************************************************************************
     398              : !> \brief Reduces the radial extension of an atomic grid such that it only covers a given radius
     399              : !> \param grid_atom the atomic grid from which we truncate the radial part
     400              : !> \param max_radius the maximal radial extension of the resulting grid
     401              : !> \note Since the RI density used for <P|fxc|Q> is only of quality close to the atom, and the
     402              : !>       integrand only non-zero within the radius of the gaussian P,Q. One can reduce the grid
     403              : !>       extansion to the largest radius of the RI basis set
     404              : ! **************************************************************************************************
     405           98 :    SUBROUTINE truncate_radial_grid(grid_atom, max_radius)
     406              : 
     407              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
     408              :       REAL(dp), INTENT(IN)                               :: max_radius
     409              : 
     410              :       INTEGER                                            :: first_ir, ir, llmax_p1, na, new_nr, nr
     411              : 
     412           98 :       nr = grid_atom%nr
     413           98 :       na = grid_atom%ng_sphere
     414           98 :       llmax_p1 = SIZE(grid_atom%rad2l, 2) - 1
     415              : 
     416              : !     Find the index corresponding to the limiting radius (small ir => large radius)
     417         2510 :       DO ir = 1, nr
     418         2510 :          IF (grid_atom%rad(ir) < max_radius) THEN
     419              :             first_ir = ir
     420              :             EXIT
     421              :          END IF
     422              :       END DO
     423           98 :       new_nr = nr - first_ir + 1
     424              : 
     425              : !     Reallcoate everything that depends on r
     426           98 :       grid_atom%nr = new_nr
     427              : 
     428        18852 :       grid_atom%rad(1:new_nr) = grid_atom%rad(first_ir:nr)
     429        18852 :       grid_atom%rad2(1:new_nr) = grid_atom%rad2(first_ir:nr)
     430        18852 :       grid_atom%wr(1:new_nr) = grid_atom%wr(first_ir:nr)
     431      2906260 :       grid_atom%weight(:, 1:new_nr) = grid_atom%weight(:, first_ir:nr)
     432       143980 :       grid_atom%rad2l(1:new_nr, :) = grid_atom%rad2l(first_ir:nr, :)
     433       143980 :       grid_atom%oorad2l(1:new_nr, :) = grid_atom%oorad2l(first_ir:nr, :)
     434              : 
     435           98 :       CALL reallocate(grid_atom%rad, 1, new_nr)
     436           98 :       CALL reallocate(grid_atom%rad2, 1, new_nr)
     437           98 :       CALL reallocate(grid_atom%wr, 1, new_nr)
     438           98 :       CALL reallocate(grid_atom%weight, 1, na, 1, new_nr)
     439           98 :       CALL reallocate(grid_atom%rad2l, 1, new_nr, 0, llmax_p1)
     440           98 :       CALL reallocate(grid_atom%oorad2l, 1, new_nr, 0, llmax_p1)
     441              : 
     442           98 :    END SUBROUTINE truncate_radial_grid
     443              : 
     444              : ! **************************************************************************************************
     445              : !> \brief Computes the contraction coefficients to go from spherical orbitals to sgf for a given
     446              : !>        atomic kind and a given basis type.
     447              : !> \param ikind the kind for which we compute the coefficients
     448              : !> \param basis_type the type of basis for which we compute
     449              : !> \param sphi_so where the new contraction coefficients are stored (not yet allocated)
     450              : !> \param qs_env ...
     451              : ! **************************************************************************************************
     452          162 :    SUBROUTINE compute_sphi_so(ikind, basis_type, sphi_so, qs_env)
     453              : 
     454              :       INTEGER, INTENT(IN)                                :: ikind
     455              :       CHARACTER(len=*), INTENT(IN)                       :: basis_type
     456              :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi_so
     457              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     458              : 
     459              :       INTEGER                                            :: ico, ipgf, iset, iso, l, lx, ly, lz, &
     460              :                                                             maxso, nset, sgfi, start_c, start_s
     461          162 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
     462          162 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
     463              :       REAL(dp)                                           :: factor
     464          162 :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi
     465              :       TYPE(gto_basis_set_type), POINTER                  :: basis
     466          162 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     467              : 
     468          162 :       NULLIFY (basis, lmax, lmin, npgf, nsgf_set, qs_kind_set, first_sgf, sphi)
     469              : 
     470          162 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
     471          162 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type=basis_type)
     472              :       CALL get_gto_basis_set(basis, lmax=lmax, nset=nset, npgf=npgf, maxso=maxso, lmin=lmin, &
     473          162 :                              nsgf_set=nsgf_set, sphi=sphi, first_sgf=first_sgf)
     474              : 
     475         1276 :       ALLOCATE (sphi_so(maxso, SUM(nsgf_set)))
     476       584362 :       sphi_so = 0.0_dp
     477              : 
     478          790 :       DO iset = 1, nset
     479          628 :          sgfi = first_sgf(1, iset)
     480         2796 :          DO ipgf = 1, npgf(iset)
     481         2006 :             start_s = (ipgf - 1)*nsoset(lmax(iset))
     482         2006 :             start_c = (ipgf - 1)*ncoset(lmax(iset))
     483         6092 :             DO l = lmin(iset), lmax(iset)
     484        14718 :                DO iso = 1, nso(l)
     485        56946 :                   DO ico = 1, nco(l)
     486        44234 :                      lx = indco(1, ico + ncoset(l - 1))
     487        44234 :                      ly = indco(2, ico + ncoset(l - 1))
     488        44234 :                      lz = indco(3, ico + ncoset(l - 1))
     489              : !MK                     factor = orbtramat(l)%s2c(iso, ico) &
     490              : !MK                              *SQRT(4.0_dp*pi/dfac(2*l + 1)*dfac(2*lx - 1)*dfac(2*ly - 1)*dfac(2*lz - 1))
     491        44234 :                      factor = orbtramat(l)%slm_inv(iso, ico)
     492              :                      sphi_so(start_s + nsoset(l - 1) + iso, sgfi:sgfi + nsgf_set(iset) - 1) = &
     493              :                         sphi_so(start_s + nsoset(l - 1) + iso, sgfi:sgfi + nsgf_set(iset) - 1) + &
     494      4853678 :                         factor*sphi(start_c + ncoset(l - 1) + ico, sgfi:sgfi + nsgf_set(iset) - 1)
     495              :                   END DO ! ico
     496              :                END DO ! iso
     497              :             END DO ! l
     498              :          END DO ! ipgf
     499              :       END DO ! iset
     500              : 
     501          324 :    END SUBROUTINE compute_sphi_so
     502              : 
     503              : ! **************************************************************************************************
     504              : !> \brief Find the neighbors of a given set of atoms based on the non-zero blocks of a provided
     505              : !>        overlap matrix. Optionally returns an array containing the indices of all involved atoms
     506              : !>        (the given subset plus all their neighbors, without repetition) AND/OR an array of arrays
     507              : !>        providing the indices of the neighbors of each input atom.
     508              : !> \param base_atoms the set of atoms for which we search neighbors
     509              : !> \param mat_s the overlap matrix used to find neighbors
     510              : !> \param radius the cutoff radius after which atoms are not considered neighbors
     511              : !> \param qs_env ...
     512              : !> \param all_neighbors the array uniquely contatining all indices of all atoms involved
     513              : !> \param neighbor_set array of arrays containing the neighbors of all given atoms
     514              : ! **************************************************************************************************
     515           48 :    SUBROUTINE find_neighbors(base_atoms, mat_s, radius, qs_env, all_neighbors, neighbor_set)
     516              : 
     517              :       INTEGER, DIMENSION(:), INTENT(INOUT)               :: base_atoms
     518              :       TYPE(dbcsr_type), INTENT(IN)                       :: mat_s
     519              :       REAL(dp)                                           :: radius
     520              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     521              :       INTEGER, DIMENSION(:), OPTIONAL, POINTER           :: all_neighbors
     522              :       TYPE(cp_1d_i_p_type), DIMENSION(:), OPTIONAL, &
     523              :          POINTER                                         :: neighbor_set
     524              : 
     525              :       INTEGER                                            :: i, iat, ibase, iblk, jblk, mepos, natom, &
     526              :                                                             nb, nbase
     527           48 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: blk_to_base, inb, who_is_there
     528           48 :       INTEGER, ALLOCATABLE, DIMENSION(:, :)              :: n_neighbors
     529           48 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: is_base_atom
     530              :       REAL(dp)                                           :: dist2, rad2, ri(3), rij(3), rj(3)
     531              :       TYPE(cell_type), POINTER                           :: cell
     532           48 :       TYPE(cp_1d_i_p_type), DIMENSION(:), POINTER        :: my_neighbor_set
     533              :       TYPE(dbcsr_iterator_type)                          :: iter
     534              :       TYPE(mp_para_env_type), POINTER                    :: para_env
     535           48 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     536              : 
     537           48 :       NULLIFY (particle_set, para_env, my_neighbor_set, cell)
     538              : 
     539              :       ! Initialization
     540           48 :       CALL get_qs_env(qs_env, para_env=para_env, natom=natom, particle_set=particle_set, cell=cell)
     541           48 :       mepos = para_env%mepos
     542           48 :       nbase = SIZE(base_atoms)
     543              :       !work with the neighbor_set structure, see at the end if we keep it
     544          202 :       ALLOCATE (my_neighbor_set(nbase))
     545           48 :       rad2 = radius**2
     546              : 
     547          192 :       ALLOCATE (blk_to_base(natom), is_base_atom(natom))
     548          884 :       blk_to_base = 0; is_base_atom = .FALSE.
     549          106 :       DO ibase = 1, nbase
     550           58 :          blk_to_base(base_atoms(ibase)) = ibase
     551          106 :          is_base_atom(base_atoms(ibase)) = .TRUE.
     552              :       END DO
     553              : 
     554              :       ! First loop over S => count the number of neighbors
     555          192 :       ALLOCATE (n_neighbors(nbase, 0:para_env%num_pe - 1))
     556          260 :       n_neighbors = 0
     557              : 
     558           48 :       CALL dbcsr_iterator_readonly_start(iter, mat_s)
     559         3850 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     560              : 
     561         3802 :          CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
     562              : 
     563              :          !avoid self-neighbors
     564         3802 :          IF (iblk == jblk) CYCLE
     565              : 
     566              :          !test distance
     567         3605 :          ri = pbc(particle_set(iblk)%r, cell)
     568         3605 :          rj = pbc(particle_set(jblk)%r, cell)
     569         3605 :          rij = pbc(ri, rj, cell)
     570        14420 :          dist2 = SUM(rij**2)
     571         3605 :          IF (dist2 > rad2) CYCLE
     572              : 
     573           14 :          IF (is_base_atom(iblk)) THEN
     574            8 :             ibase = blk_to_base(iblk)
     575            8 :             n_neighbors(ibase, mepos) = n_neighbors(ibase, mepos) + 1
     576              :          END IF
     577           62 :          IF (is_base_atom(jblk)) THEN
     578            3 :             ibase = blk_to_base(jblk)
     579            3 :             n_neighbors(ibase, mepos) = n_neighbors(ibase, mepos) + 1
     580              :          END IF
     581              : 
     582              :       END DO !iter
     583           48 :       CALL dbcsr_iterator_stop(iter)
     584           48 :       CALL para_env%sum(n_neighbors)
     585              : 
     586              :       ! Allocate the neighbor_set arrays at the correct length
     587          106 :       DO ibase = 1, nbase
     588          240 :          ALLOCATE (my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, :))))
     589          128 :          my_neighbor_set(ibase)%array = 0
     590              :       END DO
     591              : 
     592              :       ! Loop a second time over S, this time fill the neighbors details
     593           48 :       CALL dbcsr_iterator_readonly_start(iter, mat_s)
     594          144 :       ALLOCATE (inb(nbase))
     595          106 :       inb = 1
     596         3850 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     597              : 
     598         3802 :          CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
     599         3802 :          IF (iblk == jblk) CYCLE
     600              : 
     601              :          !test distance
     602         3605 :          ri = pbc(particle_set(iblk)%r, cell)
     603         3605 :          rj = pbc(particle_set(jblk)%r, cell)
     604         3605 :          rij = pbc(ri, rj, cell)
     605        14420 :          dist2 = SUM(rij**2)
     606         3605 :          IF (dist2 > rad2) CYCLE
     607              : 
     608           14 :          IF (is_base_atom(iblk)) THEN
     609            8 :             ibase = blk_to_base(iblk)
     610           13 :             my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, 0:mepos - 1)) + inb(ibase)) = jblk
     611            8 :             inb(ibase) = inb(ibase) + 1
     612              :          END IF
     613           62 :          IF (is_base_atom(jblk)) THEN
     614            3 :             ibase = blk_to_base(jblk)
     615            4 :             my_neighbor_set(ibase)%array(SUM(n_neighbors(ibase, 0:mepos - 1)) + inb(ibase)) = iblk
     616            3 :             inb(ibase) = inb(ibase) + 1
     617              :          END IF
     618              : 
     619              :       END DO !iter
     620           48 :       CALL dbcsr_iterator_stop(iter)
     621              : 
     622              :       ! Make sure the info is shared among the procs
     623          106 :       DO ibase = 1, nbase
     624          150 :          CALL para_env%sum(my_neighbor_set(ibase)%array)
     625              :       END DO
     626              : 
     627              :       ! Gather all indices if asked for it
     628           48 :       IF (PRESENT(all_neighbors)) THEN
     629          144 :          ALLOCATE (who_is_there(natom))
     630          442 :          who_is_there = 0
     631              : 
     632          106 :          DO ibase = 1, nbase
     633           58 :             who_is_there(base_atoms(ibase)) = 1
     634          128 :             DO nb = 1, SIZE(my_neighbor_set(ibase)%array)
     635           80 :                who_is_there(my_neighbor_set(ibase)%array(nb)) = 1
     636              :             END DO
     637              :          END DO
     638              : 
     639           96 :          ALLOCATE (all_neighbors(natom))
     640           48 :          i = 0
     641          442 :          DO iat = 1, natom
     642          442 :             IF (who_is_there(iat) == 1) THEN
     643           72 :                i = i + 1
     644           72 :                all_neighbors(i) = iat
     645              :             END IF
     646              :          END DO
     647           48 :          CALL reallocate(all_neighbors, 1, i)
     648              :       END IF
     649              : 
     650              :       ! If not asked for the neighbor set, deallocate it
     651           48 :       IF (PRESENT(neighbor_set)) THEN
     652           48 :          neighbor_set => my_neighbor_set
     653              :       ELSE
     654            0 :          DO ibase = 1, nbase
     655            0 :             DEALLOCATE (my_neighbor_set(ibase)%array)
     656              :          END DO
     657            0 :          DEALLOCATE (my_neighbor_set)
     658              :       END IF
     659              : 
     660          192 :    END SUBROUTINE find_neighbors
     661              : 
     662              : ! **************************************************************************************************
     663              : !> \brief Returns the RI inverse overlap for a subset of the RI_XAS matrix spaning a given
     664              : !>        excited atom and its neighbors.
     665              : !> \param ri_sinv the inverse overlap as a dbcsr matrix
     666              : !> \param whole_s the whole RI overlap matrix
     667              : !> \param neighbors the indeces of the excited atom and their neighbors
     668              : !> \param idx_to_nb array telling where any atom can be found in neighbors (if there at all)
     669              : !> \param basis_set_ri the RI basis set list for all kinds
     670              : !> \param qs_env ...
     671              : !> \note It is assumed that the neighbors are sorted, the output matrix is assumed to be small and
     672              : !>       is replicated on all processors
     673              : ! **************************************************************************************************
     674           58 :    SUBROUTINE get_exat_ri_sinv(ri_sinv, whole_s, neighbors, idx_to_nb, basis_set_ri, qs_env)
     675              : 
     676              :       TYPE(dbcsr_type)                                   :: ri_sinv, whole_s
     677              :       INTEGER, DIMENSION(:), INTENT(IN)                  :: neighbors, idx_to_nb
     678              :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_ri
     679              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     680              : 
     681              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'get_exat_ri_sinv'
     682              : 
     683              :       INTEGER                                            :: blk, dest, group_handle, handle, iat, &
     684              :                                                             ikind, inb, ir, is, jat, jnb, natom, &
     685              :                                                             nnb, npcols, nprows, source, tag
     686           58 :       INTEGER, DIMENSION(:), POINTER                     :: col_dist, nsgf, row_dist
     687           58 :       INTEGER, DIMENSION(:, :), POINTER                  :: pgrid
     688              :       LOGICAL                                            :: found_risinv, found_whole
     689           58 :       LOGICAL, ALLOCATABLE, DIMENSION(:)                 :: is_neighbor
     690              :       REAL(dp)                                           :: ri(3), rij(3), rj(3)
     691           58 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: radius
     692           58 :       REAL(dp), DIMENSION(:, :), POINTER                 :: block_risinv, block_whole
     693              :       TYPE(cell_type), POINTER                           :: cell
     694           58 :       TYPE(cp_2d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: recv_buff, send_buff
     695              :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     696              :       TYPE(dbcsr_distribution_type)                      :: sinv_dist
     697              :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     698              :       TYPE(dbcsr_iterator_type)                          :: iter
     699              :       TYPE(mp_comm_type)                                 :: group
     700              :       TYPE(mp_para_env_type), POINTER                    :: para_env
     701           58 :       TYPE(mp_request_type), ALLOCATABLE, DIMENSION(:)   :: recv_req, send_req
     702           58 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     703              : 
     704           58 :       NULLIFY (pgrid, dbcsr_dist, row_dist, col_dist, nsgf, particle_set, block_whole, block_risinv)
     705           58 :       NULLIFY (cell, para_env, blacs_env)
     706              : 
     707           58 :       CALL timeset(routineN, handle)
     708              : 
     709              :       CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist, particle_set=particle_set, natom=natom, &
     710           58 :                       para_env=para_env, blacs_env=blacs_env, cell=cell)
     711           58 :       nnb = SIZE(neighbors)
     712          406 :       ALLOCATE (nsgf(nnb), is_neighbor(natom), radius(nnb))
     713          666 :       is_neighbor = .FALSE.
     714          138 :       DO inb = 1, nnb
     715           80 :          iat = neighbors(inb)
     716           80 :          ikind = particle_set(iat)%atomic_kind%kind_number
     717           80 :          CALL get_gto_basis_set(basis_set_ri(ikind)%gto_basis_set, nsgf=nsgf(inb), kind_radius=radius(inb))
     718          138 :          is_neighbor(iat) = .TRUE.
     719              :       END DO
     720              : 
     721              :       !Create the ri_sinv matrix based on some arbitrary dbcsr_dist
     722           58 :       CALL dbcsr_distribution_get(dbcsr_dist, group=group_handle, pgrid=pgrid, nprows=nprows, npcols=npcols)
     723           58 :       CALL group%set_handle(group_handle)
     724              : 
     725          174 :       ALLOCATE (row_dist(nnb), col_dist(nnb))
     726          138 :       DO inb = 1, nnb
     727           80 :          row_dist(inb) = MODULO(nprows - inb, nprows)
     728          138 :          col_dist(inb) = MODULO(npcols - inb, npcols)
     729              :       END DO
     730              : 
     731              :       CALL dbcsr_distribution_new(sinv_dist, group=group_handle, pgrid=pgrid, row_dist=row_dist, &
     732           58 :                                   col_dist=col_dist)
     733              : 
     734              :       CALL dbcsr_create(matrix=ri_sinv, name="RI_SINV", matrix_type=dbcsr_type_symmetric, &
     735           58 :                         dist=sinv_dist, row_blk_size=nsgf, col_blk_size=nsgf)
     736              :       !reserving the blocks in the correct pattern
     737          138 :       DO inb = 1, nnb
     738           80 :          ri = pbc(particle_set(neighbors(inb))%r, cell)
     739          260 :          DO jnb = inb, nnb
     740              : 
     741              :             !do the atom overlap ?
