Line data Source code
1 : !--------------------------------------------------------------------------------------------------!
2 : ! CP2K: A general program to perform molecular dynamics simulations !
3 : ! Copyright 2000-2025 CP2K developers group <https://cp2k.org> !
4 : ! !
5 : ! SPDX-License-Identifier: GPL-2.0-or-later !
6 : !--------------------------------------------------------------------------------------------------!
7 :
8 : ! **************************************************************************************************
9 : !> \brief Utilities for X-ray absorption spectroscopy using TDDFPT
10 : !> \author AB (01.2018)
11 : ! **************************************************************************************************
12 :
13 : MODULE xas_tdp_utils
14 : USE cp_blacs_env, ONLY: cp_blacs_env_type
15 : USE cp_cfm_diag, ONLY: cp_cfm_heevd
16 : USE cp_cfm_types, ONLY: cp_cfm_create,&
17 : cp_cfm_get_info,&
18 : cp_cfm_get_submatrix,&
19 : cp_cfm_release,&
20 : cp_cfm_type,&
21 : cp_fm_to_cfm
22 : USE cp_dbcsr_api, ONLY: &
23 : dbcsr_add, dbcsr_copy, dbcsr_create, dbcsr_distribution_get, dbcsr_distribution_new, &
24 : dbcsr_distribution_release, dbcsr_distribution_type, dbcsr_finalize, dbcsr_get_block_p, &
25 : dbcsr_get_info, dbcsr_iterator_blocks_left, dbcsr_iterator_next_block, &
26 : dbcsr_iterator_start, dbcsr_iterator_stop, dbcsr_iterator_type, dbcsr_multiply, &
27 : dbcsr_p_type, dbcsr_put_block, dbcsr_release, dbcsr_set, dbcsr_type, &
28 : dbcsr_type_no_symmetry, dbcsr_type_symmetric
29 : USE cp_dbcsr_cholesky, ONLY: cp_dbcsr_cholesky_decompose,&
30 : cp_dbcsr_cholesky_invert
31 : USE cp_dbcsr_contrib, ONLY: dbcsr_reserve_all_blocks
32 : USE cp_dbcsr_diag, ONLY: cp_dbcsr_power
33 : USE cp_dbcsr_operations, ONLY: copy_dbcsr_to_fm,&
34 : copy_fm_to_dbcsr,&
35 : cp_dbcsr_sm_fm_multiply,&
36 : dbcsr_allocate_matrix_set,&
37 : dbcsr_deallocate_matrix_set
38 : USE cp_fm_basic_linalg, ONLY: cp_fm_column_scale,&
39 : cp_fm_scale,&
40 : cp_fm_transpose,&
41 : cp_fm_uplo_to_full
42 : USE cp_fm_diag, ONLY: choose_eigv_solver,&
43 : cp_fm_geeig
44 : USE cp_fm_struct, ONLY: cp_fm_struct_create,&
45 : cp_fm_struct_release,&
46 : cp_fm_struct_type
47 : USE cp_fm_types, ONLY: cp_fm_create,&
48 : cp_fm_get_diag,&
49 : cp_fm_get_info,&
50 : cp_fm_get_submatrix,&
51 : cp_fm_release,&
52 : cp_fm_set_element,&
53 : cp_fm_to_fm_submat,&
54 : cp_fm_type
55 : USE cp_log_handling, ONLY: cp_logger_get_default_io_unit
56 : USE input_constants, ONLY: ot_precond_full_single,&
57 : tddfpt_singlet,&
58 : tddfpt_spin_cons,&
59 : tddfpt_spin_flip,&
60 : tddfpt_triplet,&
61 : xas_dip_len
62 : USE kinds, ONLY: dp
63 : USE mathlib, ONLY: get_diag
64 : USE message_passing, ONLY: mp_para_env_type
65 : USE parallel_gemm_api, ONLY: parallel_gemm
66 : USE physcon, ONLY: a_fine
67 : USE preconditioner_types, ONLY: destroy_preconditioner,&
68 : init_preconditioner,&
69 : preconditioner_type
70 : USE qs_environment_types, ONLY: get_qs_env,&
71 : qs_environment_type
72 : USE qs_mo_methods, ONLY: calculate_subspace_eigenvalues
73 : USE qs_mo_types, ONLY: get_mo_set,&
74 : mo_set_type
75 : USE qs_ot_eigensolver, ONLY: ot_eigensolver
76 : USE xas_tdp_kernel, ONLY: kernel_coulomb_xc,&
77 : kernel_exchange
78 : USE xas_tdp_types, ONLY: donor_state_type,&
79 : xas_tdp_control_type,&
80 : xas_tdp_env_type
81 :
82 : !$ USE OMP_LIB, ONLY: omp_get_max_threads, omp_get_thread_num
83 : #include "./base/base_uses.f90"
84 :
85 : IMPLICIT NONE
86 : PRIVATE
87 :
88 : CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'xas_tdp_utils'
89 :
90 : PUBLIC :: setup_xas_tdp_prob, solve_xas_tdp_prob, include_rcs_soc, &
91 : include_os_soc, rcs_amew_soc_elements
92 :
93 : !A helper type for SOC
94 : TYPE dbcsr_soc_package_type
95 : TYPE(dbcsr_type), POINTER :: dbcsr_sg => NULL()
96 : TYPE(dbcsr_type), POINTER :: dbcsr_tp => NULL()
97 : TYPE(dbcsr_type), POINTER :: dbcsr_sc => NULL()
98 : TYPE(dbcsr_type), POINTER :: dbcsr_sf => NULL()
99 : TYPE(dbcsr_type), POINTER :: dbcsr_prod => NULL()
100 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp => NULL()
101 : TYPE(dbcsr_type), POINTER :: dbcsr_tmp => NULL()
102 : TYPE(dbcsr_type), POINTER :: dbcsr_work => NULL()
103 : END TYPE dbcsr_soc_package_type
104 :
105 : CONTAINS
106 :
107 : ! **************************************************************************************************
108 : !> \brief Builds the matrix that defines the XAS TDDFPT generalized eigenvalue problem to be solved
109 : !> for excitation energies omega. The problem has the form omega*G*C = M*C, where C contains
110 : !> the response orbitals coefficients. The matrix M and the metric G are stored in the given
111 : !> donor_state
112 : !> \param donor_state the donor_state for which the problem is restricted
113 : !> \param qs_env ...
114 : !> \param xas_tdp_env ...
115 : !> \param xas_tdp_control ...