     742          122 :             rj = pbc(particle_set(neighbors(jnb))%r, cell)
     743          122 :             rij = pbc(ri, rj, cell)
     744          488 :             IF (SUM(rij**2) > (radius(inb) + radius(jnb))**2) CYCLE
     745              : 
     746          122 :             CALL dbcsr_get_stored_coordinates(ri_sinv, inb, jnb, blk)
     747          202 :             IF (para_env%mepos == blk) THEN
     748          244 :                ALLOCATE (block_risinv(nsgf(inb), nsgf(jnb)))
     749       234864 :                block_risinv = 0.0_dp
     750           61 :                CALL dbcsr_put_block(ri_sinv, inb, jnb, block_risinv)
     751           61 :                DEALLOCATE (block_risinv)
     752              :             END IF
     753              :          END DO
     754              :       END DO
     755           58 :       CALL dbcsr_finalize(ri_sinv)
     756              : 
     757           58 :       CALL dbcsr_distribution_release(sinv_dist)
     758           58 :       DEALLOCATE (row_dist, col_dist)
     759              : 
     760              :       !prepare the send and recv buffers we will need for change of dist between the two matrices
     761              :       !worst case scenario: all neighbors are on same procs => need to send nnb**2 messages
     762          618 :       ALLOCATE (send_buff(nnb**2), recv_buff(nnb**2))
     763          676 :       ALLOCATE (send_req(nnb**2), recv_req(nnb**2))
     764           58 :       is = 0; ir = 0
     765              : 
     766              :       !Loop over the whole RI overlap matrix and pick the blocks we need
     767           58 :       CALL dbcsr_iterator_start(iter, whole_s)
     768         7444 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     769              : 
     770         7386 :          CALL dbcsr_iterator_next_block(iter, row=iat, column=jat)
     771         7386 :          CALL dbcsr_get_block_p(whole_s, iat, jat, block_whole, found_whole)
     772              : 
     773              :          !only interested in neighbors
     774         7386 :          IF (.NOT. found_whole) CYCLE
     775         7386 :          IF (.NOT. is_neighbor(iat)) CYCLE
     776          220 :          IF (.NOT. is_neighbor(jat)) CYCLE
     777              : 
     778           61 :          inb = idx_to_nb(iat)
     779           61 :          jnb = idx_to_nb(jat)
     780              : 
     781              :          !If blocks are on the same proc for both matrices, simply copy
     782           61 :          CALL dbcsr_get_block_p(ri_sinv, inb, jnb, block_risinv, found_risinv)
     783          119 :          IF (found_risinv) THEN
     784            7 :             CALL dcopy(nsgf(inb)*nsgf(jnb), block_whole, 1, block_risinv, 1)
     785              :          ELSE
     786              : 
     787              :             !send the block with unique tag to the proc where inb,jnb is in ri_sinv
     788           54 :             CALL dbcsr_get_stored_coordinates(ri_sinv, inb, jnb, dest)
     789           54 :             is = is + 1
     790           54 :             send_buff(is)%array => block_whole
     791           54 :             tag = natom*inb + jnb
     792           54 :             CALL group%isend(msgin=send_buff(is)%array, dest=dest, request=send_req(is), tag=tag)
     793              : 
     794              :          END IF
     795              : 
     796              :       END DO !dbcsr iter
     797           58 :       CALL dbcsr_iterator_stop(iter)
     798              : 
     799              :       !Loop over ri_sinv and receive all those blocks
     800           58 :       CALL dbcsr_iterator_start(iter, ri_sinv)
     801          119 :       DO WHILE (dbcsr_iterator_blocks_left(iter))
     802              : 
     803           61 :          CALL dbcsr_iterator_next_block(iter, row=inb, column=jnb)
     804           61 :          CALL dbcsr_get_block_p(ri_sinv, inb, jnb, block_risinv, found_risinv)
     805              : 
     806           61 :          IF (.NOT. found_risinv) CYCLE
     807              : 
     808           61 :          iat = neighbors(inb)
     809           61 :          jat = neighbors(jnb)
     810              : 
     811              :          !If blocks are on the same proc on both matrices do nothing
     812           61 :          CALL dbcsr_get_stored_coordinates(whole_s, iat, jat, source)
     813           61 :          IF (para_env%mepos == source) CYCLE
     814              : 
     815           54 :          tag = natom*inb + jnb
     816           54 :          ir = ir + 1
     817           54 :          recv_buff(ir)%array => block_risinv
     818              :          CALL group%irecv(msgout=recv_buff(ir)%array, source=source, request=recv_req(ir), &
     819          119 :                           tag=tag)
     820              : 
     821              :       END DO
     822           58 :       CALL dbcsr_iterator_stop(iter)
     823              : 
     824              :       !make sure that all comm is over before proceeding
     825           58 :       CALL mp_waitall(send_req(1:is))
     826           58 :       CALL mp_waitall(recv_req(1:ir))
     827              : 
     828              :       !Invert. 2 cases: with or without neighbors. If no neighbors, easier to invert on one proc and
     829              :       !avoid the whole fm to dbcsr to fm that is quite expensive
     830           58 :       IF (nnb == 1) THEN
     831              : 
     832           50 :          CALL dbcsr_get_block_p(ri_sinv, 1, 1, block_risinv, found_risinv)
     833           50 :          IF (found_risinv) THEN
     834           25 :             CALL invmat_symm(block_risinv)
     835              :          END IF
     836              : 
     837              :       ELSE
     838            8 :          CALL cp_dbcsr_cholesky_decompose(ri_sinv, para_env=para_env, blacs_env=blacs_env)
     839            8 :          CALL cp_dbcsr_cholesky_invert(ri_sinv, para_env=para_env, blacs_env=blacs_env, uplo_to_full=.TRUE.)
     840            8 :          CALL dbcsr_filter(ri_sinv, 1.E-10_dp) !make sure ri_sinv is sparse coming out of fm routines
     841              :       END IF
     842           58 :       CALL dbcsr_replicate_all(ri_sinv)
     843              : 
     844              :       !clean-up
     845           58 :       DEALLOCATE (nsgf)
     846              : 
     847           58 :       CALL timestop(handle)
     848              : 
     849          348 :    END SUBROUTINE get_exat_ri_sinv
     850              : 
     851              : ! **************************************************************************************************
     852              : !> \brief Compute the coefficients to project the density on a partial RI_XAS basis
     853              : !> \param xas_atom_env ...
     854              : !> \param qs_env ...
     855              : !> \note The density is n = sum_ab P_ab*phi_a*phi_b, the RI basis covers the products of orbital sgfs
     856              : !>       => n = sum_ab sum_cd P_ab (phi_a phi_b xi_c) S_cd^-1 xi_d
     857              : !>            = sum_d coeff_d xi_d , where xi are the RI basis func.
     858              : !>       In this case, with the partial RI projection, the RI basis is restricted to an excited atom
     859              : !>       and its neighbors at a time. Leads to smaller overlap matrix to invert and less 3-center
     860              : !>       overlap to compute. The procedure is repeated for each excited atom
     861              : ! **************************************************************************************************
     862           48 :    SUBROUTINE calculate_density_coeffs(xas_atom_env, qs_env)
     863              : 
     864              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
     865              :       TYPE(qs_environment_type), POINTER                 :: qs_env
     866              : 
     867              :       CHARACTER(len=*), PARAMETER :: routineN = 'calculate_density_coeffs'
     868              : 
     869              :       INTEGER                                            :: exat, handle, i, iat, iatom, iex, inb, &
     870              :                                                             ind(3), ispin, jatom, jnb, katom, &
     871              :                                                             natom, nex, nkind, nnb, nspins, &
     872              :                                                             output_unit, ri_at
     873           48 :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: blk_size_orb, blk_size_ri, idx_to_nb, &
     874           48 :                                                             neighbors
     875           48 :       INTEGER, DIMENSION(:), POINTER                     :: all_ri_atoms
     876              :       LOGICAL                                            :: pmat_found, pmat_foundt, sinv_found, &
     877              :                                                             sinv_foundt, tensor_found, unique
     878              :       REAL(dp)                                           :: factor, prefac
     879           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: work2
     880           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: work1
     881           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: t_block
     882           96 :       REAL(dp), DIMENSION(:, :), POINTER                 :: pmat_block, pmat_blockt, sinv_block, &
     883           48 :                                                             sinv_blockt
     884              :       TYPE(cp_blacs_env_type), POINTER                   :: blacs_env
     885              :       TYPE(dbcsr_distribution_type), POINTER             :: dbcsr_dist
     886           96 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: overlap, rho_ao
     887              :       TYPE(dbcsr_type)                                   :: ri_sinv
     888              :       TYPE(dbcsr_type), POINTER                          :: ri_mats
     889              :       TYPE(dbt_iterator_type)                            :: iter
     890          432 :       TYPE(dbt_type)                                     :: pqX
     891           48 :       TYPE(gto_basis_set_p_type), DIMENSION(:), POINTER  :: basis_set_orb, basis_set_ri
     892              :       TYPE(libint_potential_type)                        :: pot
     893              :       TYPE(mp_para_env_type), POINTER                    :: para_env
     894              :       TYPE(neighbor_list_set_p_type), DIMENSION(:), &
     895           96 :          POINTER                                         :: ab_list, ac_list, sab_ri
     896           48 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
     897           48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
     898              :       TYPE(qs_rho_type), POINTER                         :: rho
     899              : 
     900           48 :       NULLIFY (qs_kind_set, basis_set_ri, basis_set_orb, ac_list, rho, rho_ao, sab_ri, ri_mats)
     901           48 :       NULLIFY (particle_set, para_env, all_ri_atoms, overlap, pmat_blockt)
     902           48 :       NULLIFY (blacs_env, pmat_block, ab_list, dbcsr_dist, sinv_block, sinv_blockt)
     903              : 
     904              :       !Idea: We don't do a full RI here as it would be too expensive in many ways (inversion of a
     905              :       !      large matrix, many 3-center overlaps, density coefficients for all atoms, etc...)
     906              :       !      Instead, we go excited atom by excited atom and only do a RI expansion on its basis
     907              :       !      and that of its closest neighbors (defined through RI_RADIUS), such that we only have
     908              :       !      very small matrices to invert and only a few (abc) overlp integrals with c on the
     909              :       !      excited atom its neighbors. This is physically sound since we only need the density
     910              :       !      well defined on the excited atom grid as we do (aI|P)*(P|Q)^-1*(Q|fxc|R)*(R|S)^-1*(S|Jb)
     911              : 
     912           48 :       CALL timeset(routineN, handle)
     913              : 
     914              :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, rho=rho, &
     915              :                       natom=natom, particle_set=particle_set, dbcsr_dist=dbcsr_dist, &
     916           48 :                       para_env=para_env, blacs_env=blacs_env)
     917           48 :       nspins = xas_atom_env%nspins
     918           48 :       nex = SIZE(xas_atom_env%excited_atoms)
     919           48 :       CALL qs_rho_get(rho, rho_ao=rho_ao)
     920              : 
     921              : !  Create the needed neighbor list and basis set lists.
     922          220 :       ALLOCATE (basis_set_ri(nkind))
     923          172 :       ALLOCATE (basis_set_orb(nkind))
     924           48 :       CALL basis_set_list_setup(basis_set_ri, "RI_XAS", qs_kind_set)
     925           48 :       CALL basis_set_list_setup(basis_set_orb, "ORB", qs_kind_set)
     926              : 
     927              : !  Compute the RI overlap matrix on the whole system
     928           48 :       CALL build_xas_tdp_ovlp_nl(sab_ri, basis_set_ri, basis_set_ri, qs_env)
     929           48 :       CALL build_overlap_matrix_simple(qs_env%ks_env, overlap, basis_set_ri, basis_set_ri, sab_ri)
     930           48 :       ri_mats => overlap(1)%matrix
     931           48 :       CALL release_neighbor_list_sets(sab_ri)
     932              : 
     933              : !  Get the neighbors of the excited atoms (= all the atoms where density coeffs are needed)
     934              :       CALL find_neighbors(xas_atom_env%excited_atoms, ri_mats, xas_atom_env%ri_radius, &
     935           48 :                           qs_env, all_neighbors=all_ri_atoms, neighbor_set=xas_atom_env%exat_neighbors)
     936              : 
     937              :       !keep in mind that double occupation is included in rho_ao in case of closed-shell
     938           48 :       factor = 0.5_dp; IF (nspins == 2) factor = 1.0_dp
     939              : 
     940              : !  Allocate space for the projected density coefficients. On all ri_atoms.
     941              : !  Note: the sub-region where we project the density changes from excited atom to excited atom
     942              : !        => need different sets of RI coeffs
     943          144 :       ALLOCATE (blk_size_ri(natom))
     944           48 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=blk_size_ri, basis=basis_set_ri)
     945          974 :       ALLOCATE (xas_atom_env%ri_dcoeff(natom, nspins, nex))
     946          106 :       DO iex = 1, nex
     947          166 :          DO ispin = 1, nspins
     948          734 :             DO iat = 1, natom
     949          616 :                NULLIFY (xas_atom_env%ri_dcoeff(iat, ispin, iex)%array)
     950              :                IF ((.NOT. ANY(xas_atom_env%exat_neighbors(iex)%array == iat)) &
     951          670 :                    .AND. (.NOT. xas_atom_env%excited_atoms(iex) == iat)) CYCLE
     952          264 :                ALLOCATE (xas_atom_env%ri_dcoeff(iat, ispin, iex)%array(blk_size_ri(iat)))
     953         5548 :                xas_atom_env%ri_dcoeff(iat, ispin, iex)%array = 0.0_dp
     954              :             END DO
     955              :          END DO
     956              :       END DO
     957              : 
     958           48 :       output_unit = cp_logger_get_default_io_unit()
     959           48 :       IF (output_unit > 0) THEN
     960              :          WRITE (output_unit, FMT="(/,T7,A,/,T7,A)") &
     961           24 :             "Excited atom, natoms in RI_REGION:", &
     962           48 :             "---------------------------------"
     963              :       END IF
     964              : 
     965              :       !We go atom by atom, first computing the integrals themselves that we put into a tensor, then we do
     966              :       !the contraction with the density. We do that in the original dist, which is optimized for overlap
     967              : 
     968          144 :       ALLOCATE (blk_size_orb(natom))
     969           48 :       CALL get_particle_set(particle_set, qs_kind_set, nsgf=blk_size_orb, basis=basis_set_orb)
     970              : 
     971          106 :       DO iex = 1, nex
     972              : 
     973              :          !get neighbors of current atom
     974           58 :          exat = xas_atom_env%excited_atoms(iex)
     975           58 :          nnb = 1 + SIZE(xas_atom_env%exat_neighbors(iex)%array)
     976          174 :          ALLOCATE (neighbors(nnb))
     977           58 :          neighbors(1) = exat
     978           80 :          neighbors(2:nnb) = xas_atom_env%exat_neighbors(iex)%array(:)
     979           58 :          CALL sort_unique(neighbors, unique)
     980              : 
     981              :          !link the atoms to their position in neighbors
     982          174 :          ALLOCATE (idx_to_nb(natom))
     983          666 :          idx_to_nb = 0
     984          138 :          DO inb = 1, nnb
     985          138 :             idx_to_nb(neighbors(inb)) = inb
     986              :          END DO
     987              : 
     988           58 :          IF (output_unit > 0) THEN
     989              :             WRITE (output_unit, FMT="(T7,I12,I21)") &
     990           29 :                exat, nnb
     991              :          END IF
     992              : 
     993              :          !Get the neighbor lists for the overlap integrals (abc), centers c on the current
     994              :          !excited atom and its neighbors defined by RI_RADIUS
     995           58 :          CALL build_xas_tdp_ovlp_nl(ab_list, basis_set_orb, basis_set_orb, qs_env)
     996              :          CALL build_xas_tdp_3c_nl(ac_list, basis_set_orb, basis_set_ri, do_potential_id, &
     997           58 :                                   qs_env, excited_atoms=neighbors)
     998              : 
     999              :          !Compute the 3-center overlap integrals
    1000           58 :          pot%potential_type = do_potential_id
    1001              : 
    1002              :          CALL create_pqX_tensor(pqX, ab_list, ac_list, dbcsr_dist, blk_size_orb, blk_size_orb, &
    1003           58 :                                 blk_size_ri)
    1004              :          CALL fill_pqX_tensor(pqX, ab_list, ac_list, basis_set_orb, basis_set_orb, basis_set_ri, &
    1005           58 :                               pot, qs_env)
    1006              : 
    1007              :          !Compute the RI inverse overlap matrix on the reduced RI basis that spans the excited
    1008              :          !atom and its neighbors, ri_sinv is replicated over all procs
    1009           58 :          CALL get_exat_ri_sinv(ri_sinv, ri_mats, neighbors, idx_to_nb, basis_set_ri, qs_env)
    1010              : 
    1011              :          !Do the actual contraction: coeff_y = sum_pq sum_x P_pq (phi_p phi_q xi_x) S_xy^-1
    1012              : 
    1013              : !$OMP PARALLEL DEFAULT(NONE) &
    1014              : !$OMP SHARED(pqX,rho_ao,ri_sinv,xas_atom_env) &
    1015              : !$OMP SHARED(blk_size_ri,idx_to_nb,nspins,nnb,neighbors,iex,factor) &
    1016              : !$OMP PRIVATE(iter,ind,t_block,tensor_found,iatom,jatom,katom,inb,prefac,ispin) &
    1017              : !$OMP PRIVATE(pmat_block,pmat_found,pmat_blockt,pmat_foundt,work1,work2,jnb,ri_at) &
    1018           58 : !$OMP PRIVATE(sinv_block,sinv_found,sinv_blockt,sinv_foundt)
    1019              :          CALL dbt_iterator_start(iter, pqX)
    1020              :          DO WHILE (dbt_iterator_blocks_left(iter))
    1021              :             CALL dbt_iterator_next_block(iter, ind)
    1022              :             CALL dbt_get_block(pqX, ind, t_block, tensor_found)
    1023              : 
    1024              :             iatom = ind(1)
    1025              :             jatom = ind(2)
    1026              :             katom = ind(3)
    1027              :             inb = idx_to_nb(katom)
    1028              : 
    1029              :             !non-diagonal elements need to be counted twice
    1030              :             prefac = 2.0_dp
    1031              :             IF (iatom == jatom) prefac = 1.0_dp
    1032              : 
    1033              :             DO ispin = 1, nspins
    1034              : 
    1035              :                !rho_ao is symmetric, block can be in either location
    1036              :                CALL dbcsr_get_block_p(rho_ao(ispin)%matrix, iatom, jatom, pmat_block, pmat_found)
    1037              :                CALL dbcsr_get_block_p(rho_ao(ispin)%matrix, jatom, iatom, pmat_blockt, pmat_foundt)
    1038              :                IF ((.NOT. pmat_found) .AND. (.NOT. pmat_foundt)) CYCLE
    1039              : 
    1040              :                ALLOCATE (work1(blk_size_ri(katom), 1))
    1041              :                work1 = 0.0_dp
    1042              : 
    1043              :                !first contraction with the density matrix
    1044              :                IF (pmat_found) THEN
    1045              :                   DO i = 1, blk_size_ri(katom)
    1046              :                      work1(i, 1) = prefac*SUM(pmat_block(:, :)*t_block(:, :, i))
    1047              :                   END DO
    1048              :                ELSE
    1049              :                   DO i = 1, blk_size_ri(katom)
    1050              :                      work1(i, 1) = prefac*SUM(TRANSPOSE(pmat_blockt(:, :))*t_block(:, :, i))
    1051              :                   END DO
    1052              :                END IF
    1053              : 
    1054              :                !loop over neighbors
    1055              :                DO jnb = 1, nnb
    1056              : 
    1057              :                   ri_at = neighbors(jnb)
    1058              : 
    1059              :                   !ri_sinv is a symmetric matrix => actual block is one of the two
    1060              :                   CALL dbcsr_get_block_p(ri_sinv, inb, jnb, sinv_block, sinv_found)
    1061              :                   CALL dbcsr_get_block_p(ri_sinv, jnb, inb, sinv_blockt, sinv_foundt)
    1062              :                   IF ((.NOT. sinv_found) .AND. (.NOT. sinv_foundt)) CYCLE
    1063              : 
    1064              :                   !second contraction with the inverse RI overlap
    1065              :                   ALLOCATE (work2(SIZE(xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array)))
    1066              :                   work2 = 0.0_dp
    1067              : 
    1068              :                   IF (sinv_found) THEN
    1069              :                      DO i = 1, blk_size_ri(katom)
    1070              :                         work2(:) = work2(:) + factor*work1(i, 1)*sinv_block(i, :)
    1071              :                      END DO
    1072              :                   ELSE
    1073              :                      DO i = 1, blk_size_ri(katom)
    1074              :                         work2(:) = work2(:) + factor*work1(i, 1)*sinv_blockt(:, i)
    1075              :                      END DO
    1076              :                   END IF
    1077              :                   DO i = 1, SIZE(work2)
    1078              : !$OMP ATOMIC
    1079              :                      xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array(i) = &
    1080              :                         xas_atom_env%ri_dcoeff(ri_at, ispin, iex)%array(i) + work2(i)
    1081              :                   END DO
    1082              : 
    1083              :                   DEALLOCATE (work2)
    1084              :                END DO !jnb
    1085              : 
    1086              :                DEALLOCATE (work1)
    1087              :             END DO
    1088              : 
    1089              :             DEALLOCATE (t_block)
    1090              :          END DO !iter
    1091              :          CALL dbt_iterator_stop(iter)
    1092              : !$OMP END PARALLEL
    1093              : 
    1094              :          !clean-up
    1095           58 :          CALL dbcsr_release(ri_sinv)
    1096           58 :          CALL dbt_destroy(pqX)
    1097           58 :          CALL release_neighbor_list_sets(ab_list)
    1098           58 :          CALL release_neighbor_list_sets(ac_list)
    1099          164 :          DEALLOCATE (neighbors, idx_to_nb)
    1100              : 
    1101              :       END DO !iex
    1102              : 
    1103              :       !making sure all procs have the same info
    1104          106 :       DO iex = 1, nex
    1105          166 :          DO ispin = 1, nspins
    1106          734 :             DO iat = 1, natom
    1107              :                IF ((.NOT. ANY(xas_atom_env%exat_neighbors(iex)%array == iat)) &
    1108          670 :                    .AND. (.NOT. xas_atom_env%excited_atoms(iex) == iat)) CYCLE
    1109        11476 :                CALL para_env%sum(xas_atom_env%ri_dcoeff(iat, ispin, iex)%array)
    1110              :             END DO !iat
    1111              :          END DO !ispin
    1112              :       END DO !iex
    1113              : 
    1114              : !  clean-up
    1115           48 :       CALL dbcsr_deallocate_matrix_set(overlap)
    1116           48 :       DEALLOCATE (basis_set_ri, basis_set_orb, all_ri_atoms)
    1117              : 
    1118           48 :       CALL timestop(handle)
    1119              : 
    1120          144 :    END SUBROUTINE calculate_density_coeffs
    1121              : 
    1122              : ! **************************************************************************************************
    1123              : !> \brief Evaluates the density on a given atomic grid
    1124              : !> \param rho_set where the densities are stored
    1125              : !> \param ri_dcoeff the arrays containing the RI density coefficients of this atom, for each spin
    1126              : !> \param atom_kind the kind of the atom in question
    1127              : !> \param do_gga whether the gradient of the density should also be put on the grid
    1128              : !> \param batch_info how the so are distributed
    1129              : !> \param xas_atom_env ...
    1130              : !> \param qs_env ...
    1131              : !> \note The density is expressed as n = sum_d coeff_d*xi_d. Knowing the coordinate of each grid
    1132              : !>       grid point, one can simply evaluate xi_d(r)
    1133              : ! **************************************************************************************************
    1134           48 :    SUBROUTINE put_density_on_atomic_grid(rho_set, ri_dcoeff, atom_kind, do_gga, batch_info, &
    1135              :                                          xas_atom_env, qs_env)
    1136              : 
    1137              :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1138              :       TYPE(cp_1d_r_p_type), DIMENSION(:)                 :: ri_dcoeff
    1139              :       INTEGER, INTENT(IN)                                :: atom_kind
    1140              :       LOGICAL, INTENT(IN)                                :: do_gga
    1141              :       TYPE(batch_info_type)                              :: batch_info
    1142              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1143              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1144              : 
    1145              :       CHARACTER(len=*), PARAMETER :: routineN = 'put_density_on_atomic_grid'
    1146              : 
    1147              :       INTEGER                                            :: dir, handle, ipgf, iset, iso, iso_proc, &
    1148              :                                                             ispin, maxso, n, na, nr, nset, nsgfi, &
    1149              :                                                             nsoi, nspins, sgfi, starti
    1150           48 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1151           48 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    1152           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: so
    1153           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: dso
    1154           48 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, ri_sphi_so, zet
    1155           48 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2, rhoa, rhob
    1156           48 :       TYPE(cp_1d_r_p_type), DIMENSION(:), POINTER        :: ri_dcoeff_so
    1157              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1158              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1159           48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1160              : 
    1161           48 :       NULLIFY (grid_atom, ri_basis, qs_kind_set, lmax, npgf, zet, nsgf_set, ri_sphi_so)
    1162           48 :       NULLIFY (lmin, first_sgf, rhoa, rhob, ga, gr, dgr1, dgr2, dga1, dga2, ri_dcoeff_so)
    1163              : 
    1164           48 :       CALL timeset(routineN, handle)
    1165              : 
    1166              : !  Strategy: it makes sense to evaluate the spherical orbital on the grid (because of symmetry)
    1167              : !            From there, one can directly contract into sgf using ri_sphi_so and then take the weight
    1168              : !            The spherical orbital were precomputed and split in a purely radial and a purely
    1169              : !            angular part. The full values on each grid point are obtain through gemm
    1170              : 
    1171              : !  Generalities
    1172           48 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    1173           48 :       CALL get_qs_kind(qs_kind_set(atom_kind), basis_set=ri_basis, basis_type="RI_XAS")
    1174              :       CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, nsgf_set=nsgf_set, &
    1175           48 :                              first_sgf=first_sgf, lmin=lmin, maxso=maxso)
    1176              : 
    1177              : !  Get the grid and the info we need from it
    1178           48 :       grid_atom => xas_atom_env%grid_atom_set(atom_kind)%grid_atom
    1179           48 :       na = grid_atom%ng_sphere
    1180           48 :       nr = grid_atom%nr
    1181           48 :       n = na*nr
    1182           48 :       nspins = xas_atom_env%nspins
    1183           48 :       ri_sphi_so => xas_atom_env%ri_sphi_so(atom_kind)%array
    1184              : 
    1185              : !  Point to the rho_set densities
    1186           48 :       rhoa => rho_set%rhoa
    1187           48 :       rhob => rho_set%rhob
    1188      2394684 :       rhoa = 0.0_dp; rhob = 0.0_dp; 
    1189           48 :       IF (do_gga) THEN
    1190           96 :          DO dir = 1, 3
    1191      1826172 :             rho_set%drhoa(dir)%array = 0.0_dp
    1192      1826196 :             rho_set%drhob(dir)%array = 0.0_dp
    1193              :          END DO
    1194              :       END IF
    1195              : 
    1196              : !  Point to the precomputed SO
    1197           48 :       ga => xas_atom_env%ga(atom_kind)%array
    1198           48 :       gr => xas_atom_env%gr(atom_kind)%array
    1199           48 :       IF (do_gga) THEN
    1200           24 :          dga1 => xas_atom_env%dga1(atom_kind)%array
    1201           24 :          dga2 => xas_atom_env%dga2(atom_kind)%array
    1202           24 :          dgr1 => xas_atom_env%dgr1(atom_kind)%array
    1203           24 :          dgr2 => xas_atom_env%dgr2(atom_kind)%array
    1204              :       ELSE
    1205           24 :          dga1 => xas_atom_env%dga1(atom_kind)%array
    1206           24 :          dga2 => xas_atom_env%dga2(atom_kind)%array
    1207           24 :          dgr1 => xas_atom_env%dgr1(atom_kind)%array
    1208           24 :          dgr2 => xas_atom_env%dgr2(atom_kind)%array
    1209              :       END IF
    1210              : 
    1211              : !  Need to express the ri_dcoeffs in terms of so (and not sgf)
    1212          194 :       ALLOCATE (ri_dcoeff_so(nspins))
    1213           98 :       DO ispin = 1, nspins
    1214          150 :          ALLOCATE (ri_dcoeff_so(ispin)%array(nset*maxso))
    1215        10454 :          ri_dcoeff_so(ispin)%array = 0.0_dp
    1216              : 
    1217              :          !for a given so, loop over sgf and sum
    1218          274 :          DO iset = 1, nset
    1219          176 :             sgfi = first_sgf(1, iset)
    1220          176 :             nsoi = npgf(iset)*nsoset(lmax(iset))
    1221          176 :             nsgfi = nsgf_set(iset)
    1222              : 
    1223              :             CALL dgemv('N', nsoi, nsgfi, 1.0_dp, ri_sphi_so(1:nsoi, sgfi:sgfi + nsgfi - 1), nsoi, &
    1224              :                        ri_dcoeff(ispin)%array(sgfi:sgfi + nsgfi - 1), 1, 0.0_dp, &
    1225          226 :                        ri_dcoeff_so(ispin)%array((iset - 1)*maxso + 1:(iset - 1)*maxso + nsoi), 1)
    1226              : 
    1227              :          END DO
    1228              :       END DO
    1229              : 
    1230              :       !allocate space to store the spherical orbitals on the grid
    1231          192 :       ALLOCATE (so(na, nr))
    1232          144 :       IF (do_gga) ALLOCATE (dso(na, nr, 3))
    1233              : 
    1234              : !  Loop over the spherical orbitals on this proc
    1235         5634 :       DO iso_proc = 1, batch_info%nso_proc(atom_kind)
    1236         5586 :          iset = batch_info%so_proc_info(atom_kind)%array(1, iso_proc)
    1237         5586 :          ipgf = batch_info%so_proc_info(atom_kind)%array(2, iso_proc)
    1238         5586 :          iso = batch_info%so_proc_info(atom_kind)%array(3, iso_proc)
    1239         5586 :          IF (iso < 0) CYCLE
    1240              : 
    1241         2772 :          starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    1242              : 
    1243              :          !the spherical orbital on the grid
    1244              :          CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, ga(:, iso_proc:iso_proc), na, &
    1245         2772 :                     gr(:, iso_proc:iso_proc), nr, 0.0_dp, so(:, :), na)
    1246              : 
    1247              :          !the gradient on the grid
    1248         2772 :          IF (do_gga) THEN
    1249              : 
    1250         6556 :             DO dir = 1, 3
    1251              :                CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, dga1(:, iso_proc:iso_proc, dir), na, &
    1252         4917 :                           dgr1(:, iso_proc:iso_proc), nr, 0.0_dp, dso(:, :, dir), na)
    1253              :                CALL dgemm('N', 'T', na, nr, 1, 1.0_dp, dga2(:, iso_proc:iso_proc, dir), na, &
    1254         6556 :                           dgr2(:, iso_proc:iso_proc), nr, 1.0_dp, dso(:, :, dir), na)
    1255              :             END DO
    1256              :          END IF
    1257              : 
    1258              :          !put the so on the grid with the approriate coefficients and sum
    1259         2772 :          CALL daxpy(n, ri_dcoeff_so(1)%array(starti + iso), so, 1, rhoa(:, :, 1), 1)
    1260              : 
    1261         2772 :          IF (nspins == 2) THEN
    1262          126 :             CALL daxpy(n, ri_dcoeff_so(2)%array(starti + iso), so, 1, rhob(:, :, 1), 1)
    1263              :          END IF
    1264              : 
    1265         2820 :          IF (do_gga) THEN
    1266              : 
    1267              :             !put the gradient of the so on the grid with correspond RI coeff
    1268         6556 :             DO dir = 1, 3
    1269              :                CALL daxpy(n, ri_dcoeff_so(1)%array(starti + iso), dso(:, :, dir), &
    1270         4917 :                           1, rho_set%drhoa(dir)%array(:, :, 1), 1)
    1271              : 
    1272         6556 :                IF (nspins == 2) THEN
    1273              :                   CALL daxpy(n, ri_dcoeff_so(2)%array(starti + iso), dso(:, :, dir), &
    1274          378 :                              1, rho_set%drhob(dir)%array(:, :, 1), 1)
    1275              :                END IF
    1276              :             END DO !dir
    1277              :          END IF !do_gga
    1278              : 
    1279              :       END DO
    1280              : 
    1281              : ! Treat spin restricted case (=> copy alpha into beta)
    1282           48 :       IF (nspins == 1) THEN
    1283           46 :          CALL dcopy(n, rhoa(:, :, 1), 1, rhob(:, :, 1), 1)
    1284              : 
    1285           46 :          IF (do_gga) THEN
    1286           88 :             DO dir = 1, 3
    1287           88 :                CALL dcopy(n, rho_set%drhoa(dir)%array(:, :, 1), 1, rho_set%drhob(dir)%array(:, :, 1), 1)
    1288              :             END DO
    1289              :          END IF
    1290              :       END IF
    1291              : 
    1292              : ! Note: sum over procs is done outside
    1293              : 
    1294              : !  clean-up
    1295           98 :       DO ispin = 1, nspins
    1296           98 :          DEALLOCATE (ri_dcoeff_so(ispin)%array)
    1297              :       END DO
    1298           48 :       DEALLOCATE (ri_dcoeff_so)
    1299              : 
    1300           48 :       CALL timestop(handle)
    1301              : 
    1302          144 :    END SUBROUTINE put_density_on_atomic_grid
    1303              : 
    1304              : ! **************************************************************************************************
    1305              : !> \brief Adds the density of a given source atom with source kind (with ri_dcoeff) on the atomic
    1306              : !>        grid belonging to another target atom of target kind. The evaluations of the basis
    1307              : !>        function first requires the evaluation of the x,y,z coordinates on each grid point of
    1308              : !>        target atom wrt to the position of source atom
    1309              : !> \param rho_set where the densities are stored
    1310              : !> \param ri_dcoeff the arrays containing the RI density coefficient of source_iat, for each spin
    1311              : !> \param source_iat the index of the source atom
    1312              : !> \param source_ikind the kind of the source atom
    1313              : !> \param target_iat the index of the target atom
    1314              : !> \param target_ikind the kind of the target atom
    1315              : !> \param sr starting r index for the local grid
    1316              : !> \param er ending r index for the local grid
    1317              : !> \param do_gga whether the gradient of the density is needed
    1318              : !> \param xas_atom_env ...
    1319              : !> \param qs_env ...
    1320              : ! **************************************************************************************************
    1321           16 :    SUBROUTINE put_density_on_other_grid(rho_set, ri_dcoeff, source_iat, source_ikind, target_iat, &
    1322              :                                         target_ikind, sr, er, do_gga, xas_atom_env, qs_env)
    1323              : 
    1324              :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1325              :       TYPE(cp_1d_r_p_type), DIMENSION(:)                 :: ri_dcoeff
    1326              :       INTEGER, INTENT(IN)                                :: source_iat, source_ikind, target_iat, &
    1327              :                                                             target_ikind, sr, er
    1328              :       LOGICAL, INTENT(IN)                                :: do_gga
    1329              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1330              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1331              : 
    1332              :       CHARACTER(len=*), PARAMETER :: routineN = 'put_density_on_other_grid'
    1333              : 
    1334              :       INTEGER                                            :: dir, handle, ia, ico, ipgf, ir, iset, &
    1335              :                                                             isgf, lx, ly, lz, n, na, nr, nset, &
    1336              :                                                             nspins, sgfi, start
    1337           16 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1338           16 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    1339              :       REAL(dp)                                           :: rmom
    1340           16 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: sgf
    1341           16 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: co, dsgf, pos
    1342           16 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :, :)       :: dco
    1343              :       REAL(dp), DIMENSION(3)                             :: rs, rst, rt
    1344           16 :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi, zet
    1345           16 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: rhoa, rhob
    1346              :       TYPE(cell_type), POINTER                           :: cell
    1347              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1348              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1349              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    1350           16 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1351           16 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1352              : 
    1353           16 :       NULLIFY (qs_kind_set, ri_basis, lmax, npgf, nsgf_set, lmin, zet, first_sgf, grid_atom)
    1354           16 :       NULLIFY (harmonics, rhoa, rhob, particle_set, cell, ri_sphi)
    1355              : 
    1356              :       !Same logic as the  put_density_on_own_grid routine. Loop over orbitals, put them on the grid,
    1357              :       !contract into sgf and daxpy with coeff. Notable difference: use cartesian orbitals instead of
    1358              :       !spherical, since the center of the grid is not the origin and thus, spherical symmetry can't
    1359              :       !be exploited so well
    1360              : 
    1361           16 :       CALL timeset(routineN, handle)
    1362              : 
    1363              :       !Generalities
    1364           16 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, particle_set=particle_set, cell=cell)
    1365              :       !want basis of the source atom
    1366           16 :       CALL get_qs_kind(qs_kind_set(source_ikind), basis_set=ri_basis, basis_type="RI_XAS")
    1367              :       CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, nsgf_set=nsgf_set, &
    1368           16 :                              first_sgf=first_sgf, lmin=lmin, sphi=ri_sphi)
    1369              : 
    1370              :       ! Want the grid and harmonics of the target atom
    1371           16 :       grid_atom => xas_atom_env%grid_atom_set(target_ikind)%grid_atom
    1372           16 :       harmonics => xas_atom_env%harmonics_atom_set(target_ikind)%harmonics_atom
    1373           16 :       na = grid_atom%ng_sphere
    1374           16 :       nr = er - sr + 1
    1375           16 :       n = na*nr
    1376           16 :       nspins = xas_atom_env%nspins
    1377              : 
    1378              :       !  Point to the rho_set densities
    1379           16 :       rhoa => rho_set%rhoa
    1380           16 :       rhob => rho_set%rhob
    1381              : 
    1382              :       !  Need the source-target position vector
    1383           16 :       rs = pbc(particle_set(source_iat)%r, cell)
    1384           16 :       rt = pbc(particle_set(target_iat)%r, cell)
    1385           16 :       rst = pbc(rs, rt, cell)
    1386              : 
    1387              :       ! Precompute the positions on the target grid
    1388           80 :       ALLOCATE (pos(na, sr:er, 4))
    1389              : !$OMP PARALLEL DO COLLAPSE(2) SCHEDULE(STATIC) DEFAULT(NONE), &
    1390              : !$OMP SHARED(na,sr,er,pos,harmonics,grid_atom,rst), &
    1391           16 : !$OMP PRIVATE(ia,ir)
    1392              :       DO ir = sr, er
    1393              :          DO ia = 1, na
    1394              :             pos(ia, ir, 1:3) = harmonics%a(:, ia)*grid_atom%rad(ir) + rst
    1395              :             pos(ia, ir, 4) = pos(ia, ir, 1)**2 + pos(ia, ir, 2)**2 + pos(ia, ir, 3)**2
    1396              :          END DO
    1397              :       END DO
    1398              : !$OMP END PARALLEL DO
    1399              : 
    1400              :       ! Loop over the cartesian gaussian functions and evaluate them
    1401           48 :       DO iset = 1, nset
    1402              : 
    1403              :          !allocate space to store the cartesian orbtial on the grid
    1404          160 :          ALLOCATE (co(na, sr:er, npgf(iset)*ncoset(lmax(iset))))
    1405          192 :          IF (do_gga) ALLOCATE (dco(na, sr:er, 3, npgf(iset)*ncoset(lmax(iset))))
    1406              : 
    1407              : !$OMP PARALLEL DEFAULT(NONE), &
    1408              : !$OMP SHARED(co,npgf,ncoset,lmax,lmin,indco,pos,zet,iset,na,sr,er,do_gga,dco), &
    1409           32 : !$OMP PRIVATE(ipgf,start,ico,lx,ly,lz,ia,ir,rmom)
    1410              : 
    1411              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1412              :          DO ir = sr, er
    1413              :             DO ia = 1, na
    1414              :                co(ia, ir, :) = 0.0_dp
    1415              :                IF (do_gga) THEN
    1416              :                   dco(ia, ir, :, :) = 0.0_dp
    1417              :                END IF
    1418              :             END DO
    1419              :          END DO
    1420              : !$OMP END DO NOWAIT
    1421              : 
    1422              :          DO ipgf = 1, npgf(iset)
    1423              :             start = (ipgf - 1)*ncoset(lmax(iset))
    1424              : 
    1425              :             !loop over the cartesian orbitals
    1426              :             DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1427              :                lx = indco(1, ico)
    1428              :                ly = indco(2, ico)
    1429              :                lz = indco(3, ico)
    1430              : 
    1431              :                ! compute g = x**lx * y**ly * z**lz * exp(-zet * r**2)
    1432              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1433              :                DO ir = sr, er
    1434              :                   DO ia = 1, na
    1435              :                      rmom = EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1436              :                      IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1437              :                      IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1438              :                      IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1439              :                      co(ia, ir, start + ico) = rmom
    1440              :                      !co(ia, ir, start + ico) = pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1441              :                      !                          *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1442              :                   END DO
    1443              :                END DO
    1444              : !$OMP END DO NOWAIT
    1445              : 
    1446              :                IF (do_gga) THEN
    1447              :                   !the gradient: dg_x = lx*x**(lx-1) * y**ly * z**lz * exp(-zet * r**2)
    1448              :                   !                     -2*zet* x**(lx+1) * y**ly * z**lz * exp(-zet * r**2)
    1449              :                   !                   = (lx*x**(lx-1) - 2*zet*x**(lx+1)) * y**ly * z**lz * exp(-zet * r**2)
    1450              : 
    1451              :                   !x direction, special case if lx == 0
    1452              :                   IF (lx == 0) THEN
    1453              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1454              :                      DO ir = sr, er
    1455              :                         DO ia = 1, na
    1456              :                            rmom = -2.0_dp*pos(ia, ir, 1)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1457              :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1458              :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1459              :                            dco(ia, ir, 1, start + ico) = rmom
    1460              : !                          dco(ia, ir, 1, start + ico) = -2.0_dp*pos(ia, ir, 1)*zet(ipgf, iset) &
    1461              : !                                                        *pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1462              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1463              :                         END DO
    1464              :                      END DO
    1465              : !$OMP END DO NOWAIT
    1466              :                   ELSE
    1467              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1468              :                      DO ir = sr, er
    1469              :                         DO ia = 1, na
    1470              :                            IF (lx /= 1) THEN
    1471              :                               rmom = (lx*pos(ia, ir, 1)**(lx - 1) - 2.0_dp*pos(ia, ir, 1)**(lx + 1)* &
    1472              :                                       zet(ipgf, iset))*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1473              :                            ELSE
    1474              :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 1)**2*zet(ipgf, iset))* &
    1475              :                                      EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1476              :                            END IF
    1477              :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1478              :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1479              :                            dco(ia, ir, 1, start + ico) = rmom
    1480              : !                          dco(ia, ir, 1, start + ico) = (lx*pos(ia, ir, 1)**(lx - 1) &
    1481              : !                                                         - 2.0_dp*pos(ia, ir, 1)**(lx + 1)*zet(ipgf, iset)) &
    1482              : !                                                        *pos(ia, ir, 2)**ly*pos(ia, ir, 3)**lz &
    1483              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1484              :                         END DO
    1485              :                      END DO
    1486              : !$OMP END DO NOWAIT
    1487              :                   END IF !lx == 0
    1488              : 
    1489              :                   !y direction, special case if ly == 0
    1490              :                   IF (ly == 0) THEN
    1491              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1492              :                      DO ir = sr, er
    1493              :                         DO ia = 1, na