116 : !> \note the matrix M is symmetric and has the form | M_d M_o |
117 : !> | M_o M_d |,
118 : !> -In the SPIN-RESTRICTED case:
119 : !> depending on whether we consider singlet or triplet excitation, the diagonal (M_d) and
120 : !> off-diagonal (M_o) parts of M differ:
121 : !> - For singlet: M_d = A + 2B + C_aa + C_ab - D
122 : !> M_o = 2B + C_aa + C_ab - E
123 : !> - For triplet: M_d = A + C_aa - C_ab - D
124 : !> M_o = C_aa - C_ab - E
125 : !> where other subroutines computes the matrices A, B, E, D and G, which are:
126 : !> - A: the ground-state contribution: F_pq*delta_IJ - epsilon_IJ*S_pq
127 : !> - B: the Coulomb kernel ~(pI|Jq)
128 : !> - C: the xc kernel c_aa (double derivatibe wrt to n_alpha) and C_ab (wrt n_alpha and n_beta)
129 : !> - D: the on-digonal exact exchange kernel ~(pq|IJ)
130 : !> - E: the off-diagonal exact exchange kernel ~(pJ|Iq)
131 : !> - G: the metric S_pq*delta_IJ
132 : !> For the xc functionals, C_aa + C_ab or C_aa - C_ab are stored in the same matrix
133 : !> In the above definitions, I,J label the donnor MOs and p,q the sgfs of the basis
134 : !>
135 : !> -In the SPIN-UNRESTRICTED, spin-conserving case:
136 : !> the on- and off-diagonal elements of M are:
137 : !> M_d = A + B + C -D
138 : !> M_o = B + C - E
139 : !> where the submatrices A, B, C, D and E are:
140 : !> - A: the groun-state contribution: (F_pq*delta_IJ - epsilon_IJ*S_pq) * delta_ab
141 : !> - B: the Coulomb kernel: (pI_a|J_b q)
142 : !> - C: the xc kernel: (pI_a|fxc_ab|J_b q)
143 : !> - D: the on-diagonal exact-exchange kernel: (pq|I_a J_b) delta_ab
144 : !> - E: the off-diagonal exact-exchange kernel: (pJ_b|I_a q) delta_ab
145 : !> - G: the metric S_pq*delta_IJ*delta_ab
146 : !> p,q label the sgfs, I,J the donro MOs and a,b the spins
147 : !>
148 : !> -In both above cases, the matrix M is always projected onto the unperturbed unoccupied
149 : !> ground state: M <= Q * M * Q^T = (1 - SP) * M * (1 - PS)
150 : !>
151 : !> -In the SPIN-FLIP case:
152 : !> Only the TDA is implemented, that is, there are only on-diagonal elements:
153 : !> M_d = A + C - D
154 : !> where the submatrices A, C and D are:
155 : !> - A: the ground state-contribution: (F_pq*delta_IJ - epsilon_IJ*S_pq) * delta_ab, but here,
156 : !> the alph-alpha quadrant has the beta Fock matrix and
157 : !> the beta-beta quadrant has the alpha Fock matrix
158 : !> - C: the SF xc kernel: (pI_a|fxc|J_bq), fxc = 1/m * (vxc_a -vxc_b)
159 : !> - D: the on-diagonal exact-exchange kernel: (pq|I_a J_b) delta_ab
160 : !> To ensure that all excitation start from a given spin to the opposite, we then multiply
161 : !> by a Q projector where we swap the alpha-alpha and beta-beta spin-quadrants
162 : !>
163 : !> All possibilities: TDA or full-TDDFT, singlet or triplet, xc or hybrid, etc are treated
164 : !> in the same routine to avoid recomputing stuff
165 : !> Under TDA, only the on-diagonal elements of M are computed
166 : !> In the case of non-TDA, one turns the problem Hermitian
167 : ! **************************************************************************************************
168 56 : SUBROUTINE setup_xas_tdp_prob(donor_state, qs_env, xas_tdp_env, xas_tdp_control)
169 :
170 : TYPE(donor_state_type), POINTER :: donor_state
171 : TYPE(qs_environment_type), POINTER :: qs_env
172 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
173 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
174 :
175 : CHARACTER(len=*), PARAMETER :: routineN = 'setup_xas_tdp_prob'
176 :
177 : INTEGER :: handle
178 56 : INTEGER, DIMENSION(:), POINTER :: submat_blk_size
179 : LOGICAL :: do_coul, do_hfx, do_os, do_sc, do_sf, &
180 : do_sg, do_tda, do_tp, do_xc
181 : REAL(dp) :: eps_filter, sx
182 : TYPE(dbcsr_distribution_type), POINTER :: submat_dist
183 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ex_ker, xc_ker
184 : TYPE(dbcsr_type) :: matrix_a, matrix_a_sf, matrix_b, proj_Q, &
185 : proj_Q_sf, work
186 : TYPE(dbcsr_type), POINTER :: matrix_c_sc, matrix_c_sf, matrix_c_sg, matrix_c_tp, matrix_d, &
187 : matrix_e_sc, sc_matrix_tdp, sf_matrix_tdp, sg_matrix_tdp, tp_matrix_tdp
188 :
189 56 : NULLIFY (sg_matrix_tdp, tp_matrix_tdp, submat_dist, submat_blk_size, matrix_c_sf)
190 56 : NULLIFY (matrix_c_sg, matrix_c_tp, matrix_c_sc, matrix_d, matrix_e_sc)
191 56 : NULLIFY (sc_matrix_tdp, sf_matrix_tdp, ex_ker, xc_ker)
192 :
193 56 : CALL timeset(routineN, handle)
194 :
195 : ! Initialization
196 56 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
197 56 : do_sc = xas_tdp_control%do_spin_cons
198 56 : do_sf = xas_tdp_control%do_spin_flip
199 56 : do_sg = xas_tdp_control%do_singlet
200 56 : do_tp = xas_tdp_control%do_triplet
201 56 : do_xc = xas_tdp_control%do_xc
202 56 : do_hfx = xas_tdp_control%do_hfx
203 56 : do_coul = xas_tdp_control%do_coulomb
204 56 : do_tda = xas_tdp_control%tamm_dancoff
205 56 : sx = xas_tdp_control%sx
206 56 : eps_filter = xas_tdp_control%eps_filter
207 56 : IF (do_sc) THEN
208 8 : ALLOCATE (donor_state%sc_matrix_tdp)
209 8 : sc_matrix_tdp => donor_state%sc_matrix_tdp
210 : END IF
211 56 : IF (do_sf) THEN
212 2 : ALLOCATE (donor_state%sf_matrix_tdp)
213 2 : sf_matrix_tdp => donor_state%sf_matrix_tdp
214 : END IF
215 56 : IF (do_sg) THEN
216 48 : ALLOCATE (donor_state%sg_matrix_tdp)
217 48 : sg_matrix_tdp => donor_state%sg_matrix_tdp
218 : END IF
219 56 : IF (do_tp) THEN
220 2 : ALLOCATE (donor_state%tp_matrix_tdp)
221 2 : tp_matrix_tdp => donor_state%tp_matrix_tdp
222 : END IF
223 :
224 : ! Get the dist and block size of all matrices A, B, C, etc
225 56 : CALL compute_submat_dist_and_blk_size(donor_state, do_os, qs_env)
226 56 : submat_dist => donor_state%dbcsr_dist
227 56 : submat_blk_size => donor_state%blk_size
228 :
229 : ! Allocate and compute all the matrices A, B, C, etc we will need
230 :
231 : ! The projector(s) on the unoccupied unperturbed ground state 1-SP and associated work matrix
232 56 : IF (do_sg .OR. do_tp .OR. do_sc) THEN !spin-conserving
233 56 : CALL get_q_projector(proj_Q, donor_state, do_os, xas_tdp_env)
234 : END IF
235 56 : IF (do_sf) THEN !spin-flip
236 2 : CALL get_q_projector(proj_Q_sf, donor_state, do_os, xas_tdp_env, do_sf=.TRUE.)
237 : END IF
238 : CALL dbcsr_create(matrix=work, matrix_type=dbcsr_type_no_symmetry, dist=submat_dist, &
239 56 : name="WORK", row_blk_size=submat_blk_size, col_blk_size=submat_blk_size)
240 :
241 : ! The ground state contribution(s)
242 56 : IF (do_sg .OR. do_tp .OR. do_sc) THEN !spin-conserving
243 56 : CALL build_gs_contribution(matrix_a, donor_state, do_os, qs_env)
244 : END IF
245 56 : IF (do_sf) THEN !spin-flip
246 2 : CALL build_gs_contribution(matrix_a_sf, donor_state, do_os, qs_env, do_sf=.TRUE.)
247 : END IF
248 :
249 : ! The Coulomb and XC kernels. Internal analysis to know which matrix to compute
250 56 : CALL dbcsr_allocate_matrix_set(xc_ker, 4)
251 56 : ALLOCATE (xc_ker(1)%matrix, xc_ker(2)%matrix, xc_ker(3)%matrix, xc_ker(4)%matrix)
252 56 : CALL kernel_coulomb_xc(matrix_b, xc_ker, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
253 56 : matrix_c_sg => xc_ker(1)%matrix; matrix_c_tp => xc_ker(2)%matrix
254 56 : matrix_c_sc => xc_ker(3)%matrix; matrix_c_sf => xc_ker(4)%matrix
255 :
256 : ! The exact exchange. Internal analysis to know which matrices to compute
257 56 : CALL dbcsr_allocate_matrix_set(ex_ker, 2)
258 56 : ALLOCATE (ex_ker(1)%matrix, ex_ker(2)%matrix)
259 56 : CALL kernel_exchange(ex_ker, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
260 56 : matrix_d => ex_ker(1)%matrix; matrix_e_sc => ex_ker(2)%matrix
261 :
262 : ! Build the metric G, also need its inverse in case of full-TDDFT
263 56 : IF (do_tda) THEN
264 100 : ALLOCATE (donor_state%metric(1))
265 50 : CALL build_metric(donor_state%metric, donor_state, qs_env, do_os)
266 : ELSE
267 18 : ALLOCATE (donor_state%metric(2))
268 6 : CALL build_metric(donor_state%metric, donor_state, qs_env, do_os, do_inv=.TRUE.)
269 : END IF
270 :
271 : ! Build the eigenvalue problem, depending on the case (TDA, singlet, triplet, hfx, etc ...)