    1494              :                            rmom = -2.0_dp*pos(ia, ir, 2)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1495              :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1496              :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1497              :                            dco(ia, ir, 2, start + ico) = rmom
    1498              : !                          dco(ia, ir, 2, start + ico) = -2.0_dp*pos(ia, ir, 2)*zet(ipgf, iset) &
    1499              : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 3)**lz &
    1500              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1501              :                         END DO
    1502              :                      END DO
    1503              : !$OMP END DO NOWAIT
    1504              :                   ELSE
    1505              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1506              :                      DO ir = sr, er
    1507              :                         DO ia = 1, na
    1508              :                            IF (ly /= 1) THEN
    1509              :                               rmom = (ly*pos(ia, ir, 2)**(ly - 1) - 2.0_dp*pos(ia, ir, 2)**(ly + 1)*zet(ipgf, iset)) &
    1510              :                                      *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1511              :                            ELSE
    1512              :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 2)**2*zet(ipgf, iset)) &
    1513              :                                      *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1514              :                            END IF
    1515              :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1516              :                            IF (lz /= 0) rmom = rmom*pos(ia, ir, 3)**lz
    1517              :                            dco(ia, ir, 2, start + ico) = rmom
    1518              : !                          dco(ia, ir, 2, start + ico) = (ly*pos(ia, ir, 2)**(ly - 1) &
    1519              : !                                                         - 2.0_dp*pos(ia, ir, 2)**(ly + 1)*zet(ipgf, iset)) &
    1520              : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 3)**lz &
    1521              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1522              :                         END DO
    1523              :                      END DO
    1524              : !$OMP END DO NOWAIT
    1525              :                   END IF !ly == 0
    1526              : 
    1527              :                   !z direction, special case if lz == 0
    1528              :                   IF (lz == 0) THEN
    1529              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1530              :                      DO ir = sr, er
    1531              :                         DO ia = 1, na
    1532              :                            rmom = -2.0_dp*pos(ia, ir, 3)*zet(ipgf, iset)*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1533              :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1534              :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1535              :                            dco(ia, ir, 3, start + ico) = rmom
    1536              : !                          dco(ia, ir, 3, start + ico) = -2.0_dp*pos(ia, ir, 3)*zet(ipgf, iset) &
    1537              : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly &
    1538              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1539              :                         END DO
    1540              :                      END DO
    1541              : !$OMP END DO NOWAIT
    1542              :                   ELSE
    1543              : !$OMP DO COLLAPSE(2) SCHEDULE(STATIC)
    1544              :                      DO ir = sr, er
    1545              :                         DO ia = 1, na
    1546              :                            IF (lz /= 1) THEN
    1547              :                               rmom = (lz*pos(ia, ir, 3)**(lz - 1) - 2.0_dp*pos(ia, ir, 3)**(lz + 1)* &
    1548              :                                       zet(ipgf, iset))*EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1549              :                            ELSE
    1550              :                               rmom = (1.0_dp - 2.0_dp*pos(ia, ir, 3)**2*zet(ipgf, iset))* &
    1551              :                                      EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1552              :                            END IF
    1553              :                            IF (lx /= 0) rmom = rmom*pos(ia, ir, 1)**lx
    1554              :                            IF (ly /= 0) rmom = rmom*pos(ia, ir, 2)**ly
    1555              :                            dco(ia, ir, 3, start + ico) = rmom
    1556              : !                          dco(ia, ir, 3, start + ico) = (lz*pos(ia, ir, 3)**(lz - 1) &
    1557              : !                                                         - 2.0_dp*pos(ia, ir, 3)**(lz + 1)*zet(ipgf, iset)) &
    1558              : !                                                        *pos(ia, ir, 1)**lx*pos(ia, ir, 2)**ly &
    1559              : !                                                        *EXP(-zet(ipgf, iset)*pos(ia, ir, 4))
    1560              :                         END DO
    1561              :                      END DO
    1562              : !$OMP END DO NOWAIT
    1563              :                   END IF !lz == 0
    1564              : 
    1565              :                END IF !gga
    1566              : 
    1567              :             END DO !ico
    1568              :          END DO !ipgf
    1569              : 
    1570              : !$OMP END PARALLEL
    1571              : 
    1572              :          !contract the co into sgf
    1573          128 :          ALLOCATE (sgf(na, sr:er))
    1574          160 :          IF (do_gga) ALLOCATE (dsgf(na, sr:er, 3))
    1575           32 :          sgfi = first_sgf(1, iset) - 1
    1576              : 
    1577          406 :          DO isgf = 1, nsgf_set(iset)
    1578     15038915 :             sgf = 0.0_dp
    1579     45117493 :             IF (do_gga) dsgf = 0.0_dp
    1580              : 
    1581         2824 :             DO ipgf = 1, npgf(iset)
    1582         2450 :                start = (ipgf - 1)*ncoset(lmax(iset))
    1583        21918 :                DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1584        21544 :                   CALL daxpy(n, ri_sphi(start + ico, sgfi + isgf), co(:, sr:er, start + ico), 1, sgf(:, sr:er), 1)
    1585              :                END DO !ico
    1586              :             END DO !ipgf
    1587              : 
    1588              :             !add the density to the grid
    1589          374 :             CALL daxpy(n, ri_dcoeff(1)%array(sgfi + isgf), sgf(:, sr:er), 1, rhoa(:, sr:er, 1), 1)
    1590              : 
    1591          374 :             IF (nspins == 2) THEN
    1592          138 :                CALL daxpy(n, ri_dcoeff(2)%array(sgfi + isgf), sgf(:, sr:er), 1, rhob(:, sr:er, 1), 1)
    1593              :             END IF
    1594              : 
    1595              :             !deal with the gradient
    1596          406 :             IF (do_gga) THEN
    1597              : 
    1598         2824 :                DO ipgf = 1, npgf(iset)
    1599         2450 :                   start = (ipgf - 1)*ncoset(lmax(iset))
    1600        21918 :                   DO ico = ncoset(lmin(iset) - 1) + 1, ncoset(lmax(iset))
    1601        78826 :                      DO dir = 1, 3
    1602              :                         CALL daxpy(n, ri_sphi(start + ico, sgfi + isgf), dco(:, sr:er, dir, start + ico), &
    1603        76376 :                                    1, dsgf(:, sr:er, dir), 1)
    1604              :                      END DO
    1605              :                   END DO !ico
    1606              :                END DO !ipgf
    1607              : 
    1608         1496 :                DO dir = 1, 3
    1609              :                   CALL daxpy(n, ri_dcoeff(1)%array(sgfi + isgf), dsgf(:, sr:er, dir), 1, &
    1610         1122 :                              rho_set%drhoa(dir)%array(:, sr:er, 1), 1)
    1611              : 
    1612         1496 :                   IF (nspins == 2) THEN
    1613              :                      CALL daxpy(n, ri_dcoeff(2)%array(sgfi + isgf), dsgf(:, sr:er, dir), 1, &
    1614          414 :                                 rho_set%drhob(dir)%array(:, sr:er, 1), 1)
    1615              :                   END IF
    1616              :                END DO
    1617              :             END IF !do_gga
    1618              : 
    1619              :          END DO !isgf
    1620              : 
    1621           32 :          DEALLOCATE (co, sgf)
    1622           48 :          IF (do_gga) DEALLOCATE (dco, dsgf)
    1623              :       END DO !iset
    1624              : 
    1625              :       !Treat spin-restricted case (copy alpha into beta)
    1626           16 :       IF (nspins == 1) THEN
    1627           10 :          CALL dcopy(n, rhoa(:, sr:er, 1), 1, rhob(:, sr:er, 1), 1)
    1628              : 
    1629           10 :          IF (do_gga) THEN
    1630           40 :             DO dir = 1, 3
    1631           40 :                CALL dcopy(n, rho_set%drhoa(dir)%array(:, sr:er, 1), 1, rho_set%drhob(dir)%array(:, sr:er, 1), 1)
    1632              :             END DO
    1633              :          END IF
    1634              :       END IF
    1635              : 
    1636           16 :       CALL timestop(handle)
    1637              : 
    1638           48 :    END SUBROUTINE put_density_on_other_grid
    1639              : 
    1640              : ! **************************************************************************************************
    1641              : !> \brief Computes the norm of the density gradient on the atomic grid
    1642              : !> \param rho_set ...
    1643              : !> \param atom_kind ...
    1644              : !> \param xas_atom_env ...
    1645              : !> \note GGA is assumed
    1646              : ! **************************************************************************************************
    1647           24 :    SUBROUTINE compute_norm_drho(rho_set, atom_kind, xas_atom_env)
    1648              : 
    1649              :       TYPE(xc_rho_set_type), INTENT(INOUT)               :: rho_set
    1650              :       INTEGER, INTENT(IN)                                :: atom_kind
    1651              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1652              : 
    1653              :       INTEGER                                            :: dir, ia, ir, n, na, nr, nspins
    1654              : 
    1655           24 :       na = xas_atom_env%grid_atom_set(atom_kind)%grid_atom%ng_sphere
    1656           24 :       nr = xas_atom_env%grid_atom_set(atom_kind)%grid_atom%nr
    1657           24 :       n = na*nr
    1658           24 :       nspins = xas_atom_env%nspins
    1659              : 
    1660       608724 :       rho_set%norm_drhoa = 0.0_dp
    1661       608724 :       rho_set%norm_drhob = 0.0_dp
    1662       608724 :       rho_set%norm_drho = 0.0_dp
    1663              : 
    1664           96 :       DO dir = 1, 3
    1665         9924 :          DO ir = 1, nr
    1666      1826100 :             DO ia = 1, na
    1667              :                rho_set%norm_drhoa(ia, ir, 1) = rho_set%norm_drhoa(ia, ir, 1) &
    1668      1826028 :                                                + rho_set%drhoa(dir)%array(ia, ir, 1)**2
    1669              :             END DO !ia
    1670              :          END DO !ir
    1671              :       END DO !dir
    1672       608724 :       rho_set%norm_drhoa = SQRT(rho_set%norm_drhoa)
    1673              : 
    1674           24 :       IF (nspins == 1) THEN
    1675              :          !spin-restricted
    1676           22 :          CALL dcopy(n, rho_set%norm_drhoa(:, :, 1), 1, rho_set%norm_drhob(:, :, 1), 1)
    1677              :       ELSE
    1678            8 :          DO dir = 1, 3
    1679         1466 :             DO ir = 1, nr
    1680       441780 :                DO ia = 1, na
    1681              :                   rho_set%norm_drhob(ia, ir, 1) = rho_set%norm_drhob(ia, ir, 1) &
    1682       441774 :                                                   + rho_set%drhob(dir)%array(ia, ir, 1)**2
    1683              :                END DO
    1684              :             END DO
    1685              :          END DO
    1686       147262 :          rho_set%norm_drhob = SQRT(rho_set%norm_drhob)
    1687              :       END IF
    1688              : 
    1689           96 :       DO dir = 1, 3
    1690         9924 :          DO ir = 1, nr
    1691      1826100 :             DO ia = 1, na
    1692              :                rho_set%norm_drho(ia, ir, 1) = rho_set%norm_drho(ia, ir, 1) + &
    1693              :                                               (rho_set%drhoa(dir)%array(ia, ir, 1) + &
    1694      1826028 :                                                rho_set%drhob(dir)%array(ia, ir, 1))**2
    1695              :             END DO
    1696              :          END DO
    1697              :       END DO
    1698       608724 :       rho_set%norm_drho = SQRT(rho_set%norm_drho)
    1699              : 
    1700           24 :    END SUBROUTINE compute_norm_drho
    1701              : 
    1702              : ! **************************************************************************************************
    1703              : !> \brief Precomputes the spherical orbitals of the RI basis on the excited atom grids
    1704              : !> \param do_gga whether the gradient needs to be computed for GGA or not
    1705              : !> \param batch_info the parallelization info to complete with so distribution info
    1706              : !> \param xas_atom_env ...
    1707              : !> \param qs_env ...
    1708              : !> \note the functions are split in a purely angular part of size na and a purely radial part of
    1709              : !>       size nr. The full function on the grid can simply be obtained with dgemm and we save space
    1710              : ! **************************************************************************************************
    1711           48 :    SUBROUTINE precompute_so_dso(do_gga, batch_info, xas_atom_env, qs_env)
    1712              : 
    1713              :       LOGICAL, INTENT(IN)                                :: do_gga
    1714              :       TYPE(batch_info_type)                              :: batch_info
    1715              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1716              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1717              : 
    1718              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'precompute_so_dso'
    1719              : 
    1720              :       INTEGER                                            :: bo(2), dir, handle, ikind, ipgf, iset, &
    1721              :                                                             iso, iso_proc, l, maxso, n, na, nkind, &
    1722              :                                                             nr, nset, nso_proc, nsotot, starti
    1723           48 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf, nsgf_set
    1724           48 :       INTEGER, DIMENSION(:, :), POINTER                  :: so_proc_info
    1725           48 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: rexp
    1726           48 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, slm, zet
    1727           48 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2, dslm_dxyz
    1728              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    1729              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    1730              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    1731              :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1732           48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1733              : 
    1734           48 :       NULLIFY (qs_kind_set, harmonics, grid_atom, slm, dslm_dxyz, ri_basis, lmax, lmin, npgf)
    1735           48 :       NULLIFY (nsgf_set, zet, para_env, so_proc_info)
    1736              : 
    1737           48 :       CALL timeset(routineN, handle)
    1738              : 
    1739           48 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, para_env=para_env)
    1740           48 :       nkind = SIZE(qs_kind_set)
    1741              : 
    1742          220 :       ALLOCATE (batch_info%so_proc_info(nkind))
    1743          144 :       ALLOCATE (batch_info%nso_proc(nkind))
    1744          144 :       ALLOCATE (batch_info%so_bo(2, nkind))
    1745              : 
    1746          124 :       DO ikind = 1, nkind
    1747              : 
    1748           76 :          NULLIFY (xas_atom_env%ga(ikind)%array)
    1749           76 :          NULLIFY (xas_atom_env%gr(ikind)%array)
    1750           76 :          NULLIFY (xas_atom_env%dga1(ikind)%array)
    1751           76 :          NULLIFY (xas_atom_env%dga2(ikind)%array)
    1752           76 :          NULLIFY (xas_atom_env%dgr1(ikind)%array)
    1753           76 :          NULLIFY (xas_atom_env%dgr2(ikind)%array)
    1754              : 
    1755           76 :          NULLIFY (batch_info%so_proc_info(ikind)%array)
    1756              : 
    1757          106 :          IF (.NOT. ANY(xas_atom_env%excited_kinds == ikind)) CYCLE
    1758              : 
    1759              :          !grid info
    1760           54 :          harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    1761           54 :          grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    1762              : 
    1763           54 :          na = grid_atom%ng_sphere
    1764           54 :          nr = grid_atom%nr
    1765           54 :          n = na*nr
    1766              : 
    1767           54 :          slm => harmonics%slm
    1768           54 :          dslm_dxyz => harmonics%dslm_dxyz
    1769              : 
    1770              :          !basis info
    1771           54 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    1772              :          CALL get_gto_basis_set(ri_basis, lmax=lmax, npgf=npgf, zet=zet, nset=nset, &
    1773           54 :                                 nsgf_set=nsgf_set, lmin=lmin, maxso=maxso)
    1774           54 :          nsotot = maxso*nset
    1775              : 
    1776              :          !we split all so among the processors of the batch
    1777           54 :          bo = get_limit(nsotot, batch_info%batch_size, batch_info%ipe)
    1778           54 :          nso_proc = bo(2) - bo(1) + 1
    1779          162 :          batch_info%so_bo(:, ikind) = bo
    1780           54 :          batch_info%nso_proc(ikind) = nso_proc
    1781              : 
    1782              :          !store info about the so's set, pgf and index
    1783          162 :          ALLOCATE (batch_info%so_proc_info(ikind)%array(3, nso_proc))
    1784           54 :          so_proc_info => batch_info%so_proc_info(ikind)%array
    1785        24702 :          so_proc_info = -1 !default is -1 => set so value to zero
    1786          238 :          DO iset = 1, nset
    1787         1128 :             DO ipgf = 1, npgf(iset)
    1788          890 :                starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    1789         6260 :                DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    1790              : 
    1791              :                   !only consider so that are on this proc
    1792         5186 :                   IF (starti + iso < bo(1) .OR. starti + iso > bo(2)) CYCLE
    1793         3210 :                   iso_proc = starti + iso - bo(1) + 1
    1794         3210 :                   so_proc_info(1, iso_proc) = iset
    1795         3210 :                   so_proc_info(2, iso_proc) = ipgf
    1796         6076 :                   so_proc_info(3, iso_proc) = iso
    1797              : 
    1798              :                END DO
    1799              :             END DO
    1800              :          END DO
    1801              : 
    1802              :          !Put the gaussians and their gradient as purely angular or radial arrays
    1803          216 :          ALLOCATE (xas_atom_env%ga(ikind)%array(na, nso_proc))
    1804          216 :          ALLOCATE (xas_atom_env%gr(ikind)%array(nr, nso_proc))
    1805      2018532 :          xas_atom_env%ga(ikind)%array = 0.0_dp; xas_atom_env%gr(ikind)%array = 0.0_dp
    1806           54 :          IF (do_gga) THEN
    1807          150 :             ALLOCATE (xas_atom_env%dga1(ikind)%array(na, nso_proc, 3))
    1808           90 :             ALLOCATE (xas_atom_env%dgr1(ikind)%array(nr, nso_proc))
    1809           90 :             ALLOCATE (xas_atom_env%dga2(ikind)%array(na, nso_proc, 3))
    1810           90 :             ALLOCATE (xas_atom_env%dgr2(ikind)%array(nr, nso_proc))
    1811      2129454 :             xas_atom_env%dga1(ikind)%array = 0.0_dp; xas_atom_env%dgr1(ikind)%array = 0.0_dp
    1812      2129454 :             xas_atom_env%dga2(ikind)%array = 0.0_dp; xas_atom_env%dgr2(ikind)%array = 0.0_dp
    1813              :          END IF
    1814              : 
    1815           54 :          ga => xas_atom_env%ga(ikind)%array
    1816           54 :          gr => xas_atom_env%gr(ikind)%array
    1817           54 :          dga1 => xas_atom_env%dga1(ikind)%array
    1818           54 :          dga2 => xas_atom_env%dga2(ikind)%array
    1819           54 :          dgr1 => xas_atom_env%dgr1(ikind)%array
    1820           54 :          dgr2 => xas_atom_env%dgr2(ikind)%array
    1821              : 
    1822          162 :          ALLOCATE (rexp(nr))
    1823              : 
    1824         6216 :          DO iso_proc = 1, nso_proc
    1825         6162 :             iset = so_proc_info(1, iso_proc)
    1826         6162 :             ipgf = so_proc_info(2, iso_proc)
    1827         6162 :             iso = so_proc_info(3, iso_proc)
    1828         6162 :             IF (iso < 0) CYCLE
    1829              : 
    1830         3210 :             l = indso(1, iso)
    1831              : 
    1832              :             !The gaussian is g = r^l * Ylm * exp(-a*r^2)
    1833              : 
    1834              :             !radial part of the gaussian
    1835       433011 :             rexp(1:nr) = EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    1836       862812 :             gr(1:nr, iso_proc) = grid_atom%rad(1:nr)**l*rexp(1:nr)
    1837              : 
    1838              :             !angular part of the gaussian
    1839      1079874 :             ga(1:na, iso_proc) = slm(1:na, iso)
    1840              : 
    1841              :             !For the gradient, devide in 2 parts: dg/dx = d/dx(r^l * Ylm) * exp(-a*r^2)
    1842              :             !                                            + r^l * Ylm *  d/dx(exp(-a*r^2))
    1843              :             !Note: we make this choice of separation because of cartesian coordinates, where
    1844              :             !      g = x^lx * y^ly * z^lz * exp(-a*r^2) and r^(l-1)*dslm_dxyz = d/dx(r^l * Ylm)
    1845              : 
    1846         3264 :             IF (do_gga) THEN
    1847              :                !radial part of the gradient => same in all three direction
    1848       556561 :                dgr1(1:nr, iso_proc) = grid_atom%rad(1:nr)**(l - 1)*rexp(1:nr)
    1849       556561 :                dgr2(1:nr, iso_proc) = -2.0_dp*zet(ipgf, iset)*grid_atom%rad(1:nr)**(l + 1)*rexp(1:nr)
    1850              : 
    1851              :                !angular part of the gradient
    1852         8308 :                DO dir = 1, 3
    1853      2012019 :                   dga1(1:na, iso_proc, dir) = dslm_dxyz(dir, 1:na, iso)
    1854      2014096 :                   dga2(1:na, iso_proc, dir) = harmonics%a(dir, 1:na)*slm(1:na, iso)
    1855              :                END DO
    1856              :             END IF
    1857              : 
    1858              :          END DO !iso_proc
    1859              : 
    1860          178 :          DEALLOCATE (rexp)
    1861              :       END DO !ikind
    1862              : 
    1863           48 :       CALL timestop(handle)
    1864              : 
    1865           96 :    END SUBROUTINE precompute_so_dso
    1866              : 
    1867              : ! **************************************************************************************************
    1868              : !> \brief Integrate the xc kernel as a function of r on the atomic grids for the RI_XAS basis
    1869              : !> \param int_fxc the global array containing the (P|fxc|Q) integrals, for all spin configurations
    1870              : !> \param xas_atom_env ...
    1871              : !> \param xas_tdp_control ...
    1872              : !> \param qs_env ...