272 56 : IF (do_tda) THEN
273 :
274 50 : IF (do_sc) THEN ! open-shell spin-conserving under TDA
275 :
276 : ! The final matrix is M = A + B + C - D
277 8 : CALL dbcsr_copy(sc_matrix_tdp, matrix_a, name="OS MATRIX TDP")
278 8 : IF (do_coul) CALL dbcsr_add(sc_matrix_tdp, matrix_b, 1.0_dp, 1.0_dp)
279 :
280 8 : IF (do_xc) CALL dbcsr_add(sc_matrix_tdp, matrix_c_sc, 1.0_dp, 1.0_dp) !xc kernel
281 8 : IF (do_hfx) CALL dbcsr_add(sc_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
282 :
283 : ! The product with the Q projector
284 8 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sc_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
285 8 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sc_matrix_tdp, filter_eps=eps_filter)
286 :
287 : END IF !do_sc
288 :
289 50 : IF (do_sf) THEN ! open-shell spin-flip under TDA
290 :
291 : ! The final matrix is M = A + C - D
292 2 : CALL dbcsr_copy(sf_matrix_tdp, matrix_a_sf, name="OS MATRIX TDP")
293 :
294 2 : IF (do_xc) CALL dbcsr_add(sf_matrix_tdp, matrix_c_sf, 1.0_dp, 1.0_dp) !xc kernel
295 2 : IF (do_hfx) CALL dbcsr_add(sf_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
296 :
297 : ! Take the product with the (spin-flip) Q projector
298 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q_sf, sf_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
299 2 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q_sf, 0.0_dp, sf_matrix_tdp, filter_eps=eps_filter)
300 :
301 : END IF !do_sf
302 :
303 50 : IF (do_sg) THEN ! singlets under TDA
304 :
305 : ! The final matrix is M = A + 2B + (C_aa + C_ab) - D
306 42 : CALL dbcsr_copy(sg_matrix_tdp, matrix_a, name="SINGLET MATRIX TDP")
307 42 : IF (do_coul) CALL dbcsr_add(sg_matrix_tdp, matrix_b, 1.0_dp, 2.0_dp)
308 :
309 42 : IF (do_xc) CALL dbcsr_add(sg_matrix_tdp, matrix_c_sg, 1.0_dp, 1.0_dp) ! xc kernel
310 42 : IF (do_hfx) CALL dbcsr_add(sg_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) ! scaled hfx
311 :
312 : ! Take the product with the Q projector:
313 42 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sg_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
314 42 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sg_matrix_tdp, filter_eps=eps_filter)
315 :
316 : END IF !do_sg (TDA)
317 :
318 50 : IF (do_tp) THEN ! triplets under TDA
319 :
320 : ! The final matrix is M = A + (C_aa - C_ab) - D
321 2 : CALL dbcsr_copy(tp_matrix_tdp, matrix_a, name="TRIPLET MATRIX TDP")
322 :
323 2 : IF (do_xc) CALL dbcsr_add(tp_matrix_tdp, matrix_c_tp, 1.0_dp, 1.0_dp) ! xc_kernel
324 2 : IF (do_hfx) CALL dbcsr_add(tp_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx) ! scaled hfx
325 :
326 : ! Take the product with the Q projector:
327 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tp_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
328 2 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tp_matrix_tdp, filter_eps=eps_filter)
329 :
330 : END IF !do_tp (TDA)
331 :
332 : ELSE ! not TDA
333 :
334 : ! In the case of full-TDDFT, the problem is turned Hermitian with the help of auxiliary
335 : ! matrices AUX = (A-D+E)^(+-0.5) that are stored in donor_state
336 : CALL build_aux_matrix(1.0E-8_dp, sx, matrix_a, matrix_d, matrix_e_sc, do_hfx, proj_Q, &
337 6 : work, donor_state, eps_filter, qs_env)
338 :
339 6 : IF (do_sc) THEN !full-TDDFT open-shell spin-conserving
340 :
341 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
342 : ! M = A + 2B + 2C - D - E
343 0 : CALL dbcsr_copy(sc_matrix_tdp, matrix_a, name="OS MATRIX TDP")
344 0 : IF (do_coul) CALL dbcsr_add(sc_matrix_tdp, matrix_b, 1.0_dp, 2.0_dp)
345 :
346 0 : IF (do_hfx) THEN !scaled hfx
347 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
348 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
349 : END IF
350 0 : IF (do_xc) THEN
351 0 : CALL dbcsr_add(sc_matrix_tdp, matrix_c_sc, 1.0_dp, 2.0_dp)
352 : END IF
353 :
354 : ! Take the product with the Q projector
355 0 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sc_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
356 0 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sc_matrix_tdp, filter_eps=eps_filter)
357 :
358 : ! Take the product with the inverse metric
359 : ! M <= G^-1 * M * G^-1
360 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, sc_matrix_tdp, &
361 0 : 0.0_dp, work, filter_eps=eps_filter)
362 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
363 0 : sc_matrix_tdp, filter_eps=eps_filter)
364 :
365 : END IF
366 :
367 6 : IF (do_sg) THEN ! full-TDDFT singlets
368 :
369 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
370 : ! M = A + 4B + 2(C_aa + C_ab) - D - E
371 6 : CALL dbcsr_copy(sg_matrix_tdp, matrix_a, name="SINGLET MATRIX TDP")
372 6 : IF (do_coul) CALL dbcsr_add(sg_matrix_tdp, matrix_b, 1.0_dp, 4.0_dp)
373 :
374 6 : IF (do_hfx) THEN !scaled hfx
375 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
376 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
377 : END IF
378 6 : IF (do_xc) THEN !xc kernel
379 6 : CALL dbcsr_add(sg_matrix_tdp, matrix_c_sg, 1.0_dp, 2.0_dp)
380 : END IF
381 :
382 : ! Take the product with the Q projector
383 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, sg_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
384 6 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, sg_matrix_tdp, filter_eps=eps_filter)
385 :
386 : ! Take the product with the inverse metric
387 : ! M <= G^-1 * M * G^-1
388 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, sg_matrix_tdp, &
389 6 : 0.0_dp, work, filter_eps=eps_filter)
390 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
391 6 : sg_matrix_tdp, filter_eps=eps_filter)
392 :
393 : END IF ! singlets
394 :
395 6 : IF (do_tp) THEN ! full-TDDFT triplets
396 :
397 : ! The final matrix is the sum of the on- and off-diagonal elements as in the description
398 : ! M = A + 2(C_aa - C_ab) - D - E
399 0 : CALL dbcsr_copy(tp_matrix_tdp, matrix_a, name="TRIPLET MATRIX TDP")
400 :
401 0 : IF (do_hfx) THEN !scaled hfx
402 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_d, 1.0_dp, -1.0_dp*sx)
403 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_e_sc, 1.0_dp, -1.0_dp*sx)
404 : END IF
405 0 : IF (do_xc) THEN
406 0 : CALL dbcsr_add(tp_matrix_tdp, matrix_c_tp, 1.0_dp, 2.0_dp)
407 : END IF
408 :
409 : ! Take the product with the Q projector
410 0 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tp_matrix_tdp, 0.0_dp, work, filter_eps=eps_filter)
411 0 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tp_matrix_tdp, filter_eps=eps_filter)
412 :
413 : ! Take the product with the inverse metric
414 : ! M <= G^-1 * M * G^-1
415 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, tp_matrix_tdp, &
416 0 : 0.0_dp, work, filter_eps=eps_filter)
417 : CALL dbcsr_multiply('N', 'N', 1.0_dp, work, donor_state%metric(2)%matrix, 0.0_dp, &
418 0 : tp_matrix_tdp, filter_eps=eps_filter)
419 :
420 : END IF ! triplets
421 :
422 : END IF ! test on TDA
423 :
424 : ! Clean-up
425 56 : CALL dbcsr_release(matrix_a)
426 56 : CALL dbcsr_release(matrix_a_sf)
427 56 : CALL dbcsr_release(matrix_b)
428 56 : CALL dbcsr_release(proj_Q)
429 56 : CALL dbcsr_release(proj_Q_sf)
430 56 : CALL dbcsr_release(work)
431 56 : CALL dbcsr_deallocate_matrix_set(ex_ker)
432 56 : CALL dbcsr_deallocate_matrix_set(xc_ker)
433 :
434 56 : CALL timestop(handle)
435 :
436 56 : END SUBROUTINE setup_xas_tdp_prob
437 :
438 : ! **************************************************************************************************
439 : !> \brief Solves the XAS TDP generalized eigenvalue problem omega*C = matrix_tdp*C using standard
440 : !> full diagonalization methods. The problem is Hermitian (made that way even if not TDA)
441 : !> \param donor_state ...
442 : !> \param xas_tdp_control ...
443 : !> \param xas_tdp_env ...
444 : !> \param qs_env ...
445 : !> \param ex_type whether we deal with singlets, triplets, spin-conserving open-shell or spin-flip
446 : !> \note The computed eigenvalues and eigenvectors are stored in the donor_state
447 : !> The eigenvectors are the LR-coefficients. In case of TDA, c^- is stored. In the general
448 : !> case, the sum c^+ + c^- is stored.
449 : !> - Spin-restricted:
450 : !> In case both singlets and triplets are considered, this routine must be called twice. This
451 : !> is the choice that was made because the body of the routine is exactly the same in both cases
452 : !> Note that for singlet we solve for u = 1/sqrt(2)*(c_alpha + c_beta) = sqrt(2)*c
453 : !> and that for triplets we solve for v = 1/sqrt(2)*(c_alpha - c_beta) = sqrt(2)*c
454 : !> - Spin-unrestricted:
455 : !> The problem is solved for the LR coefficients c_pIa as they are (not linear combination)
456 : !> The routine might be called twice (once for spin-conservign, one for spin-flip)
457 : ! **************************************************************************************************
458 60 : SUBROUTINE solve_xas_tdp_prob(donor_state, xas_tdp_control, xas_tdp_env, qs_env, ex_type)
459 :
460 : TYPE(donor_state_type), POINTER :: donor_state
461 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
462 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
463 : TYPE(qs_environment_type), POINTER :: qs_env
464 : INTEGER, INTENT(IN) :: ex_type
465 :
466 : CHARACTER(len=*), PARAMETER :: routineN = 'solve_xas_tdp_prob'
467 :
468 : INTEGER :: first_ex, handle, i, imo, ispin, nao, &
469 : ndo_mo, nelectron, nevals, nocc, nrow, &
470 : nspins, ot_nevals
471 : LOGICAL :: do_os, do_range, do_sf
472 : REAL(dp) :: ot_elb
473 60 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: scaling, tmp_evals
474 60 : REAL(dp), DIMENSION(:), POINTER :: lr_evals
475 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
476 : TYPE(cp_fm_struct_type), POINTER :: ex_struct, fm_struct, ot_fm_struct
477 : TYPE(cp_fm_type) :: c_diff, c_sum, lhs_matrix, rhs_matrix, &
478 : work
479 : TYPE(cp_fm_type), POINTER :: lr_coeffs
480 : TYPE(dbcsr_type) :: tmp_mat, tmp_mat2
481 : TYPE(dbcsr_type), POINTER :: matrix_tdp
482 : TYPE(mp_para_env_type), POINTER :: para_env
483 :
484 60 : CALL timeset(routineN, handle)
485 :
486 60 : NULLIFY (para_env, blacs_env, fm_struct, matrix_tdp)
487 60 : NULLIFY (ex_struct, lr_evals, lr_coeffs)
488 60 : CPASSERT(ASSOCIATED(xas_tdp_env))
489 :
490 60 : do_os = .FALSE.