    1873              : !> \note Note that if closed-shell, alpha-alpha term and beta-beta terms are the same
    1874              : !>       Store the (P|fxc|Q) integrals on the processor they were computed on
    1875              : !>       int_fxc(1)%matrix is alpha-alpha, 2: alpha-beta, 3: beta-beta
    1876              : ! **************************************************************************************************
    1877           48 :    SUBROUTINE integrate_fxc_atoms(int_fxc, xas_atom_env, xas_tdp_control, qs_env)
    1878              : 
    1879              :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    1880              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    1881              :       TYPE(xas_tdp_control_type), POINTER                :: xas_tdp_control
    1882              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    1883              : 
    1884              :       CHARACTER(len=*), PARAMETER :: routineN = 'integrate_fxc_atoms'
    1885              : 
    1886              :       INTEGER :: batch_size, dir, er, ex_bo(2), handle, i, iatom, ibatch, iex, ikind, inb, ipe, &
    1887              :          mepos, na, natom, nb, nb_bo(2), nbatch, nbk, nex_atom, nr, num_pe, sr
    1888              :       INTEGER, DIMENSION(2, 3)                           :: bounds
    1889           48 :       INTEGER, DIMENSION(:), POINTER                     :: exat_neighbors
    1890              :       LOGICAL                                            :: do_gga, do_sc, do_sf
    1891           48 :       TYPE(batch_info_type)                              :: batch_info
    1892           48 :       TYPE(cp_1d_r_p_type), DIMENSION(:, :), POINTER     :: ri_dcoeff
    1893              :       TYPE(dft_control_type), POINTER                    :: dft_control
    1894              :       TYPE(mp_para_env_type), POINTER                    :: para_env
    1895           48 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    1896           48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    1897              :       TYPE(section_vals_type), POINTER                   :: input, xc_functionals
    1898              :       TYPE(xc_derivative_set_type)                       :: deriv_set
    1899              :       TYPE(xc_rho_cflags_type)                           :: needs
    1900              :       TYPE(xc_rho_set_type)                              :: rho_set
    1901              : 
    1902           48 :       NULLIFY (particle_set, qs_kind_set, dft_control, para_env, exat_neighbors)
    1903           48 :       NULLIFY (input, xc_functionals)
    1904              : 
    1905           48 :       CALL timeset(routineN, handle)
    1906              : 
    1907              : !  Initialize
    1908              :       CALL get_qs_env(qs_env, particle_set=particle_set, qs_kind_set=qs_kind_set, natom=natom, &
    1909           48 :                       dft_control=dft_control, input=input, para_env=para_env)
    1910         1912 :       ALLOCATE (int_fxc(natom, 4))
    1911          442 :       DO iatom = 1, natom
    1912         2018 :          DO i = 1, 4
    1913         1970 :             NULLIFY (int_fxc(iatom, i)%array)
    1914              :          END DO
    1915              :       END DO
    1916           48 :       nex_atom = SIZE(xas_atom_env%excited_atoms)
    1917              :       !spin conserving in the general sense here
    1918           48 :       do_sc = xas_tdp_control%do_spin_cons .OR. xas_tdp_control%do_singlet .OR. xas_tdp_control%do_triplet
    1919           48 :       do_sf = xas_tdp_control%do_spin_flip
    1920              : 
    1921              : !  Get some info on the functionals
    1922           48 :       IF (qs_env%do_rixs) THEN
    1923           10 :          xc_functionals => section_vals_get_subs_vals(input, "PROPERTIES%RIXS%XAS_TDP%KERNEL%XC_FUNCTIONAL")
    1924              :       ELSE
    1925           38 :          xc_functionals => section_vals_get_subs_vals(input, "DFT%XAS_TDP%KERNEL%XC_FUNCTIONAL")
    1926              :       END IF
    1927              :       ! ask for lsd in any case
    1928           48 :       needs = xc_functionals_get_needs(xc_functionals, lsd=.TRUE., calc_potential=.TRUE.)
    1929           48 :       do_gga = needs%drho_spin !because either LDA or GGA, and the former does not need gradient
    1930              : 
    1931              : !  Distribute the excited atoms over batches of processors
    1932              : !  Then, the spherical orbital of the RI basis are distributed among the procs of the batch, making
    1933              : !  the GGA integration very efficient
    1934           48 :       num_pe = para_env%num_pe
    1935           48 :       mepos = para_env%mepos
    1936              : 
    1937              :       !create a batch_info_type
    1938           48 :       CALL get_proc_batch_sizes(batch_size, nbatch, nex_atom, num_pe)
    1939              : 
    1940              :       !the batch index
    1941           48 :       ibatch = mepos/batch_size
    1942              :       !the proc index within the batch
    1943           48 :       ipe = MODULO(mepos, batch_size)
    1944              : 
    1945           48 :       batch_info%batch_size = batch_size
    1946           48 :       batch_info%nbatch = nbatch
    1947           48 :       batch_info%ibatch = ibatch
    1948           48 :       batch_info%ipe = ipe
    1949              : 
    1950              :       !create a subcommunicator for this batch
    1951           48 :       CALL batch_info%para_env%from_split(para_env, ibatch)
    1952              : 
    1953              : !  Precompute the spherical orbital of the RI basis (and maybe their gradient) on the grids of the
    1954              : !  excited atoms. Needed for the GGA integration and to actually put the density on the grid
    1955           48 :       CALL precompute_so_dso(do_gga, batch_info, xas_atom_env, qs_env)
    1956              : 
    1957              :       !distribute the excted atoms over the batches
    1958           48 :       ex_bo = get_limit(nex_atom, nbatch, ibatch)
    1959              : 
    1960              : !  Looping over the excited atoms
    1961           96 :       DO iex = ex_bo(1), ex_bo(2)
    1962              : 
    1963           48 :          iatom = xas_atom_env%excited_atoms(iex)
    1964           48 :          ikind = particle_set(iatom)%atomic_kind%kind_number
    1965           48 :          exat_neighbors => xas_atom_env%exat_neighbors(iex)%array
    1966           48 :          ri_dcoeff => xas_atom_env%ri_dcoeff(:, :, iex)
    1967              : 
    1968              : !     General grid/basis info
    1969           48 :          na = xas_atom_env%grid_atom_set(ikind)%grid_atom%ng_sphere
    1970           48 :          nr = xas_atom_env%grid_atom_set(ikind)%grid_atom%nr
    1971              : 
    1972              : !     Creating a xc_rho_set to store the density and dset for the kernel
    1973          480 :          bounds(1:2, 1:3) = 1
    1974           48 :          bounds(2, 1) = na
    1975           48 :          bounds(2, 2) = nr
    1976              : 
    1977              :          CALL xc_rho_set_create(rho_set=rho_set, local_bounds=bounds, &
    1978              :                                 rho_cutoff=dft_control%qs_control%eps_rho_rspace, &
    1979           48 :                                 drho_cutoff=dft_control%qs_control%eps_rho_rspace)
    1980           48 :          CALL xc_dset_create(deriv_set, local_bounds=bounds)
    1981              : 
    1982              :          ! allocate internals of the rho_set
    1983           48 :          CALL xc_rho_set_atom_update(rho_set, needs, nspins=2, bo=bounds)
    1984              : 
    1985              : !     Put the density, and possibly its gradient,  on the grid (for this atom)
    1986              :          CALL put_density_on_atomic_grid(rho_set, ri_dcoeff(iatom, :), ikind, &
    1987           48 :                                          do_gga, batch_info, xas_atom_env, qs_env)
    1988              : 
    1989              : !     Take the neighboring atom contributions to the density (and gradient)
    1990              : !     distribute the grid among the procs (for best load balance)
    1991           48 :          nb_bo = get_limit(nr, batch_size, ipe)
    1992           48 :          sr = nb_bo(1); er = nb_bo(2)
    1993           64 :          DO inb = 1, SIZE(exat_neighbors)
    1994              : 
    1995           16 :             nb = exat_neighbors(inb)
    1996           16 :             nbk = particle_set(nb)%atomic_kind%kind_number
    1997              :             CALL put_density_on_other_grid(rho_set, ri_dcoeff(nb, :), nb, nbk, iatom, &
    1998           64 :                                            ikind, sr, er, do_gga, xas_atom_env, qs_env)
    1999              : 
    2000              :          END DO
    2001              : 
    2002              :          ! make sure contributions from different procs are summed up
    2003           48 :          CALL batch_info%para_env%sum(rho_set%rhoa)
    2004           48 :          CALL batch_info%para_env%sum(rho_set%rhob)
    2005           48 :          IF (do_gga) THEN
    2006           96 :             DO dir = 1, 3
    2007           72 :                CALL batch_info%para_env%sum(rho_set%drhoa(dir)%array)
    2008           96 :                CALL batch_info%para_env%sum(rho_set%drhob(dir)%array)
    2009              :             END DO
    2010              :          END IF
    2011              : 
    2012              : !     In case of GGA, also need the norm of the density gradient
    2013           48 :          IF (do_gga) CALL compute_norm_drho(rho_set, ikind, xas_atom_env)
    2014              : 
    2015              : !     Compute the required derivatives
    2016              :          CALL xc_functionals_eval(xc_functionals, lsd=.TRUE., rho_set=rho_set, deriv_set=deriv_set, &
    2017           48 :                                   deriv_order=2)
    2018              : 
    2019              :          !spin-conserving (LDA part)
    2020           48 :          IF (do_sc) THEN
    2021           48 :             CALL integrate_sc_fxc(int_fxc, iatom, ikind, deriv_set, xas_atom_env, qs_env)
    2022              :          END IF
    2023              : 
    2024              :          !spin-flip (LDA part)
    2025           48 :          IF (do_sf) THEN
    2026            0 :             CALL integrate_sf_fxc(int_fxc, iatom, ikind, rho_set, deriv_set, xas_atom_env, qs_env)
    2027              :          END IF
    2028              : 
    2029              :          !Gradient correction (note: spin-flip only keeps the lda part, aka ALDA0)
    2030           48 :          IF (do_gga .AND. do_sc) THEN
    2031              :             CALL integrate_gga_fxc(int_fxc, iatom, ikind, batch_info, rho_set, deriv_set, &
    2032           24 :                                    xas_atom_env, qs_env)
    2033              :          END IF
    2034              : 
    2035              : !     Clean-up
    2036           48 :          CALL xc_dset_release(deriv_set)
    2037          144 :          CALL xc_rho_set_release(rho_set)
    2038              :       END DO !iex
    2039              : 
    2040           48 :       CALL release_batch_info(batch_info)
    2041              : 
    2042              :       !Not necessary to sync, but makes sure that any load inbalance is reported here
    2043           48 :       CALL para_env%sync()
    2044              : 
    2045           48 :       CALL timestop(handle)
    2046              : 
    2047         1152 :    END SUBROUTINE integrate_fxc_atoms
    2048              : 
    2049              : ! **************************************************************************************************
    2050              : !> \brief Integrate the gradient correction part of the xc kernel on the atomic grid
    2051              : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2052              : !> \param iatom the index of the current excited atom
    2053              : !> \param ikind the index of the current excited kind
    2054              : !> \param batch_info how the so are distributed over the processor batch
    2055              : !> \param rho_set the variable contatinind the density and its gradient
    2056              : !> \param deriv_set the functional derivatives
    2057              : !> \param xas_atom_env ...
    2058              : !> \param qs_env ...
    2059              : !> \note Ignored in case of pure LDA, added on top of the LDA kernel in case of GGA
    2060              : ! **************************************************************************************************
    2061           24 :    SUBROUTINE integrate_gga_fxc(int_fxc, iatom, ikind, batch_info, rho_set, deriv_set, &
    2062              :                                 xas_atom_env, qs_env)
    2063              : 
    2064              :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2065              :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2066              :       TYPE(batch_info_type)                              :: batch_info
    2067              :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2068              :       TYPE(xc_derivative_set_type), INTENT(INOUT)        :: deriv_set
    2069              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2070              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2071              : 
    2072              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'integrate_gga_fxc'
    2073              : 
    2074              :       INTEGER                                            :: bo(2), dir, handle, i, ia, ir, jpgf, &
    2075              :                                                             jset, jso, l, maxso, na, nr, nset, &
    2076              :                                                             nsgf, nsoi, nsotot, startj, ub
    2077           24 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    2078           24 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: rexp
    2079           24 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: int_sgf, res, so, work
    2080           24 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: dso
    2081           24 :       REAL(dp), DIMENSION(:, :), POINTER                 :: dgr1, dgr2, ga, gr, ri_sphi_so, weight, &
    2082           24 :                                                             zet
    2083           24 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dga1, dga2
    2084           24 :       TYPE(cp_2d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: int_so, vxc
    2085              :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: vxg
    2086              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2087              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2088              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    2089              :       TYPE(mp_para_env_type), POINTER                    :: para_env
    2090           24 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2091              : 
    2092           24 :       NULLIFY (grid_atom, ri_basis, qs_kind_set, ga, gr, dgr1, dgr2, lmax, lmin, npgf)
    2093           24 :       NULLIFY (weight, ri_sphi_so, dga1, dga2, para_env, harmonics, zet)
    2094              : 
    2095              :       !Strategy: we need to compute <phi_i|fxc|phij>, most of existing application of the 2nd
    2096              :       !          functional derivative involve the response density, and the expression of the
    2097              :       !          integral int (fxc*n^1) is well known. We substitute the spherical orbital phi_j
    2098              :       !          in place of n^1 in the formula and thus perform the first integration. Then
    2099              :       !          we obtain something in the form int (fxc*phi_j) = Vxc - div (Vxg) that we can
    2100              :       !          put on the grid and treat like a potential. The second integration is done by
    2101              :       !          using the divergence theorem and numerical integration:
    2102              :       !          <phi_i|fxc|phi_j> = int phi_i*(Vxc - div(Vxg)) = int phi_i*Vxc + grad(phi_i).Vxg
    2103              :       !          Note the sign change and the dot product.
    2104              : 
    2105           24 :       CALL timeset(routineN, handle)
    2106              : 
    2107              :       !If closed shell, only compute f_aa and f_ab (ub = 2)
    2108           24 :       ub = 2
    2109           24 :       IF (xas_atom_env%nspins == 2) ub = 3
    2110              : 
    2111              :       !Get the necessary grid info
    2112           24 :       harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    2113           24 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2114           24 :       na = grid_atom%ng_sphere
    2115           24 :       nr = grid_atom%nr
    2116           24 :       weight => grid_atom%weight
    2117              : 
    2118              :       !get the ri_basis info
    2119           24 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, para_env=para_env)
    2120           24 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2121              : 
    2122              :       CALL get_gto_basis_set(gto_basis_set=ri_basis, lmax=lmax, lmin=lmin, nsgf=nsgf, &
    2123           24 :                              maxso=maxso, npgf=npgf, nset=nset, zet=zet)
    2124           24 :       nsotot = nset*maxso
    2125              : 
    2126              :       !Point to the precomputed so
    2127           24 :       ga => xas_atom_env%ga(ikind)%array
    2128           24 :       gr => xas_atom_env%gr(ikind)%array
    2129           24 :       dgr1 => xas_atom_env%dgr1(ikind)%array
    2130           24 :       dgr2 => xas_atom_env%dgr2(ikind)%array
    2131           24 :       dga1 => xas_atom_env%dga1(ikind)%array
    2132           24 :       dga2 => xas_atom_env%dga2(ikind)%array
    2133              : 
    2134              :       !Before integration, wanna pre-divide all relevant derivastives by the nrom of the gradient
    2135           24 :       CALL divide_by_norm_drho(deriv_set, rho_set, lsd=.TRUE.)
    2136              : 
    2137              :       !Wanna integrate <phi_i|fxc|phi_j>, start looping over phi_j and do the first integration, then
    2138              :       !collect vxc and vxg and loop over phi_i for the second integration
    2139              :       !Note: we do not use the CG coefficients because they are only useful when there is a product
    2140              :       !      of Gaussians, which is not really the case here
    2141              :       !Note: the spherical orbitals for phi_i are distributed among the prcos of the current batch
    2142              : 
    2143           96 :       ALLOCATE (so(na, nr))
    2144          120 :       ALLOCATE (dso(na, nr, 3))
    2145           72 :       ALLOCATE (rexp(nr))
    2146              : 
    2147           98 :       ALLOCATE (vxc(ub))
    2148           74 :       ALLOCATE (vxg(ub))
    2149           74 :       ALLOCATE (int_so(ub))
    2150           74 :       DO i = 1, ub
    2151          150 :          ALLOCATE (vxc(i)%array(na, nr))
    2152          150 :          ALLOCATE (vxg(i)%array(na, nr, 3))
    2153          200 :          ALLOCATE (int_so(i)%array(nsotot, nsotot))
    2154      7417484 :          vxc(i)%array = 0.0_dp; vxg(i)%array = 0.0_dp; int_so(i)%array = 0.0_dp
    2155              :       END DO
    2156              : 
    2157           72 :       DO jset = 1, nset
    2158          436 :          DO jpgf = 1, npgf(jset)
    2159          364 :             startj = (jset - 1)*maxso + (jpgf - 1)*nsoset(lmax(jset))
    2160         3040 :             DO jso = nsoset(lmin(jset) - 1) + 1, nsoset(lmax(jset))
    2161         2628 :                l = indso(1, jso)
    2162              : 
    2163              :                !put the so phi_j and its gradient on the grid
    2164              :                !more efficient to recompute it rather than mp_bcast each chunk
    2165              : 
    2166       371658 :                rexp(1:nr) = EXP(-zet(jpgf, jset)*grid_atom%rad2(1:nr))
    2167              : !$OMP PARALLEL DO COLLAPSE(2) DEFAULT(NONE), &
    2168              : !$OMP SHARED(nr,na,so,dso,grid_atom,l,rexp,harmonics,jso,zet,jset,jpgf), &
    2169         2628 : !$OMP PRIVATE(ir,ia,dir)
    2170              :                DO ir = 1, nr
    2171              :                   DO ia = 1, na
    2172              : 
    2173              :                      !so
    2174              :                      so(ia, ir) = grid_atom%rad(ir)**l*rexp(ir)*harmonics%slm(ia, jso)
    2175              : 
    2176              :                      !dso
    2177              :                      dso(ia, ir, :) = 0.0_dp
    2178              :                      DO dir = 1, 3
    2179              :                         dso(ia, ir, dir) = dso(ia, ir, dir) &
    2180              :                                            + grid_atom%rad(ir)**(l - 1)*rexp(ir)*harmonics%dslm_dxyz(dir, ia, jso) &
    2181              :                                            - 2.0_dp*zet(jpgf, jset)*grid_atom%rad(ir)**(l + 1)*rexp(ir) &
    2182              :                                            *harmonics%a(dir, ia)*harmonics%slm(ia, jso)
    2183              :                      END DO
    2184              :                   END DO
    2185              :                END DO
    2186              : !$OMP END PARALLEL DO
    2187              : 
    2188              :                !Perform the first integration (analytically)
    2189         2628 :                CALL get_vxc_vxg(vxc, vxg, so, dso, na, nr, rho_set, deriv_set, weight)
    2190              : 
    2191              :                !For a given phi_j, compute the second integration with all phi_i at once
    2192              :                !=> allows for efficient gemm to take place, especially since so are distributed
    2193         2628 :                nsoi = batch_info%nso_proc(ikind)
    2194         7884 :                bo = batch_info%so_bo(:, ikind)
    2195        18396 :                ALLOCATE (res(nsoi, nsoi), work(na, nsoi))
    2196    100587408 :                res = 0.0_dp; work = 0.0_dp
    2197              : 
    2198         8136 :                DO i = 1, ub
    2199              : 
    2200              :                   !integrate so*Vxc and store in the int_so
    2201              :                   CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxc(i)%array(:, :), na, &
    2202         5508 :                              gr(:, 1:nsoi), nr, 0.0_dp, work, na)
    2203              :                   CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2204         5508 :                              ga(:, 1:nsoi), na, 0.0_dp, res, nsoi)
    2205       651216 :                   int_so(i)%array(bo(1):bo(2), startj + jso) = get_diag(res)
    2206              : 
    2207        24660 :                   DO dir = 1, 3
    2208              : 
    2209              :                      ! integrate and sum up Vxg*dso
    2210              :                      CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxg(i)%array(:, :, dir), na, &
    2211        16524 :                                 dgr1(:, 1:nsoi), nr, 0.0_dp, work, na)
    2212              :                      CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2213        16524 :                                 dga1(:, 1:nsoi, dir), na, 0.0_dp, res, nsoi)
    2214        16524 :                      CALL daxpy(nsoi, 1.0_dp, get_diag(res), 1, int_so(i)%array(bo(1):bo(2), startj + jso), 1)
    2215              : 
    2216              :                      CALL dgemm('N', 'N', na, nsoi, nr, 1.0_dp, vxg(i)%array(:, :, dir), na, &
    2217        16524 :                                 dgr2(:, 1:nsoi), nr, 0.0_dp, work, na)
    2218              :                      CALL dgemm('T', 'N', nsoi, nsoi, na, 1.0_dp, work, na, &
    2219        16524 :                                 dga2(:, 1:nsoi, dir), na, 0.0_dp, res, nsoi)
    2220        22032 :                      CALL daxpy(nsoi, 1.0_dp, get_diag(res), 1, int_so(i)%array(bo(1):bo(2), startj + jso), 1)
    2221              : 
    2222              :                   END DO
    2223              : 
    2224              :                END DO !i
    2225         2992 :                DEALLOCATE (res, work)
    2226              : 
    2227              :             END DO !jso
    2228              :          END DO !jpgf
    2229              :       END DO !jset
    2230              : 
    2231              :       !Contract into sgf and add to already computed LDA part of int_fxc
    2232           24 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2233           96 :       ALLOCATE (int_sgf(nsgf, nsgf))
    2234           74 :       DO i = 1, ub
    2235      3917690 :          CALL batch_info%para_env%sum(int_so(i)%array)
    2236           50 :          CALL contract_so2sgf(int_sgf, int_so(i)%array, ri_basis, ri_sphi_so)
    2237           74 :          CALL daxpy(nsgf*nsgf, 1.0_dp, int_sgf, 1, int_fxc(iatom, i)%array, 1)
    2238              :       END DO
    2239              : 
    2240              :       !Clean-up
    2241           74 :       DO i = 1, ub
    2242           50 :          DEALLOCATE (vxc(i)%array)
    2243           50 :          DEALLOCATE (vxg(i)%array)
    2244           74 :          DEALLOCATE (int_so(i)%array)
    2245              :       END DO
    2246           24 :       DEALLOCATE (vxc, vxg, int_so)
    2247              : 
    2248           24 :       CALL timestop(handle)
    2249              : 
    2250           72 :    END SUBROUTINE integrate_gga_fxc
    2251              : 
    2252              : ! **************************************************************************************************
    2253              : !> \brief Computes the first integration of the GGA part of <phi_i|fxc|phi_j>, i.e. int fxc*phi_j.