491 60 : do_sf = .FALSE.
492 60 : IF (ex_type == tddfpt_spin_cons) THEN
493 8 : matrix_tdp => donor_state%sc_matrix_tdp
494 8 : do_os = .TRUE.
495 52 : ELSE IF (ex_type == tddfpt_spin_flip) THEN
496 2 : matrix_tdp => donor_state%sf_matrix_tdp
497 2 : do_os = .TRUE.
498 2 : do_sf = .TRUE.
499 50 : ELSE IF (ex_type == tddfpt_singlet) THEN
500 48 : matrix_tdp => donor_state%sg_matrix_tdp
501 2 : ELSE IF (ex_type == tddfpt_triplet) THEN
502 2 : matrix_tdp => donor_state%tp_matrix_tdp
503 : END IF
504 60 : CALL get_qs_env(qs_env=qs_env, para_env=para_env, blacs_env=blacs_env, nelectron_total=nelectron)
505 :
506 : ! Initialization
507 60 : nspins = 1; IF (do_os) nspins = 2
508 60 : CALL cp_fm_get_info(donor_state%gs_coeffs, nrow_global=nao)
509 60 : CALL dbcsr_get_info(matrix_tdp, nfullrows_total=nrow)
510 60 : ndo_mo = donor_state%ndo_mo
511 60 : nocc = nelectron/2; IF (do_os) nocc = nelectron
512 60 : nocc = ndo_mo*nocc
513 :
514 : !solve by energy_range or number of states ?
515 60 : do_range = .FALSE.
516 60 : IF (xas_tdp_control%e_range > 0.0_dp) do_range = .TRUE.
517 :
518 : ! create the fm infrastructure
519 : CALL cp_fm_struct_create(fm_struct, context=blacs_env, nrow_global=nrow, &
520 60 : para_env=para_env, ncol_global=nrow)
521 60 : CALL cp_fm_create(rhs_matrix, fm_struct)
522 60 : CALL cp_fm_create(work, fm_struct)
523 :
524 : ! Test on TDA
525 60 : IF (xas_tdp_control%tamm_dancoff) THEN
526 :
527 54 : IF (xas_tdp_control%do_ot) THEN
528 :
529 : !need to precompute the number of evals for OT
530 4 : IF (do_range) THEN
531 :
532 : !in case of energy range criterion, use LUMO eigenvalues as estimate
533 4 : ot_elb = xas_tdp_env%lumo_evals(1)%array(1)
534 4 : IF (do_os) ot_elb = MIN(ot_elb, xas_tdp_env%lumo_evals(2)%array(1))
535 :
536 1028 : ot_nevals = COUNT(xas_tdp_env%lumo_evals(1)%array - ot_elb .LE. xas_tdp_control%e_range)
537 4 : IF (do_os) ot_nevals = ot_nevals + &
538 0 : COUNT(xas_tdp_env%lumo_evals(2)%array - ot_elb .LE. xas_tdp_control%e_range)
539 :
540 : ELSE
541 :
542 0 : ot_nevals = nspins*nao - nocc/ndo_mo
543 0 : IF (xas_tdp_control%n_excited > 0 .AND. xas_tdp_control%n_excited < ot_nevals) THEN
544 0 : ot_nevals = xas_tdp_control%n_excited
545 : END IF
546 : END IF
547 4 : ot_nevals = ndo_mo*ot_nevals !as in input description, multiply by multiplicity of donor state
548 :
549 : ! Organize results data
550 4 : first_ex = 1
551 12 : ALLOCATE (tmp_evals(ot_nevals))
552 : CALL cp_fm_struct_create(ot_fm_struct, context=blacs_env, para_env=para_env, &
553 4 : nrow_global=nrow, ncol_global=ot_nevals)
554 4 : CALL cp_fm_create(c_sum, ot_fm_struct)
555 :
556 : CALL xas_ot_solver(matrix_tdp, donor_state%metric(1)%matrix, c_sum, tmp_evals, ot_nevals, &
557 4 : do_sf, donor_state, xas_tdp_env, xas_tdp_control, qs_env)
558 :
559 8 : CALL cp_fm_struct_release(ot_fm_struct)
560 :
561 : ELSE
562 :
563 : ! Organize results data
564 50 : first_ex = nocc + 1 !where to find the first proper eigenvalue
565 150 : ALLOCATE (tmp_evals(nrow))
566 50 : CALL cp_fm_create(c_sum, fm_struct)
567 :
568 : ! Get the main matrix_tdp as an fm
569 50 : CALL copy_dbcsr_to_fm(matrix_tdp, rhs_matrix)
570 :
571 : ! Get the metric as a fm
572 50 : CALL cp_fm_create(lhs_matrix, fm_struct)
573 50 : CALL copy_dbcsr_to_fm(donor_state%metric(1)%matrix, lhs_matrix)
574 :
575 : !Diagonalisation (Cholesky decomposition). In TDA, c_sum = c^-
576 50 : CALL cp_fm_geeig(rhs_matrix, lhs_matrix, c_sum, tmp_evals, work)
577 :
578 : ! TDA specific clean-up
579 150 : CALL cp_fm_release(lhs_matrix)
580 :
581 : END IF
582 :
583 : ELSE ! not TDA
584 :
585 : ! Organize results data
586 6 : first_ex = nocc + 1
587 18 : ALLOCATE (tmp_evals(nrow))
588 6 : CALL cp_fm_create(c_sum, fm_struct)
589 :
590 : ! Need to multiply the current matrix_tdp with the auxiliary matrix
591 : ! tmp_mat = (A-D+E)^0.5 * M * (A-D+E)^0.5
592 6 : CALL dbcsr_create(matrix=tmp_mat, template=matrix_tdp, matrix_type=dbcsr_type_no_symmetry)
593 6 : CALL dbcsr_create(matrix=tmp_mat2, template=matrix_tdp, matrix_type=dbcsr_type_no_symmetry)
594 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%matrix_aux, matrix_tdp, &
595 6 : 0.0_dp, tmp_mat2, filter_eps=xas_tdp_control%eps_filter)
596 : CALL dbcsr_multiply('N', 'N', 1.0_dp, tmp_mat2, donor_state%matrix_aux, &
597 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
598 :
599 : ! Get the matrix as a fm
600 6 : CALL copy_dbcsr_to_fm(tmp_mat, rhs_matrix)
601 :
602 : ! Solve the "turned-Hermitian" eigenvalue problem
603 6 : CALL choose_eigv_solver(rhs_matrix, work, tmp_evals)
604 :
605 : ! Currently, work = (A-D+E)^0.5 (c^+ - c^-) and tmp_evals = omega^2
606 : ! Put tiny almost zero eigenvalues to zero (corresponding to occupied MOs)
607 150 : WHERE (tmp_evals < 1.0E-4_dp) tmp_evals = 0.0_dp
608 :
609 : ! Retrieve c_diff = (c^+ - c^-) for normalization
610 : ! (c^+ - c^-) = 1/omega^2 * M * (A-D+E)^0.5 * work
611 6 : CALL cp_fm_create(c_diff, fm_struct)
612 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_tdp, donor_state%matrix_aux, &
613 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
614 6 : CALL cp_dbcsr_sm_fm_multiply(tmp_mat, work, c_diff, ncol=nrow)
615 :
616 12 : ALLOCATE (scaling(nrow))
617 150 : scaling = 0.0_dp
618 150 : WHERE (ABS(tmp_evals) > 1.0E-8_dp) scaling = 1.0_dp/tmp_evals
619 6 : CALL cp_fm_column_scale(c_diff, scaling)
620 :
621 : ! Normalize with the metric: c_diff * G * c_diff = +- 1
622 150 : scaling = 0.0_dp
623 6 : CALL get_normal_scaling(scaling, c_diff, donor_state)
624 6 : CALL cp_fm_column_scale(c_diff, scaling)
625 :
626 : ! Get the actual eigenvalues
627 150 : tmp_evals = SQRT(tmp_evals)
628 :
629 : ! Get c_sum = (c^+ + c^-), which appears in all transition density related expressions
630 : ! c_sum = -1/omega G^-1 * (A-D+E) * (c^+ - c^-)
631 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%matrix_aux, donor_state%matrix_aux, &
632 6 : 0.0_dp, tmp_mat2, filter_eps=xas_tdp_control%eps_filter)
633 : CALL dbcsr_multiply('N', 'N', 1.0_dp, donor_state%metric(2)%matrix, tmp_mat2, &
634 6 : 0.0_dp, tmp_mat, filter_eps=xas_tdp_control%eps_filter)
635 6 : CALL cp_dbcsr_sm_fm_multiply(tmp_mat, c_diff, c_sum, ncol=nrow)
636 150 : WHERE (tmp_evals .NE. 0) scaling = -1.0_dp/tmp_evals
637 6 : CALL cp_fm_column_scale(c_sum, scaling)
638 :
639 : ! Full TDDFT specific clean-up
640 6 : CALL cp_fm_release(c_diff)
641 6 : CALL dbcsr_release(tmp_mat)
642 6 : CALL dbcsr_release(tmp_mat2)
643 18 : DEALLOCATE (scaling)
644 :
645 : END IF ! TDA
646 :
647 : ! Full matrix clean-up
648 60 : CALL cp_fm_release(rhs_matrix)
649 60 : CALL cp_fm_release(work)
650 :
651 : ! Reorganize the eigenvalues, we want a lr_evals array with the proper dimension and where the
652 : ! first element is the first eval. Need a case study on do_range/ot
653 60 : IF (xas_tdp_control%do_ot) THEN
654 :
655 4 : nevals = ot_nevals
656 :
657 56 : ELSE IF (do_range) THEN
658 :
659 94 : WHERE (tmp_evals > tmp_evals(first_ex) + xas_tdp_control%e_range) tmp_evals = 0.0_dp
660 48 : nevals = MAXLOC(tmp_evals, 1) - nocc
661 :
662 : ELSE
663 :
664 : !Determine the number of evals to keep base on N_EXCITED
665 54 : nevals = nspins*nao - nocc/ndo_mo
666 54 : IF (xas_tdp_control%n_excited > 0 .AND. xas_tdp_control%n_excited < nevals) THEN
667 : nevals = xas_tdp_control%n_excited
668 : END IF
669 54 : nevals = ndo_mo*nevals !as in input description, multiply by # of donor MOs
670 :
671 : END IF
672 :
673 180 : ALLOCATE (lr_evals(nevals))
674 964 : lr_evals(:) = tmp_evals(first_ex:first_ex + nevals - 1)
675 :
676 : ! Reorganize the eigenvectors in array of cp_fm so that each ndo_mo columns corresponds to an
677 : ! excited state. Makes later calls to those easier and more efficient
678 : ! In case of open-shell, we store the coeffs in the same logic as the matrix => first block where
679 : ! the columns are the c_Ialpha and second block with columns as c_Ibeta
680 : CALL cp_fm_struct_create(ex_struct, nrow_global=nao, ncol_global=ndo_mo*nspins*nevals, &
681 60 : para_env=para_env, context=blacs_env)
682 60 : ALLOCATE (lr_coeffs)
683 60 : CALL cp_fm_create(lr_coeffs, ex_struct)
684 :
685 964 : DO i = 1, nevals
686 2100 : DO ispin = 1, nspins
687 3464 : DO imo = 1, ndo_mo
688 :
689 : CALL cp_fm_to_fm_submat(msource=c_sum, mtarget=lr_coeffs, &
690 : nrow=nao, ncol=1, s_firstrow=((ispin - 1)*ndo_mo + imo - 1)*nao + 1, &
691 : s_firstcol=first_ex + i - 1, t_firstrow=1, &
692 2560 : t_firstcol=(i - 1)*ndo_mo*nspins + (ispin - 1)*ndo_mo + imo)
693 : END DO !imo
694 : END DO !ispin
695 : END DO !istate
696 :
697 60 : IF (ex_type == tddfpt_spin_cons) THEN
698 8 : donor_state%sc_coeffs => lr_coeffs
699 8 : donor_state%sc_evals => lr_evals
700 52 : ELSE IF (ex_type == tddfpt_spin_flip) THEN
701 2 : donor_state%sf_coeffs => lr_coeffs
702 2 : donor_state%sf_evals => lr_evals
703 50 : ELSE IF (ex_type == tddfpt_singlet) THEN
704 48 : donor_state%sg_coeffs => lr_coeffs
705 48 : donor_State%sg_evals => lr_evals
706 2 : ELSE IF (ex_type == tddfpt_triplet) THEN
707 2 : donor_state%tp_coeffs => lr_coeffs
708 2 : donor_state%tp_evals => lr_evals
709 : END IF
710 :
711 : ! Clean-up
712 60 : CALL cp_fm_release(c_sum)
713 60 : CALL cp_fm_struct_release(fm_struct)
714 60 : CALL cp_fm_struct_release(ex_struct)
715 :
716 : ! Perform a partial clean-up of the donor_state
717 60 : CALL dbcsr_release(matrix_tdp)
718 :
719 60 : CALL timestop(handle)
720 :
721 300 : END SUBROUTINE solve_xas_tdp_prob
722 :
723 : ! **************************************************************************************************
724 : !> \brief An iterative solver based on OT for the TDA generalized eigV problem lambda Sx = Hx
725 : !> \param matrix_tdp the RHS matrix (dbcsr)
726 : !> \param metric the LHS matrix (dbcsr)
727 : !> \param evecs the corresponding eigenvectors (fm)
728 : !> \param evals the corresponding eigenvalues
729 : !> \param neig the number of wanted eigenvalues
730 : !> \param do_sf whther spin-flip TDDFT is on
731 : !> \param donor_state ...
732 : !> \param xas_tdp_env ...
733 : !> \param xas_tdp_control ...
734 : !> \param qs_env ...
735 : ! **************************************************************************************************
736 4 : SUBROUTINE xas_ot_solver(matrix_tdp, metric, evecs, evals, neig, do_sf, donor_state, xas_tdp_env, &
737 : xas_tdp_control, qs_env)
738 :
739 : TYPE(dbcsr_type), POINTER :: matrix_tdp, metric
740 : TYPE(cp_fm_type), INTENT(INOUT) :: evecs
741 : REAL(dp), DIMENSION(:) :: evals
742 : INTEGER, INTENT(IN) :: neig
743 : LOGICAL :: do_sf
744 : TYPE(donor_state_type), POINTER :: donor_state
745 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
746 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
747 : TYPE(qs_environment_type), POINTER :: qs_env
748 :
749 : CHARACTER(len=*), PARAMETER :: routineN = 'xas_ot_solver'
750 :
751 : INTEGER :: handle, max_iter, ndo_mo, nelec_spin(2), &
752 : nocc, nrow, output_unit
753 : LOGICAL :: do_os
754 : REAL(dp) :: eps_iter
755 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
756 : TYPE(cp_fm_struct_type), POINTER :: ortho_struct
757 : TYPE(cp_fm_type) :: ortho_space
758 : TYPE(dbcsr_type), POINTER :: ot_prec
759 : TYPE(mp_para_env_type), POINTER :: para_env
760 : TYPE(preconditioner_type), POINTER :: precond
761 :
762 4 : NULLIFY (para_env, blacs_env, ortho_struct, ot_prec)
763 :
764 4 : CALL timeset(routineN, handle)
765 :
766 4 : output_unit = cp_logger_get_default_io_unit()
767 4 : IF (output_unit > 0) THEN
768 : WRITE (output_unit, "(/,T5,A)") &
769 2 : "Using OT eigensolver for diagonalization: "
770 : END IF
771 :
772 4 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
773 4 : ndo_mo = donor_state%ndo_mo
774 4 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env, nelectron_spin=nelec_spin)
775 4 : CALL cp_fm_get_info(evecs, nrow_global=nrow)
776 4 : max_iter = xas_tdp_control%ot_max_iter
777 4 : eps_iter = xas_tdp_control%ot_eps_iter
778 4 : nocc = nelec_spin(1)/2*ndo_mo
779 4 : IF (do_os) nocc = SUM(nelec_spin)*ndo_mo
780 :
781 : ! Initialize relevent matrices
782 4 : ALLOCATE (ot_prec)
783 4 : CALL dbcsr_create(ot_prec, template=matrix_tdp)
784 : CALL cp_fm_struct_create(ortho_struct, context=blacs_env, para_env=para_env, &
785 4 : nrow_global=nrow, ncol_global=nocc)
786 4 : CALL cp_fm_create(ortho_space, ortho_struct)
787 :
788 : CALL prep_for_ot(evecs, ortho_space, ot_prec, neig, do_sf, donor_state, xas_tdp_env, &
789 4 : xas_tdp_control, qs_env)
790 :
791 : ! Prepare the preconditioner
792 4 : ALLOCATE (precond)
793 4 : CALL init_preconditioner(precond, para_env, blacs_env)
794 4 : precond%in_use = ot_precond_full_single ! because applying this conditioner is only a mm
795 4 : precond%dbcsr_matrix => ot_prec
796 :
797 : ! Actually solving the eigenvalue problem
798 : CALL ot_eigensolver(matrix_h=matrix_tdp, matrix_s=metric, matrix_c_fm=evecs, &
799 : eps_gradient=eps_iter, iter_max=max_iter, silent=.FALSE., &
800 : ot_settings=xas_tdp_control%ot_settings, &
801 : matrix_orthogonal_space_fm=ortho_space, &
802 4 : preconditioner=precond)
803 4 : CALL calculate_subspace_eigenvalues(evecs, matrix_tdp, evals_arg=evals)
804 :
805 : ! Clean-up
806 4 : CALL cp_fm_struct_release(ortho_struct)
807 4 : CALL cp_fm_release(ortho_space)
808 4 : CALL dbcsr_release(ot_prec)
809 4 : CALL destroy_preconditioner(precond)
810 4 : DEALLOCATE (precond)
811 :
812 4 : CALL timestop(handle)
813 :
814 4 : END SUBROUTINE xas_ot_solver
815 :
816 : ! **************************************************************************************************
817 : !> \brief Prepares all required matrices for the OT eigensolver (precond, ortho space and guesses)
818 : !> \param guess the guess eigenvectors absed on LUMOs, in fm format
819 : !> \param ortho the orthogonal space in fm format (occupied MOs)
820 : !> \param precond the OT preconditioner in DBCSR format
821 : !> \param neig ...