    2254              : !>        The result is of the form Vxc - div(Vxg). Up to 3 results are returned, correspoinding to
    2255              : !>        f_aa, f_ab and (if open-shell) f_bb
    2256              : !> \param vxc ...
    2257              : !> \param vxg ...
    2258              : !> \param so the spherical orbital on the grid
    2259              : !> \param dso the derivative of the spherical orbital on the grid
    2260              : !> \param na ...
    2261              : !> \param nr ...
    2262              : !> \param rho_set ...
    2263              : !> \param deriv_set ...
    2264              : !> \param weight the grid weight
    2265              : !> \note This method is extremely similar to xc_calc_2nd_deriv of xc.F, but because it is a special
    2266              : !>       case that can be further optimized and because the interface of the original routine does
    2267              : !>       not fit this code, it has been re-written (no pw, no rho1_set but just the so, etc...)
    2268              : ! **************************************************************************************************
    2269         2628 :    SUBROUTINE get_vxc_vxg(vxc, vxg, so, dso, na, nr, rho_set, deriv_set, weight)
    2270              : 
    2271              :       TYPE(cp_2d_r_p_type), DIMENSION(:)                 :: vxc
    2272              :       TYPE(cp_3d_r_p_type), DIMENSION(:)                 :: vxg
    2273              :       REAL(dp), DIMENSION(:, :)                          :: so
    2274              :       REAL(dp), DIMENSION(:, :, :)                       :: dso
    2275              :       INTEGER, INTENT(IN)                                :: na, nr
    2276              :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2277              :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2278              :       REAL(dp), DIMENSION(:, :), POINTER                 :: weight
    2279              : 
    2280              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'get_vxc_vxg'
    2281              : 
    2282              :       INTEGER                                            :: dir, handle, i, ia, ir, ub
    2283         2628 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: dot_proda, dot_prodb, tmp
    2284         2628 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: d1e, d2e, norm_drhoa, norm_drhob
    2285              :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2286              : 
    2287         2628 :       NULLIFY (norm_drhoa, norm_drhob, d2e, d1e, deriv)
    2288              : 
    2289         2628 :       CALL timeset(routineN, handle)
    2290              : 
    2291              :       !Note: this routines follows the order of the terms in equaiton (A.7) of Thomas Chassaing
    2292              :       !      thesis, except for the pure LDA terms that are dropped. The n^(1)_a and n^(1)_b
    2293              :       !      response densities are replaced by the spherical orbital.
    2294              :       !      The usual spin ordering is used: aa => 1, ab => 2 , bb => 3
    2295              : 
    2296              :       !point to the relevant components of rho_set
    2297         2628 :       ub = SIZE(vxc)
    2298         2628 :       norm_drhoa => rho_set%norm_drhoa
    2299         2628 :       norm_drhob => rho_set%norm_drhob
    2300              : 
    2301              :       !Some init
    2302         8136 :       DO i = 1, ub
    2303    163329060 :          vxc(i)%array = 0.0_dp
    2304    489995316 :          vxg(i)%array = 0.0_dp
    2305              :       END DO
    2306              : 
    2307        21024 :       ALLOCATE (tmp(na, nr), dot_proda(na, nr), dot_prodb(na, nr))
    2308    144774300 :       dot_proda = 0.0_dp; dot_prodb = 0.0_dp
    2309              : 
    2310              :       !Strategy: most terms are either multiplied by drhoa or drhob => group those first and then
    2311              :       !          multiply. Also most terms are multiplied by the dot product grad_n . grad_so, so
    2312              :       !          precompute it as well
    2313              : 
    2314              : !$OMP PARALLEL DEFAULT(NONE), &
    2315              : !$OMP SHARED(dot_proda,dot_prodb,tmp,vxc,vxg,deriv_set,rho_set,na,nr,norm_drhoa,norm_drhob,dso, &
    2316              : !$OMP        so,weight,ub), &
    2317         2628 : !$OMP PRIVATE(ia,ir,dir,deriv,d1e,d2e)
    2318              : 
    2319              :       !Precompute the very common dot products grad_na . grad_so and grad_nb . grad_so
    2320              :       DO dir = 1, 3
    2321              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2322              :          DO ir = 1, nr
    2323              :             DO ia = 1, na
    2324              :                dot_proda(ia, ir) = dot_proda(ia, ir) + rho_set%drhoa(dir)%array(ia, ir, 1)*dso(ia, ir, dir)
    2325              :                dot_prodb(ia, ir) = dot_prodb(ia, ir) + rho_set%drhob(dir)%array(ia, ir, 1)*dso(ia, ir, dir)
    2326              :             END DO !ia
    2327              :          END DO !ir
    2328              : !$OMP END DO NOWAIT
    2329              :       END DO !dir
    2330              : 
    2331              :       !Deal with f_aa
    2332              : 
    2333              :       !Vxc, first term
    2334              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhoa])
    2335              :       IF (ASSOCIATED(deriv)) THEN
    2336              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2337              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2338              :          DO ir = 1, nr
    2339              :             DO ia = 1, na
    2340              :                vxc(1)%array(ia, ir) = d2e(ia, ir, 1)*dot_proda(ia, ir)
    2341              :             END DO !ia
    2342              :          END DO !ir
    2343              : !$OMP END DO NOWAIT
    2344              :       END IF
    2345              : 
    2346              :       !Vxc, second term
    2347              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2348              : 
    2349              :       IF (ASSOCIATED(deriv)) THEN
    2350              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2351              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2352              :          DO ir = 1, nr
    2353              :             DO ia = 1, na
    2354              :                vxc(1)%array(ia, ir) = vxc(1)%array(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2355              :             END DO !ia
    2356              :          END DO !ir
    2357              : !$OMP END DO NOWAIT
    2358              :       END IF
    2359              : 
    2360              :       !Vxc, take the grid weight into acocunt
    2361              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2362              :       DO ir = 1, nr
    2363              :          DO ia = 1, na
    2364              :             vxc(1)%array(ia, ir) = vxc(1)%array(ia, ir)*weight(ia, ir)
    2365              :          END DO !ia
    2366              :       END DO !ir
    2367              : !$OMP END DO NOWAIT
    2368              : 
    2369              :       !Vxg, first term (to be multiplied by drhoa)
    2370              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhoa])
    2371              :       IF (ASSOCIATED(deriv)) THEN
    2372              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2373              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2374              :          DO ir = 1, nr
    2375              :             DO ia = 1, na
    2376              :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2377              :             END DO !ia
    2378              :          END DO !ir
    2379              : !$OMP END DO NOWAIT
    2380              :       END IF
    2381              : 
    2382              :       !Vxg, second term (to be multiplied by drhoa)
    2383              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2384              :       IF (ASSOCIATED(deriv)) THEN
    2385              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2386              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2387              :          DO ir = 1, nr
    2388              :             DO ia = 1, na
    2389              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2390              :             END DO !ia
    2391              :          END DO !ir
    2392              : !$OMP END DO NOWAIT
    2393              :       END IF
    2394              : 
    2395              :       !Vxg, third term (to be multiplied by drhoa)
    2396              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drhoa])
    2397              :       IF (ASSOCIATED(deriv)) THEN
    2398              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2399              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2400              :          DO ir = 1, nr
    2401              :             DO ia = 1, na
    2402              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2403              :             END DO !ia
    2404              :          END DO !ir
    2405              : !$OMP END DO NOWAIT
    2406              :       END IF
    2407              : 
    2408              :       !Vxg, fourth term (to be multiplied by drhoa)
    2409              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa])
    2410              :       IF (ASSOCIATED(deriv)) THEN
    2411              :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2412              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2413              :          DO ir = 1, nr
    2414              :             DO ia = 1, na
    2415              :                tmp(ia, ir) = tmp(ia, ir) - d1e(ia, ir, 1)*dot_proda(ia, ir) &
    2416              :                              /MAX(norm_drhoa(ia, ir, 1), rho_set%drho_cutoff)**2
    2417              :             END DO !ia
    2418              :          END DO !ir
    2419              : !$OMP END DO NOWAIT
    2420              :       END IF
    2421              : 
    2422              :       !put tmp*drhoa in Vxg (so that we can reuse it for drhob terms)
    2423              :       DO dir = 1, 3
    2424              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2425              :          DO ir = 1, nr
    2426              :             DO ia = 1, na
    2427              :                vxg(1)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2428              :             END DO !ia
    2429              :          END DO !ir
    2430              : !$OMP END DO NOWAIT
    2431              :       END DO !dir
    2432              : 
    2433              :       !Vxg, fifth term (to be multiplied by drhob)
    2434              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2435              :       IF (ASSOCIATED(deriv)) THEN
    2436              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2437              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2438              :          DO ir = 1, nr
    2439              :             DO ia = 1, na
    2440              :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2441              :             END DO !ia
    2442              :          END DO !ir
    2443              : !$OMP END DO NOWAIT
    2444              :       END IF
    2445              : 
    2446              :       !Vxg, sixth term (to be multiplied by drhob)
    2447              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2448              :       IF (ASSOCIATED(deriv)) THEN
    2449              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2450              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2451              :          DO ir = 1, nr
    2452              :             DO ia = 1, na
    2453              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2454              :             END DO !ia
    2455              :          END DO !ir
    2456              : !$OMP END DO NOWAIT
    2457              :       END IF
    2458              : 
    2459              :       !Vxg, seventh term (to be multiplied by drhob)
    2460              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2461              :       IF (ASSOCIATED(deriv)) THEN
    2462              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2463              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2464              :          DO ir = 1, nr
    2465              :             DO ia = 1, na
    2466              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2467              :             END DO !ia
    2468              :          END DO !ir
    2469              : !$OMP END DO NOWAIT
    2470              :       END IF
    2471              : 
    2472              :       !put tmp*drhob in Vxg
    2473              :       DO dir = 1, 3
    2474              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2475              :          DO ir = 1, nr
    2476              :             DO ia = 1, na
    2477              :                vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir) + tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2478              :             END DO !ia
    2479              :          END DO !ir
    2480              : !$OMP END DO NOWAIT
    2481              :       END DO !dir
    2482              : 
    2483              :       !Vxg, last term
    2484              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa])
    2485              :       IF (ASSOCIATED(deriv)) THEN
    2486              :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2487              :          DO dir = 1, 3
    2488              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2489              :             DO ir = 1, nr
    2490              :                DO ia = 1, na
    2491              :                   vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2492              :                END DO !ia
    2493              :             END DO !ir
    2494              : !$OMP END DO NOWAIT
    2495              :          END DO !dir
    2496              :       END IF
    2497              : 
    2498              :       !Vxg, take the grid weight into account
    2499              :       DO dir = 1, 3
    2500              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2501              :          DO ir = 1, nr
    2502              :             DO ia = 1, na
    2503              :                vxg(1)%array(ia, ir, dir) = vxg(1)%array(ia, ir, dir)*weight(ia, ir)
    2504              :             END DO !ia
    2505              :          END DO !ir
    2506              : !$OMP END DO NOWAIT
    2507              :       END DO !dir
    2508              : 
    2509              :       !Deal with fab
    2510              : 
    2511              :       !Vxc, first term
    2512              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drhob])
    2513              :       IF (ASSOCIATED(deriv)) THEN
    2514              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2515              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2516              :          DO ir = 1, nr
    2517              :             DO ia = 1, na
    2518              :                vxc(2)%array(ia, ir) = d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2519              :             END DO !ia
    2520              :          END DO !ir
    2521              : !$OMP END DO NOWAIT
    2522              :       END IF
    2523              : 
    2524              :       !Vxc, second term
    2525              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_norm_drho])
    2526              :       IF (ASSOCIATED(deriv)) THEN
    2527              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2528              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2529              :          DO ir = 1, nr
    2530              :             DO ia = 1, na
    2531              :                vxc(2)%array(ia, ir) = vxc(2)%array(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2532              :             END DO !ia
    2533              :          END DO !ir
    2534              : !$OMP END DO NOWAIT
    2535              :       END IF
    2536              : 
    2537              :       !Vxc, take the grid weight into acocunt
    2538              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2539              :       DO ir = 1, nr
    2540              :          DO ia = 1, na
    2541              :             vxc(2)%array(ia, ir) = vxc(2)%array(ia, ir)*weight(ia, ir)
    2542              :          END DO !ia
    2543              :       END DO !ir
    2544              : !$OMP END DO NOWAIT
    2545              : 
    2546              :       !Vxg, first term (to be multiplied by drhoa)
    2547              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhoa])
    2548              :       IF (ASSOCIATED(deriv)) THEN
    2549              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2550              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2551              :          DO ir = 1, nr
    2552              :             DO ia = 1, na
    2553              :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2554              :             END DO !ia
    2555              :          END DO !ir
    2556              : !$OMP END DO NOWAIT
    2557              :       END IF
    2558              : 
    2559              :       !Vxg, second term (to be multiplied by drhoa)
    2560              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drho])
    2561              :       IF (ASSOCIATED(deriv)) THEN
    2562              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2563              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2564              :          DO ir = 1, nr
    2565              :             DO ia = 1, na
    2566              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2567              :             END DO !ia
    2568              :          END DO !ir
    2569              : !$OMP END DO NOWAIT
    2570              :       END IF
    2571              : 
    2572              :       !Vxg, third term (to be multiplied by drhoa)
    2573              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhoa, deriv_norm_drhob])
    2574              :       IF (ASSOCIATED(deriv)) THEN
    2575              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2576              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2577              :          DO ir = 1, nr
    2578              :             DO ia = 1, na
    2579              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2580              :             END DO !ia
    2581              :          END DO !ir
    2582              : !$OMP END DO NOWAIT
    2583              :       END IF
    2584              : 
    2585              :       !put tmp*drhoa in Vxg
    2586              :       DO dir = 1, 3
    2587              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2588              :          DO ir = 1, nr
    2589              :             DO ia = 1, na
    2590              :                vxg(2)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2591              :             END DO !ia
    2592              :          END DO !ir
    2593              : !$OMP END DO NOWAIT
    2594              :       END DO !dir
    2595              : 
    2596              :       !Vxg, fourth term (to be multiplied by drhob)
    2597              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2598              :       IF (ASSOCIATED(deriv)) THEN
    2599              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2600              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2601              :          DO ir = 1, nr
    2602              :             DO ia = 1, na
    2603              :                tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2604              :             END DO !ia
    2605              :          END DO !ir
    2606              : !$OMP END DO NOWAIT
    2607              :       END IF
    2608              : 
    2609              :       !Vxg, fifth term (to be multiplied by drhob)
    2610              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drhob])
    2611              :       IF (ASSOCIATED(deriv)) THEN
    2612              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2613              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2614              :          DO ir = 1, nr
    2615              :             DO ia = 1, na
    2616              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2617              :             END DO !ia
    2618              :          END DO !ir
    2619              : !$OMP END DO NOWAIT
    2620              :       END IF
    2621              : 
    2622              :       !Vxg, sixth term (to be multiplied by drhob)
    2623              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2624              :       IF (ASSOCIATED(deriv)) THEN
    2625              :          CALL xc_derivative_get(deriv, deriv_data=d2e)
    2626              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2627              :          DO ir = 1, nr
    2628              :             DO ia = 1, na
    2629              :                tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2630              :             END DO !ia
    2631              :          END DO !ir
    2632              : !$OMP END DO NOWAIT
    2633              :       END IF
    2634              : 
    2635              :       !put tmp*drhob in Vxg
    2636              :       DO dir = 1, 3
    2637              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2638              :          DO ir = 1, nr
    2639              :             DO ia = 1, na
    2640              :                vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir) + tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2641              :             END DO
    2642              :          END DO
    2643              : !$OMP END DO NOWAIT
    2644              :       END DO
    2645              : 
    2646              :       !Vxg, last term
    2647              :       deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho])
    2648              :       IF (ASSOCIATED(deriv)) THEN
    2649              :          CALL xc_derivative_get(deriv, deriv_data=d1e)
    2650              :          DO dir = 1, 3
    2651              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2652              :             DO ir = 1, nr
    2653              :                DO ia = 1, na
    2654              :                   vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2655              :                END DO !ia
    2656              :             END DO !ir
    2657              : !$OMP END DO NOWAIT
    2658              :          END DO !dir
    2659              :       END IF
    2660              : 
    2661              :       !Vxg, take the grid weight into account
    2662              :       DO dir = 1, 3
    2663              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2664              :          DO ir = 1, nr
    2665              :             DO ia = 1, na
    2666              :                vxg(2)%array(ia, ir, dir) = vxg(2)%array(ia, ir, dir)*weight(ia, ir)
    2667              :             END DO !ia
    2668              :          END DO !ir
    2669              : !$OMP END DO NOWAIT
    2670              :       END DO !dir
    2671              : 
    2672              :       !Deal with f_bb, if so required
    2673              :       IF (ub == 3) THEN
    2674              : 
    2675              :          !Vxc, first term
    2676              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhob])
    2677              :          IF (ASSOCIATED(deriv)) THEN
    2678              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2679              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2680              :             DO ir = 1, nr
    2681              :                DO ia = 1, na
    2682              :                   vxc(3)%array(ia, ir) = d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2683              :                END DO !ia
    2684              :             END DO !ir
    2685              : !$OMP END DO NOWAIT
    2686              :          END IF
    2687              : 
    2688              :          !Vxc, second term
    2689              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2690              :          IF (ASSOCIATED(deriv)) THEN
    2691              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2692              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2693              :             DO ir = 1, nr
    2694              :                DO ia = 1, na
    2695              :                   vxc(3)%array(ia, ir) = vxc(3)%array(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2696              :                END DO !i
    2697              :             END DO !ir
    2698              : !$OMP END DO NOWAIT
    2699              :          END IF
    2700              : 
    2701              :          !Vxc, take the grid weight into acocunt
    2702              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2703              :          DO ir = 1, nr
    2704              :             DO ia = 1, na
    2705              :                vxc(3)%array(ia, ir) = vxc(3)%array(ia, ir)*weight(ia, ir)
    2706              :             END DO !ia
    2707              :          END DO !ir
    2708              : !$OMP END DO NOWAIT
    2709              : 
    2710              :          !Vxg, first term (to be multiplied by drhob)
    2711              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drhob])
    2712              :          IF (ASSOCIATED(deriv)) THEN
    2713              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2714              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2715              :             DO ir = 1, nr
    2716              :                DO ia = 1, na
    2717              :                   tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2718              :                END DO !ia
    2719              :             END DO !ir
    2720              : !$OMP END DO NOWAIT
    2721              :          END IF
    2722              : 
    2723              :          !Vxg, second term (to be multiplied by drhob)
    2724              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drho])
    2725              :          IF (ASSOCIATED(deriv)) THEN
    2726              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2727              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2728              :             DO ir = 1, nr
    2729              :                DO ia = 1, na
    2730              :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2731              :                END DO !ia
    2732              :             END DO !ir
    2733              : !$OMP END DO NOWAIT
    2734              :          END IF
    2735              : 
    2736              :          !Vxg, third term (to be multiplied by drhob)
    2737              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drhob])
    2738              :          IF (ASSOCIATED(deriv)) THEN
    2739              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2740              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2741              :             DO ir = 1, nr
    2742              :                DO ia = 1, na
    2743              :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2744              :                END DO !ia
    2745              :             END DO !ir
    2746              : !$OMP END DO NOWAIT
    2747              :          END IF
    2748              : 
    2749              :          !Vxg, fourth term (to be multiplied by drhob)
    2750              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob])
    2751              :          IF (ASSOCIATED(deriv)) THEN
    2752              :             CALL xc_derivative_get(deriv, deriv_data=d1e)
    2753              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2754              :             DO ir = 1, nr
    2755              :                DO ia = 1, na
    2756              :                   tmp(ia, ir) = tmp(ia, ir) - d1e(ia, ir, 1)*dot_prodb(ia, ir) &
    2757              :                                 /MAX(norm_drhob(ia, ir, 1), rho_set%drho_cutoff)**2
    2758              :                END DO !ia
    2759              :             END DO !ir
    2760              : !$OMP END DO NOWAIT
    2761              :          END IF
    2762              : 
    2763              :          !put tmp*drhob in Vxg (so that we can reuse it for drhoa terms)
    2764              :          DO dir = 1, 3
    2765              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2766              :             DO ir = 1, nr
    2767              :                DO ia = 1, na
    2768              :                   vxg(3)%array(ia, ir, dir) = tmp(ia, ir)*rho_set%drhob(dir)%array(ia, ir, 1)
    2769              :                END DO !ia
    2770              :             END DO !ir
    2771              : !$OMP END DO NOWAIT
    2772              :          END DO !dir
    2773              : 
    2774              :          !Vxg, fifth term (to be multiplied by drhoa)
    2775              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_norm_drho])
    2776              :          IF (ASSOCIATED(deriv)) THEN
    2777              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2778              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2779              :             DO ir = 1, nr
    2780              :                DO ia = 1, na
    2781              :                   tmp(ia, ir) = d2e(ia, ir, 1)*so(ia, ir)
    2782              :                END DO !ia
    2783              :             END DO !ir
    2784              : !$OMP END DO NOWAIT
    2785              :          END IF
    2786              : 
    2787              :          !Vxg, sixth term (to be multiplied by drhoa)
    2788              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob, deriv_norm_drho])
    2789              :          IF (ASSOCIATED(deriv)) THEN
    2790              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2791              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2792              :             DO ir = 1, nr
    2793              :                DO ia = 1, na
    2794              :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_prodb(ia, ir)
    2795              :                END DO !ia
    2796              :             END DO !ir
    2797              : !$OMP END DO NOWAIT
    2798              :          END IF
    2799              : 
    2800              :          !Vxg, seventh term (to be multiplied by drhoa)
    2801              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drho, deriv_norm_drho])
    2802              :          IF (ASSOCIATED(deriv)) THEN
    2803              :             CALL xc_derivative_get(deriv, deriv_data=d2e)
    2804              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2805              :             DO ir = 1, nr
    2806              :                DO ia = 1, na
    2807              :                   tmp(ia, ir) = tmp(ia, ir) + d2e(ia, ir, 1)*dot_proda(ia, ir)
    2808              :                END DO !ia
    2809              :             END DO !ir
    2810              : !$OMP END DO NOWAIT
    2811              :          END IF
    2812              : 
    2813              :          !put tmp*drhoa in Vxg
    2814              :          DO dir = 1, 3
    2815              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2816              :             DO ir = 1, nr
    2817              :                DO ia = 1, na
    2818              :                   vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir) + &
    2819              :                                               tmp(ia, ir)*rho_set%drhoa(dir)%array(ia, ir, 1)
    2820              :                END DO !ia
    2821              :             END DO !ir
    2822              : !$OMP END DO NOWAIT
    2823              :          END DO !dir
    2824              : 
    2825              :          !Vxg, last term
    2826              :          deriv => xc_dset_get_derivative(deriv_set, [deriv_norm_drhob])
    2827              :          IF (ASSOCIATED(deriv)) THEN
    2828              :             CALL xc_derivative_get(deriv, deriv_data=d1e)
    2829              :             DO dir = 1, 3
    2830              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2831              :                DO ir = 1, nr
    2832              :                   DO ia = 1, na
    2833              :                      vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir) + d1e(ia, ir, 1)*dso(ia, ir, dir)
    2834              :                   END DO !ia
    2835              :                END DO !ir
    2836              : !$OMP END DO NOWAIT
    2837              :             END DO !dir
    2838              :          END IF
    2839              : 
    2840              :          !Vxg, take the grid weight into account
    2841              :          DO dir = 1, 3
    2842              : !$OMP DO SCHEDULE(STATIC) COLLAPSE(2)
    2843              :             DO ir = 1, nr
    2844              :                DO ia = 1, na
    2845              :                   vxg(3)%array(ia, ir, dir) = vxg(3)%array(ia, ir, dir)*weight(ia, ir)
    2846              :                END DO !ia
    2847              :             END DO !ir
    2848              : !$OMP END DO NOWAIT
    2849              :          END DO !dir
    2850              : 
    2851              :       END IF !f_bb
    2852              : 
    2853              : !$OMP END PARALLEL
    2854              : 
    2855         2628 :       CALL timestop(handle)
    2856              : 
    2857         5256 :    END SUBROUTINE get_vxc_vxg
    2858              : 
    2859              : ! **************************************************************************************************
    2860              : !> \brief Integrate the fxc kernel in the spin-conserving case, be it closed- or open-shell
    2861              : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2862              : !> \param iatom the index of the current excited atom
    2863              : !> \param ikind the index of the current excited kind
    2864              : !> \param deriv_set the set of functional derivatives
    2865              : !> \param xas_atom_env ...