822 : !> \param do_sf ...
823 : !> \param donor_state ...
824 : !> \param xas_tdp_env ...
825 : !> \param xas_tdp_control ...
826 : !> \param qs_env ...
827 : !> \note Matrices are allocate before entry
828 : ! **************************************************************************************************
829 8 : SUBROUTINE prep_for_ot(guess, ortho, precond, neig, do_sf, donor_state, xas_tdp_env, &
830 : xas_tdp_control, qs_env)
831 :
832 : TYPE(cp_fm_type), INTENT(IN) :: guess, ortho
833 : TYPE(dbcsr_type) :: precond
834 : INTEGER :: neig
835 : LOGICAL :: do_sf
836 : TYPE(donor_state_type), POINTER :: donor_state
837 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
838 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
839 : TYPE(qs_environment_type), POINTER :: qs_env
840 :
841 : CHARACTER(len=*), PARAMETER :: routineN = 'prep_for_ot'
842 :
843 : INTEGER :: handle, i, iblk, ido_mo, ispin, jblk, maxel, minel, nao, natom, ndo_mo, &
844 : nelec_spin(2), nhomo(2), nlumo(2), nspins, start_block, start_col, start_row
845 : LOGICAL :: do_os, found
846 4 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
847 : TYPE(cp_fm_type), POINTER :: mo_coeff
848 : TYPE(dbcsr_iterator_type) :: iter
849 4 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
850 :
851 4 : NULLIFY (mos, mo_coeff, pblock)
852 :
853 : !REMINDER on the organization of the xas_tdp matrix. It is DBCSR format, with a super bock
854 : !structure. First block structure is spin quadrants: upper left is alpha-alpha spin and lower
855 : !right is beta-beta spin. Then each quadrants is divided in a ndo_mo x ndo_mo grid (1x1 for 1s,
856 : !2s, 3x3 for 2p). Each block in this grid has the normal DBCSR structure and dist, simply
857 : !replicated. The resulting eigenvectors follow the same logic.
858 :
859 4 : CALL timeset(routineN, handle)
860 :
861 4 : do_os = xas_tdp_control%do_uks .OR. xas_tdp_control%do_roks
862 0 : nspins = 1; IF (do_os) nspins = 2
863 4 : ndo_mo = donor_state%ndo_mo
864 4 : CALL cp_fm_get_info(xas_tdp_env%lumo_evecs(1), nrow_global=nao)
865 4 : CALL get_qs_env(qs_env, natom=natom, nelectron_spin=nelec_spin)
866 :
867 : !Compute the number of guesses for each spins
868 4 : IF (do_os) THEN
869 0 : minel = MINLOC(nelec_spin, 1)
870 0 : maxel = 3 - minel
871 0 : nlumo(minel) = (neig/ndo_mo + nelec_spin(maxel) - nelec_spin(minel))/2
872 0 : nlumo(maxel) = neig/ndo_mo - nlumo(minel)
873 : ELSE
874 4 : nlumo(1) = neig/ndo_mo
875 : END IF
876 :
877 : !Building the guess vectors based on the LUMOs. Copy LUMOs into approriate spin/do_mo
878 : !quadrant/block. Order within a block does not matter
879 : !Note: in spin-flip, the upper left quadrant is for beta-alpha transition, so guess are alpha LUMOs
880 : start_row = 0
881 : start_col = 0
882 8 : DO ispin = 1, nspins
883 12 : DO ido_mo = 1, ndo_mo
884 :
885 : CALL cp_fm_to_fm_submat(msource=xas_tdp_env%lumo_evecs(ispin), mtarget=guess, &
886 : nrow=nao, ncol=nlumo(ispin), s_firstrow=1, s_firstcol=1, &
887 4 : t_firstrow=start_row + 1, t_firstcol=start_col + 1)
888 :
889 4 : start_row = start_row + nao
890 8 : start_col = start_col + nlumo(ispin)
891 :
892 : END DO
893 : END DO
894 :
895 : !Build the orthogonal space according to the same principles, but based on occupied MOs
896 : !Note: in spin-flip, the upper left quadrant is for beta-alpha transition, so ortho space is beta HOMOs
897 4 : CALL get_qs_env(qs_env, mos=mos)
898 4 : nhomo = 0
899 8 : DO ispin = 1, nspins
900 8 : CALL get_mo_set(mos(ispin), homo=nhomo(ispin))
901 : END DO
902 :
903 : start_row = 0
904 : start_col = 0
905 8 : DO i = 1, nspins
906 4 : ispin = i; IF (do_sf) ispin = 3 - i
907 4 : CALL get_mo_set(mos(ispin), mo_coeff=mo_coeff)
908 :
909 12 : DO ido_mo = 1, ndo_mo
910 :
911 : CALL cp_fm_to_fm_submat(msource=mo_coeff, mtarget=ortho, nrow=nao, ncol=nhomo(ispin), &
912 : s_firstrow=1, s_firstcol=1, &
913 4 : t_firstrow=start_row + 1, t_firstcol=start_col + 1)
914 :
915 4 : start_row = start_row + nao
916 8 : start_col = start_col + nhomo(ispin)
917 :
918 : END DO
919 : END DO
920 :
921 : !Build the preconditioner. Copy the "canonical" pre-computed matrix into the proper spin/do_mo
922 : !quadrants/blocks. The end matrix is purely block diagonal
923 8 : DO ispin = 1, nspins
924 :
925 4 : CALL dbcsr_iterator_start(iter, xas_tdp_env%ot_prec(ispin)%matrix)
926 9316 : DO WHILE (dbcsr_iterator_blocks_left(iter))
927 :
928 9312 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
929 :
930 9312 : CALL dbcsr_get_block_p(xas_tdp_env%ot_prec(ispin)%matrix, iblk, jblk, pblock, found)
931 :
932 9316 : IF (found) THEN
933 :
934 9312 : start_block = (ispin - 1)*ndo_mo*natom
935 18624 : DO ido_mo = 1, ndo_mo
936 9312 : CALL dbcsr_put_block(precond, start_block + iblk, start_block + jblk, pblock)
937 :
938 18624 : start_block = start_block + natom
939 :
940 : END DO
941 : END IF
942 :
943 : END DO !dbcsr iter
944 12 : CALL dbcsr_iterator_stop(iter)
945 : END DO
946 :
947 4 : CALL dbcsr_finalize(precond)
948 :
949 4 : CALL timestop(handle)
950 :
951 4 : END SUBROUTINE prep_for_ot
952 :
953 : ! **************************************************************************************************
954 : !> \brief Returns the scaling to apply to normalize the LR eigenvectors.
955 : !> \param scaling the scaling array to apply
956 : !> \param lr_coeffs the linear response coefficients as a fm
957 : !> \param donor_state ...
958 : !> \note The LR coeffs are normalized when c^T G c = +- 1, G is the metric, c = c^- for TDA and
959 : !> c = c^+ - c^- for the full problem
960 : ! **************************************************************************************************
961 6 : SUBROUTINE get_normal_scaling(scaling, lr_coeffs, donor_state)
962 :
963 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: scaling
964 : TYPE(cp_fm_type), INTENT(IN) :: lr_coeffs
965 : TYPE(donor_state_type), POINTER :: donor_state
966 :
967 : INTEGER :: nrow, nscal, nvals
968 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
969 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
970 : TYPE(cp_fm_struct_type), POINTER :: norm_struct, work_struct
971 : TYPE(cp_fm_type) :: fm_norm, work
972 : TYPE(mp_para_env_type), POINTER :: para_env
973 :
974 6 : NULLIFY (para_env, blacs_env, norm_struct, work_struct)
975 :
976 : ! Creating the matrix structures and initializing the work matrices
977 : CALL cp_fm_get_info(lr_coeffs, context=blacs_env, para_env=para_env, &
978 6 : matrix_struct=work_struct, ncol_global=nvals, nrow_global=nrow)
979 : CALL cp_fm_struct_create(norm_struct, para_env=para_env, context=blacs_env, &
980 6 : nrow_global=nvals, ncol_global=nvals)
981 :
982 6 : CALL cp_fm_create(work, work_struct)
983 6 : CALL cp_fm_create(fm_norm, norm_struct)
984 :
985 : ! Taking c^T * G * C
986 6 : CALL cp_dbcsr_sm_fm_multiply(donor_state%metric(1)%matrix, lr_coeffs, work, ncol=nvals)
987 6 : CALL parallel_gemm('T', 'N', nvals, nvals, nrow, 1.0_dp, lr_coeffs, work, 0.0_dp, fm_norm)
988 :
989 : ! Computing the needed scaling
990 18 : ALLOCATE (diag(nvals))
991 6 : CALL cp_fm_get_diag(fm_norm, diag)
992 150 : WHERE (ABS(diag) > 1.0E-8_dp) diag = 1.0_dp/SQRT(ABS(diag))
993 :
994 6 : nscal = SIZE(scaling)
995 150 : scaling(1:nscal) = diag(1:nscal)
996 :
997 : ! Clean-up
998 6 : CALL cp_fm_release(work)
999 6 : CALL cp_fm_release(fm_norm)
1000 6 : CALL cp_fm_struct_release(norm_struct)
1001 :
1002 18 : END SUBROUTINE get_normal_scaling
1003 :
1004 : ! **************************************************************************************************
1005 : !> \brief This subroutine computes the row/column block structure as well as the dbcsr ditrinution
1006 : !> for the submatrices making up the generalized XAS TDP eigenvalue problem. They all share
1007 : !> the same properties, which are based on the replication of the KS matrix. Stored in the
1008 : !> donor_state_type
1009 : !> \param donor_state ...
1010 : !> \param do_os whether this is a open-shell calculation
1011 : !> \param qs_env ...
1012 : ! **************************************************************************************************
1013 56 : SUBROUTINE compute_submat_dist_and_blk_size(donor_state, do_os, qs_env)
1014 :
1015 : TYPE(donor_state_type), POINTER :: donor_state
1016 : LOGICAL, INTENT(IN) :: do_os
1017 : TYPE(qs_environment_type), POINTER :: qs_env
1018 :
1019 : INTEGER :: group, i, nao, nblk_row, ndo_mo, nspins, &
1020 : scol_dist, srow_dist
1021 56 : INTEGER, DIMENSION(:), POINTER :: col_dist, col_dist_sub, row_blk_size, &
1022 56 : row_dist, row_dist_sub, submat_blk_size
1023 56 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1024 : TYPE(dbcsr_distribution_type), POINTER :: dbcsr_dist, submat_dist
1025 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_ks
1026 :
1027 56 : NULLIFY (matrix_ks, dbcsr_dist, row_blk_size, row_dist, col_dist, pgrid, col_dist_sub)
1028 56 : NULLIFY (row_dist_sub, submat_dist, submat_blk_size)
1029 :
1030 : ! The submatrices are indexed by M_{pi sig,qj tau}, where p,q label basis functions and i,j donor
1031 : ! MOs and sig,tau the spins. For each spin and donor MOs combination, one has a submatrix of the
1032 : ! size of the KS matrix (nao x nao) with the same dbcsr block structure
1033 :
1034 : ! Initialization
1035 56 : ndo_mo = donor_state%ndo_mo
1036 56 : CALL get_qs_env(qs_env=qs_env, matrix_ks=matrix_ks, dbcsr_dist=dbcsr_dist)
1037 56 : CALL dbcsr_get_info(matrix_ks(1)%matrix, row_blk_size=row_blk_size)
1038 : CALL dbcsr_distribution_get(dbcsr_dist, row_dist=row_dist, col_dist=col_dist, group=group, &
1039 56 : pgrid=pgrid)
1040 658 : nao = SUM(row_blk_size)
1041 56 : nblk_row = SIZE(row_blk_size)
1042 56 : srow_dist = SIZE(row_dist)
1043 56 : scol_dist = SIZE(col_dist)
1044 56 : nspins = 1; IF (do_os) nspins = 2
1045 :
1046 : ! Creation if submatrix block size and col/row distribution
1047 168 : ALLOCATE (submat_blk_size(ndo_mo*nspins*nblk_row))
1048 168 : ALLOCATE (row_dist_sub(ndo_mo*nspins*srow_dist))
1049 168 : ALLOCATE (col_dist_sub(ndo_mo*nspins*scol_dist))
1050 :
1051 132 : DO i = 1, ndo_mo*nspins
1052 1416 : submat_blk_size((i - 1)*nblk_row + 1:i*nblk_row) = row_blk_size
1053 1416 : row_dist_sub((i - 1)*srow_dist + 1:i*srow_dist) = row_dist
1054 1472 : col_dist_sub((i - 1)*scol_dist + 1:i*scol_dist) = col_dist
1055 : END DO
1056 :
1057 : ! Create the submatrix dbcsr distribution
1058 56 : ALLOCATE (submat_dist)
1059 : CALL dbcsr_distribution_new(submat_dist, group=group, pgrid=pgrid, row_dist=row_dist_sub, &
1060 56 : col_dist=col_dist_sub)
1061 :
1062 56 : donor_state%dbcsr_dist => submat_dist
1063 56 : donor_state%blk_size => submat_blk_size
1064 :
1065 : ! Clean-up
1066 56 : DEALLOCATE (col_dist_sub, row_dist_sub)
1067 :
1068 168 : END SUBROUTINE compute_submat_dist_and_blk_size
1069 :
1070 : ! **************************************************************************************************
1071 : !> \brief Returns the projector on the unperturbed unoccupied ground state Q = 1 - SP on the block
1072 : !> diagonal of a matrix with the standard size and distribution.
1073 : !> \param proj_Q the matrix with the projector
1074 : !> \param donor_state ...
1075 : !> \param do_os whether it is open-shell calculation
1076 : !> \param xas_tdp_env ...
1077 : !> \param do_sf whether the projector should be prepared for spin-flip excitations
1078 : !> \note In the spin-flip case, the alpha spins are sent to beta and vice-versa. The structure of
1079 : !> the projector is changed by swapping the alpha-alpha with the beta-beta block, which
1080 : !> naturally take the spin change into account. Only for open-shell.
1081 : ! **************************************************************************************************
1082 58 : SUBROUTINE get_q_projector(proj_Q, donor_state, do_os, xas_tdp_env, do_sf)
1083 :
1084 : TYPE(dbcsr_type), INTENT(INOUT) :: proj_Q
1085 : TYPE(donor_state_type), POINTER :: donor_state
1086 : LOGICAL, INTENT(IN) :: do_os
1087 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1088 : LOGICAL, INTENT(IN), OPTIONAL :: do_sf
1089 :
1090 : CHARACTER(len=*), PARAMETER :: routineN = 'get_q_projector'
1091 :
1092 : INTEGER :: handle, iblk, imo, ispin, jblk, &
1093 : nblk_row, ndo_mo, nspins
1094 58 : INTEGER, DIMENSION(:), POINTER :: blk_size_q, row_blk_size
1095 : LOGICAL :: found_block, my_dosf
1096 58 : REAL(dp), DIMENSION(:, :), POINTER :: work_block
1097 : TYPE(dbcsr_distribution_type), POINTER :: dist_q
1098 : TYPE(dbcsr_iterator_type) :: iter
1099 : TYPE(dbcsr_type), POINTER :: one_sp
1100 :
1101 58 : NULLIFY (work_block, one_sp, row_blk_size, dist_q, blk_size_q)
1102 :
1103 58 : CALL timeset(routineN, handle)
1104 :
1105 : ! Initialization
1106 58 : nspins = 1; IF (do_os) nspins = 2
1107 58 : ndo_mo = donor_state%ndo_mo
1108 58 : one_sp => xas_tdp_env%q_projector(1)%matrix
1109 58 : CALL dbcsr_get_info(one_sp, row_blk_size=row_blk_size)
1110 58 : nblk_row = SIZE(row_blk_size)
1111 58 : my_dosf = .FALSE.