    2866              : !> \param qs_env ...
    2867              : ! **************************************************************************************************
    2868           48 :    SUBROUTINE integrate_sc_fxc(int_fxc, iatom, ikind, deriv_set, xas_atom_env, qs_env)
    2869              : 
    2870              :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2871              :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2872              :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2873              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2874              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2875              : 
    2876              :       INTEGER                                            :: i, maxso, na, nr, nset, nsotot, nspins, &
    2877              :                                                             ri_nsgf, ub
    2878              :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fxc, int_so
    2879              :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi_so
    2880           48 :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: d2e
    2881              :       TYPE(dft_control_type), POINTER                    :: dft_control
    2882              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2883              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2884           48 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2885              :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2886              : 
    2887           48 :       NULLIFY (grid_atom, deriv, ri_basis, ri_sphi_so, qs_kind_set, dft_control)
    2888              : 
    2889              :       ! Initialization
    2890           48 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
    2891           48 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2892           48 :       na = grid_atom%ng_sphere
    2893           48 :       nr = grid_atom%nr
    2894           48 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2895           48 :       CALL get_gto_basis_set(ri_basis, nset=nset, maxso=maxso, nsgf=ri_nsgf)
    2896           48 :       nsotot = nset*maxso
    2897           48 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2898           48 :       nspins = dft_control%nspins
    2899              : 
    2900              :       ! Get the second derivatives
    2901          240 :       ALLOCATE (d2e(3))
    2902           48 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhoa])
    2903           48 :       CALL xc_derivative_get(deriv, deriv_data=d2e(1)%array)
    2904           48 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhob])
    2905           48 :       CALL xc_derivative_get(deriv, deriv_data=d2e(2)%array)
    2906           48 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_rhob])
    2907           48 :       CALL xc_derivative_get(deriv, deriv_data=d2e(3)%array)
    2908              : 
    2909              :       ! Allocate some work arrays
    2910          192 :       ALLOCATE (fxc(na, nr))
    2911          192 :       ALLOCATE (int_so(nsotot, nsotot))
    2912              : 
    2913              :       ! Integrate for all three derivatives, taking the grid weight into account
    2914              :       ! If closed shell, do not need to integrate beta-beta as it is the same as alpha-alpha
    2915           48 :       ub = 2; IF (nspins == 2) ub = 3
    2916          146 :       DO i = 1, ub
    2917              : 
    2918      7345286 :          int_so = 0.0_dp
    2919      2541848 :          fxc(:, :) = d2e(i)%array(:, :, 1)*grid_atom%weight(:, :)
    2920           98 :          CALL integrate_so_prod(int_so, fxc, ikind, xas_atom_env, qs_env)
    2921              : 
    2922              :          !contract into sgf. Array allocated on current processor only
    2923          392 :          ALLOCATE (int_fxc(iatom, i)%array(ri_nsgf, ri_nsgf))
    2924       689238 :          int_fxc(iatom, i)%array = 0.0_dp
    2925          146 :          CALL contract_so2sgf(int_fxc(iatom, i)%array, int_so, ri_basis, ri_sphi_so)
    2926              : 
    2927              :       END DO
    2928              : 
    2929          144 :    END SUBROUTINE integrate_sc_fxc
    2930              : 
    2931              : ! **************************************************************************************************
    2932              : !> \brief Integrate the fxc kernel in the spin-flip case (open-shell assumed). The spin-flip LDA
    2933              : !>        kernel reads: fxc = 1/(rhoa - rhob) * (dE/drhoa - dE/drhob)
    2934              : !> \param int_fxc the array containing the (P|fxc|Q) integrals
    2935              : !> \param iatom the index of the current excited atom
    2936              : !> \param ikind the index of the current excited kind
    2937              : !> \param rho_set the density in the atomic grid
    2938              : !> \param deriv_set the set of functional derivatives
    2939              : !> \param xas_atom_env ...
    2940              : !> \param qs_env ...
    2941              : ! **************************************************************************************************
    2942            0 :    SUBROUTINE integrate_sf_fxc(int_fxc, iatom, ikind, rho_set, deriv_set, xas_atom_env, qs_env)
    2943              : 
    2944              :       TYPE(cp_2d_r_p_type), DIMENSION(:, :), POINTER     :: int_fxc
    2945              :       INTEGER, INTENT(IN)                                :: iatom, ikind
    2946              :       TYPE(xc_rho_set_type), INTENT(IN)                  :: rho_set
    2947              :       TYPE(xc_derivative_set_type), INTENT(IN)           :: deriv_set
    2948              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    2949              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    2950              : 
    2951              :       INTEGER                                            :: ia, ir, maxso, na, nr, nset, nsotot, &
    2952              :                                                             ri_nsgf
    2953            0 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fxc, int_so
    2954              :       REAL(dp), DIMENSION(:, :), POINTER                 :: ri_sphi_so
    2955            0 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: rhoa, rhob
    2956            0 :       TYPE(cp_3d_r_p_type), ALLOCATABLE, DIMENSION(:)    :: d1e, d2e
    2957              :       TYPE(dft_control_type), POINTER                    :: dft_control
    2958              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    2959              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    2960            0 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    2961              :       TYPE(xc_derivative_type), POINTER                  :: deriv
    2962              : 
    2963            0 :       NULLIFY (grid_atom, deriv, ri_basis, ri_sphi_so, qs_kind_set, rhoa, rhob, dft_control)
    2964              : 
    2965              :       ! Initialization
    2966            0 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set, dft_control=dft_control)
    2967            0 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    2968            0 :       na = grid_atom%ng_sphere
    2969            0 :       nr = grid_atom%nr
    2970            0 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    2971            0 :       CALL get_gto_basis_set(ri_basis, nset=nset, maxso=maxso, nsgf=ri_nsgf)
    2972            0 :       nsotot = nset*maxso
    2973            0 :       ri_sphi_so => xas_atom_env%ri_sphi_so(ikind)%array
    2974            0 :       rhoa => rho_set%rhoa
    2975            0 :       rhob => rho_set%rhob
    2976              : 
    2977            0 :       ALLOCATE (d1e(2))
    2978            0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa])
    2979            0 :       CALL xc_derivative_get(deriv, deriv_data=d1e(1)%array)
    2980            0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob])
    2981            0 :       CALL xc_derivative_get(deriv, deriv_data=d1e(2)%array)
    2982              : 
    2983              :       ! In case rhoa -> rhob, take the limit, which involves the (already computed) second derivatives
    2984            0 :       ALLOCATE (d2e(3))
    2985            0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhoa])
    2986            0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(1)%array)
    2987            0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhoa, deriv_rhob])
    2988            0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(2)%array)
    2989            0 :       deriv => xc_dset_get_derivative(deriv_set, [deriv_rhob, deriv_rhob])
    2990            0 :       CALL xc_derivative_get(deriv, deriv_data=d2e(3)%array)
    2991              : 
    2992              :       !Compute the kernel on the grid. Already take weight into acocunt there
    2993            0 :       ALLOCATE (fxc(na, nr))
    2994              : !$OMP PARALLEL DO COLLAPSE(2) SCHEDULE(STATIC) DEFAULT(NONE), &
    2995              : !$OMP SHARED(grid_atom,fxc,d1e,d2e,dft_control,na,nr,rhoa,rhob), &
    2996            0 : !$OMP PRIVATE(ia,ir)
    2997              :       DO ir = 1, nr
    2998              :          DO ia = 1, na
    2999              : 
    3000              :             !Need to be careful not to divide by zero. Assume that if rhoa == rhob, then
    3001              :             !take the limit fxc = 0.5* (f_aa + f_bb - 2f_ab)
    3002              :             IF (ABS(rhoa(ia, ir, 1) - rhob(ia, ir, 1)) > dft_control%qs_control%eps_rho_rspace) THEN
    3003              :                fxc(ia, ir) = grid_atom%weight(ia, ir)/(rhoa(ia, ir, 1) - rhob(ia, ir, 1)) &
    3004              :                              *(d1e(1)%array(ia, ir, 1) - d1e(2)%array(ia, ir, 1))
    3005              :             ELSE
    3006              :                fxc(ia, ir) = 0.5_dp*grid_atom%weight(ia, ir)* &
    3007              :                              (d2e(1)%array(ia, ir, 1) + d2e(3)%array(ia, ir, 1) - 2._dp*d2e(2)%array(ia, ir, 1))
    3008              :             END IF
    3009              : 
    3010              :          END DO
    3011              :       END DO
    3012              : !$OMP END PARALLEL DO
    3013              : 
    3014              :       ! Integrate wrt to so
    3015            0 :       ALLOCATE (int_so(nsotot, nsotot))
    3016            0 :       int_so = 0.0_dp
    3017            0 :       CALL integrate_so_prod(int_so, fxc, ikind, xas_atom_env, qs_env)
    3018              : 
    3019              :       ! Contract into sgf. Array located on current processor only
    3020            0 :       ALLOCATE (int_fxc(iatom, 4)%array(ri_nsgf, ri_nsgf))
    3021            0 :       int_fxc(iatom, 4)%array = 0.0_dp
    3022            0 :       CALL contract_so2sgf(int_fxc(iatom, 4)%array, int_so, ri_basis, ri_sphi_so)
    3023              : 
    3024            0 :    END SUBROUTINE integrate_sf_fxc
    3025              : 
    3026              : ! **************************************************************************************************
    3027              : !> \brief Contract spherical orbitals to spherical Gaussians (so to sgf)
    3028              : !> \param int_sgf the array with the sgf integrals
    3029              : !> \param int_so the array with the so integrals (to contract)
    3030              : !> \param basis the corresponding gto basis set
    3031              : !> \param sphi_so the contraction coefficients for the s:
    3032              : ! **************************************************************************************************
    3033          280 :    SUBROUTINE contract_so2sgf(int_sgf, int_so, basis, sphi_so)
    3034              : 
    3035              :       REAL(dp), DIMENSION(:, :)                          :: int_sgf, int_so
    3036              :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3037              :       REAL(dp), DIMENSION(:, :)                          :: sphi_so
    3038              : 
    3039              :       INTEGER                                            :: iset, jset, maxso, nset, nsoi, nsoj, &
    3040              :                                                             sgfi, sgfj, starti, startj
    3041          280 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, npgf, nsgf_set
    3042          280 :       INTEGER, DIMENSION(:, :), POINTER                  :: first_sgf
    3043              : 
    3044          280 :       NULLIFY (nsgf_set, npgf, lmax, first_sgf)
    3045              : 
    3046              :       CALL get_gto_basis_set(basis, nset=nset, maxso=maxso, nsgf_set=nsgf_set, first_sgf=first_sgf, &
    3047          280 :                              npgf=npgf, lmax=lmax)
    3048              : 
    3049         1328 :       DO iset = 1, nset
    3050         1048 :          starti = (iset - 1)*maxso + 1
    3051         1048 :          nsoi = npgf(iset)*nsoset(lmax(iset))
    3052         1048 :          sgfi = first_sgf(1, iset)
    3053              : 
    3054         9316 :          DO jset = 1, nset
    3055         7988 :             startj = (jset - 1)*maxso + 1
    3056         7988 :             nsoj = npgf(jset)*nsoset(lmax(jset))
    3057         7988 :             sgfj = first_sgf(1, jset)
    3058              : 
    3059              :             CALL ab_contract(int_sgf(sgfi:sgfi + nsgf_set(iset) - 1, sgfj:sgfj + nsgf_set(jset) - 1), &
    3060              :                              int_so(starti:starti + nsoi - 1, startj:startj + nsoj - 1), &
    3061              :                              sphi_so(:, sgfi:), sphi_so(:, sgfj:), nsoi, nsoj, &
    3062         9036 :                              nsgf_set(iset), nsgf_set(jset))
    3063              :          END DO !jset
    3064              :       END DO !iset
    3065              : 
    3066          280 :    END SUBROUTINE contract_so2sgf
    3067              : 
    3068              : ! **************************************************************************************************
    3069              : !> \brief Integrate the product of spherical gaussian orbitals with the xc kernel on the atomic grid
    3070              : !> \param intso the integral in terms of spherical orbitals
    3071              : !> \param fxc the xc kernel at each grid point
    3072              : !> \param ikind the kind of the atom we integrate for
    3073              : !> \param xas_atom_env ...
    3074              : !> \param qs_env ...
    3075              : !> \note Largely copied from gaVxcgb_noGC. Rewritten here because we need our own atomic grid,
    3076              : !>       harmonics, basis set and we do not need the soft vxc. Could have tweaked the original, but
    3077              : !>       it would have been messy. Also we do not need rho_atom (too big and fancy for us)
    3078              : !>       We also go over the whole range of angular momentum l
    3079              : ! **************************************************************************************************
    3080           98 :    SUBROUTINE integrate_so_prod(intso, fxc, ikind, xas_atom_env, qs_env)
    3081              : 
    3082              :       REAL(dp), DIMENSION(:, :), INTENT(INOUT)           :: intso
    3083              :       REAL(dp), DIMENSION(:, :), INTENT(IN)              :: fxc
    3084              :       INTEGER, INTENT(IN)                                :: ikind
    3085              :       TYPE(xas_atom_env_type), POINTER                   :: xas_atom_env
    3086              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3087              : 
    3088              :       CHARACTER(len=*), PARAMETER                        :: routineN = 'integrate_so_prod'
    3089              : 
    3090              :       INTEGER :: handle, ia, ic, icg, ipgf1, ipgf2, iset1, iset2, iso, iso1, iso2, l, ld, lmax12, &
    3091              :          lmin12, m1, m2, max_iso_not0, max_iso_not0_local, max_s_harm, maxl, maxso, n1, n2, na, &
    3092              :          ngau1, ngau2, nngau1, nr, nset, size1
    3093              :       INTEGER, ALLOCATABLE, DIMENSION(:)                 :: cg_n_list
    3094              :       INTEGER, ALLOCATABLE, DIMENSION(:, :, :)           :: cg_list
    3095           98 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    3096           98 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: g1, g2
    3097           98 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: gfxcg, gg, matso
    3098           98 :       REAL(dp), DIMENSION(:, :), POINTER                 :: zet
    3099              :       REAL(dp), DIMENSION(:, :, :), POINTER              :: my_CG
    3100              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    3101              :       TYPE(gto_basis_set_type), POINTER                  :: ri_basis
    3102              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    3103           98 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3104              : 
    3105           98 :       CALL timeset(routineN, handle)
    3106              : 
    3107           98 :       NULLIFY (grid_atom, harmonics, ri_basis, qs_kind_set, lmax, lmin, npgf, zet, my_CG)
    3108              : 
    3109              : !  Initialization
    3110           98 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    3111           98 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=ri_basis, basis_type="RI_XAS")
    3112           98 :       grid_atom => xas_atom_env%grid_atom_set(ikind)%grid_atom
    3113           98 :       harmonics => xas_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    3114              : 
    3115              :       CALL get_gto_basis_set(ri_basis, lmax=lmax, lmin=lmin, maxso=maxso, maxl=maxl, npgf=npgf, &
    3116           98 :                              nset=nset, zet=zet)
    3117              : 
    3118           98 :       na = grid_atom%ng_sphere
    3119           98 :       nr = grid_atom%nr
    3120           98 :       my_CG => harmonics%my_CG
    3121           98 :       max_iso_not0 = harmonics%max_iso_not0
    3122           98 :       max_s_harm = harmonics%max_s_harm
    3123           98 :       CPASSERT(2*maxl .LE. indso(1, max_iso_not0))
    3124              : 
    3125          686 :       ALLOCATE (g1(nr), g2(nr), gg(nr, 0:2*maxl))
    3126          392 :       ALLOCATE (gfxcg(na, 0:2*maxl))
    3127          392 :       ALLOCATE (matso(nsoset(maxl), nsoset(maxl)))
    3128          588 :       ALLOCATE (cg_list(2, nsoset(maxl)**2, max_s_harm), cg_n_list(max_s_harm))
    3129              : 
    3130        13372 :       g1 = 0.0_dp
    3131        13372 :       g2 = 0.0_dp
    3132           98 :       m1 = 0
    3133              : !  Loop over the product of so
    3134          446 :       DO iset1 = 1, nset
    3135          348 :          n1 = nsoset(lmax(iset1))
    3136          348 :          m2 = 0
    3137         4236 :          DO iset2 = 1, nset
    3138              :             CALL get_none0_cg_list(my_CG, lmin(iset1), lmax(iset1), lmin(iset2), lmax(iset2), &
    3139              :                                    max_s_harm, lmax(iset1) + lmax(iset2), cg_list, cg_n_list, &
    3140         3888 :                                    max_iso_not0_local)
    3141         3888 :             CPASSERT(max_iso_not0_local .LE. max_iso_not0)
    3142              : 
    3143         3888 :             n2 = nsoset(lmax(iset2))
    3144        10280 :             DO ipgf1 = 1, npgf(iset1)
    3145         6392 :                ngau1 = n1*(ipgf1 - 1) + m1
    3146         6392 :                size1 = nsoset(lmax(iset1)) - nsoset(lmin(iset1) - 1)
    3147         6392 :                nngau1 = nsoset(lmin(iset1) - 1) + ngau1
    3148              : 
    3149      1052192 :                g1(:) = EXP(-zet(ipgf1, iset1)*grid_atom%rad2(1:nr))
    3150        37024 :                DO ipgf2 = 1, npgf(iset2)
    3151        26744 :                   ngau2 = n2*(ipgf2 - 1) + m2
    3152              : 
    3153      3611960 :                   g2(:) = EXP(-zet(ipgf2, iset2)*grid_atom%rad2(1:nr))
    3154        26744 :                   lmin12 = lmin(iset1) + lmin(iset2)
    3155        26744 :                   lmax12 = lmax(iset1) + lmax(iset2)
    3156              : 
    3157              :                   !get the gaussian product
    3158     25934408 :                   gg = 0.0_dp
    3159        26744 :                   IF (lmin12 == 0) THEN
    3160      1899796 :                      gg(:, lmin12) = g1(:)*g2(:)
    3161              :                   ELSE
    3162      1712164 :                      gg(:, lmin12) = grid_atom%rad2l(1:nr, lmin12)*g1(:)*g2(:)
    3163              :                   END IF
    3164              : 
    3165        79224 :                   DO l = lmin12 + 1, lmax12
    3166      7244408 :                      gg(:, l) = grid_atom%rad(1:nr)*gg(:, l - 1)
    3167              :                   END DO
    3168              : 
    3169        26744 :                   ld = lmax12 + 1
    3170              :                   CALL dgemm('N', 'N', na, ld, nr, 1.0_dp, fxc(1:na, 1:nr), na, gg(:, 0:lmax12), &
    3171        26744 :                              nr, 0.0_dp, gfxcg(1:na, 0:lmax12), na)
    3172              : 
    3173              :                   !integrate
    3174      9431928 :                   matso = 0.0_dp
    3175       557332 :                   DO iso = 1, max_iso_not0_local
    3176      2862370 :                      DO icg = 1, cg_n_list(iso)
    3177      2305038 :                         iso1 = cg_list(1, icg, iso)
    3178      2305038 :                         iso2 = cg_list(2, icg, iso)
    3179      2305038 :                         l = indso(1, iso1) + indso(1, iso2)
    3180              : 
    3181    458078942 :                         DO ia = 1, na
    3182              :                            matso(iso1, iso2) = matso(iso1, iso2) + gfxcg(ia, l)* &
    3183    457548354 :                                                my_CG(iso1, iso2, iso)*harmonics%slm(ia, iso)
    3184              :                         END DO !ia
    3185              :                      END DO !icg
    3186              :                   END DO !iso
    3187              : 
    3188              :                   !write in integral matrix
    3189       191144 :                   DO ic = nsoset(lmin(iset2) - 1) + 1, nsoset(lmax(iset2))
    3190       158008 :                      iso1 = nsoset(lmin(iset1) - 1) + 1
    3191       158008 :                      iso2 = ngau2 + ic
    3192       184752 :                      CALL daxpy(size1, 1.0_dp, matso(iso1:, ic), 1, intso(nngau1 + 1:, iso2), 1)
    3193              :                   END DO !ic
    3194              : 
    3195              :                END DO !ipgf2
    3196              :             END DO ! ipgf1
    3197         4236 :             m2 = m2 + maxso
    3198              :          END DO !iset2
    3199          446 :          m1 = m1 + maxso
    3200              :       END DO !iset1
    3201              : 
    3202           98 :       CALL timestop(handle)
    3203              : 
    3204          294 :    END SUBROUTINE integrate_so_prod
    3205              : 
    3206              : ! **************************************************************************************************
    3207              : !> \brief This routine computes the integral of a potential V wrt the derivative of the spherical
    3208              : !>        orbitals, that is <df/dx|V|dg/dy> on the atomic grid.
    3209              : !> \param intso the integral in terms of the spherical orbitals (well, their derivative)
    3210              : !> \param V the potential (put on the grid and weighted) to integrate
    3211              : !> \param ikind the atomic kind for which we integrate
    3212              : !> \param qs_env ...
    3213              : !> \param soc_atom_env ...
    3214              : ! **************************************************************************************************
    3215           44 :    SUBROUTINE integrate_so_dxdy_prod(intso, V, ikind, qs_env, soc_atom_env)
    3216              : 
    3217              :       REAL(dp), DIMENSION(:, :, :), INTENT(INOUT)        :: intso
    3218              :       REAL(dp), DIMENSION(:, :), INTENT(IN)              :: V
    3219              :       INTEGER, INTENT(IN)                                :: ikind
    3220              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3221              :       TYPE(soc_atom_env_type), OPTIONAL, POINTER         :: soc_atom_env
    3222              : 
    3223              :       INTEGER                                            :: i, ipgf, iset, iso, j, jpgf, jset, jso, &
    3224              :                                                             k, l, maxso, na, nr, nset, starti, &
    3225              :                                                             startj
    3226           44 :       INTEGER, DIMENSION(:), POINTER                     :: lmax, lmin, npgf
    3227           44 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: fga, fgr, r1, r2, work
    3228           44 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: a1, a2
    3229           44 :       REAL(dp), DIMENSION(:, :), POINTER                 :: slm, zet
    3230           44 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: dslm_dxyz
    3231              :       TYPE(grid_atom_type), POINTER                      :: grid_atom
    3232              :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3233              :       TYPE(harmonics_atom_type), POINTER                 :: harmonics
    3234           44 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3235              : 
    3236           44 :       NULLIFY (grid_atom, harmonics, basis, qs_kind_set, dslm_dxyz, slm, lmin, lmax, npgf, zet)
    3237              : 
    3238           44 :       CALL get_qs_env(qs_env, qs_kind_set=qs_kind_set)
    3239           44 :       CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB")
    3240           44 :       IF (PRESENT(soc_atom_env)) THEN
    3241            8 :          grid_atom => soc_atom_env%grid_atom_set(ikind)%grid_atom
    3242            8 :          harmonics => soc_atom_env%harmonics_atom_set(ikind)%harmonics_atom
    3243              :       ELSE
    3244              :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB", harmonics=harmonics, &
    3245           36 :                           grid_atom=grid_atom)
    3246              :       END IF
    3247              : 
    3248           44 :       na = grid_atom%ng_sphere
    3249           44 :       nr = grid_atom%nr
    3250              : 
    3251           44 :       slm => harmonics%slm
    3252           44 :       dslm_dxyz => harmonics%dslm_dxyz
    3253              : 
    3254              : !  Getting what we need from the orbital basis
    3255              :       CALL get_gto_basis_set(gto_basis_set=basis, lmax=lmax, lmin=lmin, &
    3256           44 :                              maxso=maxso, npgf=npgf, nset=nset, zet=zet)
    3257              : 
    3258              : !  Separate the functions into purely r and purely angular parts, compute them all
    3259              : !  and use matrix mutliplication for the integral. We use f for x derivative and g for y
    3260              : 
    3261              :       ! Separating the functions. Note that the radial part is the same for x and y derivatives
    3262          308 :       ALLOCATE (a1(na, nset*maxso, 3), a2(na, nset*maxso, 3))
    3263          264 :       ALLOCATE (r1(nr, nset*maxso), r2(nr, nset*maxso))
    3264       929324 :       a1 = 0.0_dp; a2 = 0.0_dp
    3265       299588 :       r1 = 0.0_dp; r2 = 0.0_dp
    3266              : 
    3267          244 :       DO iset = 1, nset
    3268          722 :          DO ipgf = 1, npgf(iset)
    3269          478 :             starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    3270         1930 :             DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    3271         1252 :                l = indso(1, iso)
    3272              : 
    3273              :                ! The x derivative of the spherical orbital, divided in angular and radial parts
    3274              :                ! Two of each are needed because d/dx(r^l Y_lm) * exp(-al*r^2) + r^l Y_lm * ! d/dx(exp-al*r^2)
    3275              : 
    3276              :                ! the purely radial part of d/dx(r^l Y_lm) * exp(-al*r^2) (same for y)
    3277        61182 :                r1(1:nr, starti + iso) = grid_atom%rad(1:nr)**(l - 1)*EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    3278              : 
    3279              :                ! the purely radial part of r^l Y_lm * d/dx(exp-al*r^2) (same for y)
    3280              :                r2(1:nr, starti + iso) = -2.0_dp*zet(ipgf, iset)*grid_atom%rad(1:nr)**(l + 1) &
    3281        61182 :                                         *EXP(-zet(ipgf, iset)*grid_atom%rad2(1:nr))
    3282              : 
    3283         5486 :                DO i = 1, 3
    3284              :                   ! the purely angular part of d/dx(r^l Y_lm) * exp(-al*r^2)
    3285       191556 :                   a1(1:na, starti + iso, i) = dslm_dxyz(i, 1:na, iso)
    3286              : 
    3287              :                   ! the purely angular part of r^l Y_lm * d/dx(exp-al*r^2)
    3288       192808 :                   a2(1:na, starti + iso, i) = harmonics%a(i, 1:na)*slm(1:na, iso)
    3289              :                END DO
    3290              : 
    3291              :             END DO !iso
    3292              :          END DO !ipgf
    3293              :       END DO !iset
    3294              : 
    3295              :       ! Do the integration in terms of so using matrix products
    3296      1308380 :       intso = 0.0_dp
    3297          132 :       ALLOCATE (fga(na, 1))
    3298          132 :       ALLOCATE (fgr(nr, 1))
    3299           88 :       ALLOCATE (work(na, 1))
    3300         6714 :       fga = 0.0_dp; fgr = 0.0_dp; work = 0.0_dp
    3301              : 
    3302          244 :       DO iset = 1, nset
    3303         1544 :          DO jset = 1, nset
    3304         4470 :             DO ipgf = 1, npgf(iset)
    3305         2970 :                starti = (iset - 1)*maxso + (ipgf - 1)*nsoset(lmax(iset))
    3306        11472 :                DO jpgf = 1, npgf(jset)
    3307         7202 :                   startj = (jset - 1)*maxso + (jpgf - 1)*nsoset(lmax(jset))
    3308              : 
    3309        31778 :                   DO i = 1, 3
    3310        21606 :                      j = MOD(i, 3) + 1
    3311        21606 :                      k = MOD(i + 1, 3) + 1
    3312              : 
    3313        84584 :                      DO iso = nsoset(lmin(iset) - 1) + 1, nsoset(lmax(iset))
    3314       234174 :                         DO jso = nsoset(lmin(jset) - 1) + 1, nsoset(lmax(jset))
    3315              : 
    3316              :                            !Two component per function => 4 terms in total
    3317              : 
    3318              :                            ! take r1*a1(j) * V * r1*a1(k)
    3319      7624818 :                            fgr(1:nr, 1) = r1(1:nr, starti + iso)*r1(1:nr, startj + jso)
    3320      7996392 :                            fga(1:na, 1) = a1(1:na, starti + iso, j)*a1(1:na, startj + jso, k)
    3321              : 
    3322       156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3323              :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 0.0_dp, &
    3324       156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3325              : 
    3326              :                            ! add r1*a1(j) * V * r2*a2(k)
    3327      7624818 :                            fgr(1:nr, 1) = r1(1:nr, starti + iso)*r2(1:nr, startj + jso)
    3328      7996392 :                            fga(1:na, 1) = a1(1:na, starti + iso, j)*a2(1:na, startj + jso, k)
    3329              : 
    3330       156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3331              :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3332       156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3333              : 
    3334              :                            ! add r2*a2(j) * V * r1*a1(k)
    3335      7624818 :                            fgr(1:nr, 1) = r2(1:nr, starti + iso)*r1(1:nr, startj + jso)
    3336      7996392 :                            fga(1:na, 1) = a2(1:na, starti + iso, j)*a1(1:na, startj + jso, k)
    3337              : 
    3338       156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3339              :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3340       156792 :                                       intso(starti + iso:, startj + jso, i), 1)
    3341              : 
    3342              :                            ! add the last term: r2*a2(j) * V * r2*a2(k)
    3343      7624818 :                            fgr(1:nr, 1) = r2(1:nr, starti + iso)*r2(1:nr, startj + jso)
    3344      7996392 :                            fga(1:na, 1) = a2(1:na, starti + iso, j)*a2(1:na, startj + jso, k)
    3345              : 
    3346       156792 :                            CALL dgemm('N', 'N', na, 1, nr, 1.0_dp, V, na, fgr, nr, 0.0_dp, work, na)
    3347              :                            CALL dgemm('T', 'N', 1, 1, na, 1.0_dp, work, na, fga, na, 1.0_dp, &
    3348       212568 :                                       intso(starti + iso:, startj + jso, i), 1)
    3349              : 
    3350              :                         END DO !jso
    3351              :                      END DO !iso
    3352              : 
    3353              :                   END DO !i
    3354              :                END DO !jpgf
    3355              :             END DO !ipgf
    3356              :          END DO !jset
    3357              :       END DO !iset
    3358              : 
    3359          176 :       DO i = 1, 3
    3360      2616584 :          intso(:, :, i) = intso(:, :, i) - TRANSPOSE(intso(:, :, i))
    3361              :       END DO
    3362              : 
    3363          132 :    END SUBROUTINE integrate_so_dxdy_prod
    3364              : 
    3365              : ! **************************************************************************************************
    3366              : !> \brief Computes the SOC matrix elements with respect to the ORB basis set for each atomic kind
    3367              : !>        and put them as the block diagonal of dbcsr_matrix
    3368              : !> \param matrix_soc the matrix where the SOC is stored
    3369              : !> \param xas_atom_env ...
    3370              : !> \param qs_env ...
    3371              : !> \param soc_atom_env ...
    3372              : !> \note We compute: <da_dx|V\(4c^2-2V)|db_dy> - <da_dy|V\(4c^2-2V)|db_dx>, where V is a model
    3373              : !>       potential on the atomic grid. What we get is purely imaginary
    3374              : ! **************************************************************************************************
    3375           30 :    SUBROUTINE integrate_soc_atoms(matrix_soc, xas_atom_env, qs_env, soc_atom_env)
    3376              : 
    3377              :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_soc
    3378              :       TYPE(xas_atom_env_type), OPTIONAL, POINTER         :: xas_atom_env
    3379              :       TYPE(qs_environment_type), POINTER                 :: qs_env
    3380              :       TYPE(soc_atom_env_type), OPTIONAL, POINTER         :: soc_atom_env
    3381              : 
    3382              :       CHARACTER(len=*), PARAMETER :: routineN = 'integrate_soc_atoms'
    3383              : 
    3384              :       INTEGER                                            :: handle, i, iat, ikind, ir, jat, maxso, &
    3385              :                                                             na, nkind, nr, nset, nsgf
    3386              :       LOGICAL                                            :: all_potential_present
    3387              :       REAL(dp)                                           :: zeff
    3388           30 :       REAL(dp), ALLOCATABLE, DIMENSION(:)                :: Vr
    3389           30 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :)             :: V
    3390           30 :       REAL(dp), ALLOCATABLE, DIMENSION(:, :, :)          :: intso
    3391           30 :       REAL(dp), DIMENSION(:, :), POINTER                 :: sphi_so
    3392           30 :       REAL(dp), DIMENSION(:, :, :), POINTER              :: intsgf
    3393           30 :       TYPE(cp_3d_r_p_type), DIMENSION(:), POINTER        :: int_soc
    3394              :       TYPE(dbcsr_iterator_type)                          :: iter
    3395           30 :       TYPE(dbcsr_p_type), DIMENSION(:), POINTER          :: matrix_s
    3396              :       TYPE(grid_atom_type), POINTER                      :: grid
    3397              :       TYPE(gto_basis_set_type), POINTER                  :: basis
    3398           30 :       TYPE(particle_type), DIMENSION(:), POINTER         :: particle_set
    3399           30 :       TYPE(qs_kind_type), DIMENSION(:), POINTER          :: qs_kind_set
    3400              : 
    3401              : !!DEBUG
    3402           30 :       CALL timeset(routineN, handle)
    3403              : 
    3404           30 :       NULLIFY (int_soc, basis, qs_kind_set, sphi_so, matrix_s, grid)
    3405           30 :       NULLIFY (particle_set)
    3406              : 
    3407              :       !  Initialization
    3408              :       CALL get_qs_env(qs_env, nkind=nkind, qs_kind_set=qs_kind_set, matrix_s=matrix_s, &
    3409           30 :                       particle_set=particle_set)
    3410              : 
    3411              :       ! all_potential_present
    3412           30 :       CALL get_qs_kind_set(qs_kind_set, all_potential_present=all_potential_present)
    3413              : 
    3414              :       ! Loop over the kinds to compute the integrals
    3415          134 :       ALLOCATE (int_soc(nkind))
    3416           74 :       DO ikind = 1, nkind
    3417           44 :          CALL get_qs_kind(qs_kind_set(ikind), basis_set=basis, basis_type="ORB", zeff=zeff)
    3418           44 :          IF (PRESENT(soc_atom_env)) THEN
    3419            8 :             grid => soc_atom_env%grid_atom_set(ikind)%grid_atom
    3420              :          ELSE
    3421           36 :             CALL get_qs_kind(qs_kind_set(ikind), grid_atom=grid)
    3422              :          END IF
    3423           44 :          CALL get_gto_basis_set(basis, nset=nset, maxso=maxso)
    3424          220 :          ALLOCATE (intso(nset*maxso, nset*maxso, 3))
    3425              : 
    3426              :          ! compute the model potential on the grid
    3427           44 :          nr = grid%nr
    3428           44 :          na = grid%ng_sphere
    3429              : 
    3430          132 :          ALLOCATE (Vr(nr))
    3431           44 :          CALL calculate_model_potential(Vr, grid, zeff)
    3432              : 
    3433              :          ! Compute V/(4c^2-2V) and weight it
    3434          176 :          ALLOCATE (V(na, nr))
    3435       109082 :          V = 0.0_dp
    3436         2182 :          DO ir = 1, nr
    3437              :             CALL daxpy(na, Vr(ir)/(4.0_dp*c_light_au**2 - 2.0_dp*Vr(ir)), grid%weight(:, ir), 1, &
    3438         2182 :                        V(:, ir), 1)
    3439              :          END DO
    3440           44 :          DEALLOCATE (Vr)
    3441              : 
    3442              :          ! compute the integral <da_dx|...|db_dy> in terms of so
    3443           44 :          IF (PRESENT(xas_atom_env)) THEN
    3444           36 :             CALL integrate_so_dxdy_prod(intso, V, ikind, qs_env)
    3445              :          ELSE
    3446            8 :             CALL integrate_so_dxdy_prod(intso, V, ikind, qs_env, soc_atom_env)
    3447              :          END IF
    3448           44 :          DEALLOCATE (V)
    3449              : 
    3450              :          ! contract in terms of sgf
    3451           44 :          CALL get_gto_basis_set(basis, nsgf=nsgf)
    3452          220 :          ALLOCATE (int_soc(ikind)%array(nsgf, nsgf, 3))
    3453           44 :          intsgf => int_soc(ikind)%array
    3454           44 :          IF (PRESENT(xas_atom_env)) THEN
    3455           36 :             sphi_so => xas_atom_env%orb_sphi_so(ikind)%array
    3456              :          ELSE
    3457            8 :             sphi_so => soc_atom_env%orb_sphi_so(ikind)%array
    3458              :          END IF
    3459        35888 :          intsgf = 0.0_dp
    3460              : 
    3461          176 :          DO i = 1, 3
    3462          176 :             CALL contract_so2sgf(intsgf(:, :, i), intso(:, :, i), basis, sphi_so)
    3463              :          END DO
    3464              : 
    3465          206 :          DEALLOCATE (intso)
    3466              :       END DO !ikind
    3467              : 
    3468              :       ! Build the matrix_soc based on the matrix_s (but anti-symmetric)
    3469           30 :       IF ((PRESENT(xas_atom_env)) .OR. all_potential_present) THEN
    3470          112 :          DO i = 1, 3
    3471              :             CALL dbcsr_create(matrix_soc(i)%matrix, name="SOC MATRIX", template=matrix_s(1)%matrix, &
    3472          112 :                               matrix_type=dbcsr_type_antisymmetric)
    3473              :          END DO
    3474              :          !  Iterate over its diagonal blocks and fill=it
    3475           28 :          CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
    3476          158 :          DO WHILE (dbcsr_iterator_blocks_left(iter))
    3477              : 
    3478          130 :             CALL dbcsr_iterator_next_block(iter, row=iat, column=jat)
    3479          130 :             IF (.NOT. iat == jat) CYCLE
    3480           46 :             ikind = particle_set(iat)%atomic_kind%kind_number
    3481              : 
    3482          212 :             DO i = 1, 3
    3483          268 :                CALL dbcsr_put_block(matrix_soc(i)%matrix, iat, iat, int_soc(ikind)%array(:, :, i))
    3484              :             END DO
    3485              : 
    3486              :          END DO !iat
    3487           28 :          CALL dbcsr_iterator_stop(iter)
    3488              :       ELSE  ! pseudopotentials here
    3489            8 :          DO i = 1, 3
    3490              :             CALL dbcsr_create(matrix_soc(i)%matrix, name="SOC MATRIX", template=matrix_s(1)%matrix, &
    3491            6 :                               matrix_type=dbcsr_type_no_symmetry)
    3492            6 :             CALL dbcsr_set(matrix_soc(i)%matrix, 0.0_dp)
    3493            8 :             CALL dbcsr_copy(matrix_soc(i)%matrix, soc_atom_env%soc_pp(i, 1)%matrix)
    3494              :          END DO
    3495              :       END IF
    3496              : 
    3497          120 :       DO i = 1, 3
    3498          120 :          CALL dbcsr_finalize(matrix_soc(i)%matrix)
    3499              :       END DO
    3500              : 
    3501              :       ! Clean-up
    3502           74 :       DO ikind = 1, nkind
    3503           74 :          DEALLOCATE (int_soc(ikind)%array)
    3504              :       END DO
    3505           30 :       DEALLOCATE (int_soc)
    3506              : 
    3507           30 :       CALL timestop(handle)
    3508              : 
    3509           90 :    END SUBROUTINE integrate_soc_atoms
    3510              : 
    3511              : END MODULE xas_tdp_atom
        

Generated by: LCOV version 2.0-1