1112 58 : IF (PRESENT(do_sf)) my_dosf = do_sf
1113 58 : dist_q => donor_state%dbcsr_dist
1114 58 : blk_size_q => donor_state%blk_size
1115 :
1116 : ! the projector is not symmetric
1117 : CALL dbcsr_create(matrix=proj_Q, name="PROJ Q", matrix_type=dbcsr_type_no_symmetry, dist=dist_q, &
1118 58 : row_blk_size=blk_size_q, col_blk_size=blk_size_q)
1119 :
1120 : ! Fill the projector by looping over 1-SP and duplicating blocks. (all on the spin-MO block diagonal)
1121 126 : DO ispin = 1, nspins
1122 68 : one_sp => xas_tdp_env%q_projector(ispin)%matrix
1123 :
1124 : !if spin-flip, swap the alpha-alpha and beta-beta blocks
1125 68 : IF (my_dosf) one_sp => xas_tdp_env%q_projector(3 - ispin)%matrix
1126 :
1127 68 : CALL dbcsr_iterator_start(iter, one_sp)
1128 19154 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1129 :
1130 19086 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
1131 :
1132 : ! get the block
1133 19086 : CALL dbcsr_get_block_p(one_sp, iblk, jblk, work_block, found_block)
1134 :
1135 19086 : IF (found_block) THEN
1136 :
1137 38182 : DO imo = 1, ndo_mo
1138 : CALL dbcsr_put_block(proj_Q, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1139 38182 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, work_block)
1140 : END DO
1141 :
1142 : END IF
1143 19086 : NULLIFY (work_block)
1144 :
1145 : END DO !iterator
1146 194 : CALL dbcsr_iterator_stop(iter)
1147 : END DO !ispin
1148 :
1149 58 : CALL dbcsr_finalize(proj_Q)
1150 :
1151 58 : CALL timestop(handle)
1152 :
1153 58 : END SUBROUTINE get_q_projector
1154 :
1155 : ! **************************************************************************************************
1156 : !> \brief Builds the matrix containing the ground state contribution to the matrix_tdp (aka matrix A)
1157 : !> => A_{pis,qjt} = (F_pq*delta_ij - epsilon_ij*S_pq) delta_st, where:
1158 : !> F is the KS matrix
1159 : !> S is the overlap matrix
1160 : !> epsilon_ij is the donor MO eigenvalue
1161 : !> i,j labels the MOs, p,q the AOs and s,t the spins
1162 : !> \param matrix_a pointer to a DBCSR matrix containing A
1163 : !> \param donor_state ...
1164 : !> \param do_os ...
1165 : !> \param qs_env ...
1166 : !> \param do_sf whether the ground state contribution should accommodate spin-flip
1167 : !> \note Even localized non-canonical MOs are diagonalized in their subsapce => eps_ij = eps_ii*delta_ij
1168 : !> Use GW2X corrected evals as eps_ii. If not GW2X correction, these are the default KS energies
1169 : ! **************************************************************************************************
1170 58 : SUBROUTINE build_gs_contribution(matrix_a, donor_state, do_os, qs_env, do_sf)
1171 :
1172 : TYPE(dbcsr_type), INTENT(INOUT) :: matrix_a
1173 : TYPE(donor_state_type), POINTER :: donor_state
1174 : LOGICAL, INTENT(IN) :: do_os
1175 : TYPE(qs_environment_type), POINTER :: qs_env
1176 : LOGICAL, INTENT(IN), OPTIONAL :: do_sf
1177 :
1178 : CHARACTER(len=*), PARAMETER :: routineN = 'build_gs_contribution'
1179 :
1180 : INTEGER :: handle, iblk, imo, ispin, jblk, &
1181 : nblk_row, ndo_mo, nspins
1182 58 : INTEGER, DIMENSION(:), POINTER :: blk_size_a, row_blk_size
1183 : LOGICAL :: found_block, my_dosf
1184 58 : REAL(dp), DIMENSION(:, :), POINTER :: work_block
1185 : TYPE(dbcsr_distribution_type), POINTER :: dbcsr_dist, dist_a
1186 : TYPE(dbcsr_iterator_type) :: iter
1187 58 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: m_ks, matrix_ks, matrix_s
1188 : TYPE(dbcsr_type) :: work_matrix
1189 :
1190 58 : NULLIFY (matrix_ks, dbcsr_dist, row_blk_size, work_block, matrix_s, m_ks)
1191 58 : NULLIFY (dist_a, blk_size_a)
1192 :
1193 : ! Note: matrix A is symmetric and block diagonal. If ADMM, the ks matrix is the total one,
1194 : ! and it is corrected for eigenvalues (done at xas_tdp_init)
1195 :
1196 58 : CALL timeset(routineN, handle)
1197 :
1198 : ! Initialization
1199 58 : nspins = 1; IF (do_os) nspins = 2
1200 58 : ndo_mo = donor_state%ndo_mo
1201 58 : CALL get_qs_env(qs_env=qs_env, matrix_ks=matrix_ks, matrix_s=matrix_s, dbcsr_dist=dbcsr_dist)
1202 58 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
1203 58 : nblk_row = SIZE(row_blk_size)
1204 58 : dist_a => donor_state%dbcsr_dist
1205 58 : blk_size_a => donor_state%blk_size
1206 :
1207 : ! Prepare the KS matrix pointer
1208 184 : ALLOCATE (m_ks(nspins))
1209 58 : m_ks(1)%matrix => matrix_ks(1)%matrix
1210 58 : IF (do_os) m_ks(2)%matrix => matrix_ks(2)%matrix
1211 :
1212 : ! If spin-flip, swap the KS alpha-alpha and beta-beta quadrants.
1213 58 : my_dosf = .FALSE.
1214 58 : IF (PRESENT(do_sf)) my_dosf = do_sf
1215 2 : IF (my_dosf .AND. do_os) THEN
1216 2 : m_ks(1)%matrix => matrix_ks(2)%matrix
1217 2 : m_ks(2)%matrix => matrix_ks(1)%matrix
1218 : END IF
1219 :
1220 : ! Creating the symmetric matrix A (and work)
1221 : CALL dbcsr_create(matrix=matrix_a, name="MATRIX A", matrix_type=dbcsr_type_symmetric, &
1222 58 : dist=dist_a, row_blk_size=blk_size_a, col_blk_size=blk_size_a)
1223 : CALL dbcsr_create(matrix=work_matrix, name="WORK MAT", matrix_type=dbcsr_type_symmetric, &
1224 58 : dist=dist_a, row_blk_size=blk_size_a, col_blk_size=blk_size_a)
1225 :
1226 126 : DO ispin = 1, nspins
1227 :
1228 : ! Loop over the blocks of KS and put them on the spin-MO block diagonal of matrix A
1229 68 : CALL dbcsr_iterator_start(iter, m_ks(ispin)%matrix)
1230 9415 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1231 :
1232 9347 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
1233 :
1234 : ! Get the block
1235 9347 : CALL dbcsr_get_block_p(m_ks(ispin)%matrix, iblk, jblk, work_block, found_block)
1236 :
1237 9347 : IF (found_block) THEN
1238 :
1239 : ! The KS matrix only appears on diagonal of matrix A => loop over II donor MOs
1240 18704 : DO imo = 1, ndo_mo
1241 :
1242 : ! Put the block as it is
1243 : CALL dbcsr_put_block(matrix_a, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1244 18704 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, work_block)
1245 :
1246 : END DO !imo
1247 : END IF !found_block
1248 9347 : NULLIFY (work_block)
1249 : END DO ! iteration on KS blocks
1250 68 : CALL dbcsr_iterator_stop(iter)
1251 :
1252 : ! Loop over the blocks of S and put them on the block diagonal of work
1253 :
1254 68 : CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
1255 9415 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1256 :
1257 9347 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
1258 :
1259 : ! Get the block
1260 9347 : CALL dbcsr_get_block_p(matrix_s(1)%matrix, iblk, jblk, work_block, found_block)
1261 :
1262 9347 : IF (found_block) THEN
1263 :
1264 : ! Add S matrix on block diagonal as epsilon_ii*S_pq
1265 18704 : DO imo = 1, ndo_mo
1266 :
1267 : CALL dbcsr_put_block(work_matrix, ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + iblk, &
1268 : ((ispin - 1)*ndo_mo + imo - 1)*nblk_row + jblk, &
1269 238070 : donor_state%gw2x_evals(imo, ispin)*work_block)
1270 : END DO !imo
1271 : END IF !found block
1272 9347 : NULLIFY (work_block)
1273 : END DO ! iteration on S blocks
1274 262 : CALL dbcsr_iterator_stop(iter)
1275 :
1276 : END DO !ispin
1277 58 : CALL dbcsr_finalize(matrix_a)
1278 58 : CALL dbcsr_finalize(work_matrix)
1279 :
1280 : ! Take matrix_a = matrix_a - work
1281 58 : CALL dbcsr_add(matrix_a, work_matrix, 1.0_dp, -1.0_dp)
1282 58 : CALL dbcsr_finalize(matrix_a)
1283 :
1284 : ! Clean-up
1285 58 : CALL dbcsr_release(work_matrix)
1286 58 : DEALLOCATE (m_ks)
1287 :
1288 58 : CALL timestop(handle)
1289 :
1290 58 : END SUBROUTINE build_gs_contribution
1291 :
1292 : ! **************************************************************************************************
1293 : !> \brief Creates the metric (aka matrix G) needed for the generalized eigenvalue problem and inverse
1294 : !> => G_{pis,qjt} = S_pq*delta_ij*delta_st
1295 : !> \param matrix_g dbcsr matrix containing G
1296 : !> \param donor_state ...
1297 : !> \param qs_env ...
1298 : !> \param do_os if open-shell calculation
1299 : !> \param do_inv if the inverse of G should be computed
1300 : ! **************************************************************************************************
1301 168 : SUBROUTINE build_metric(matrix_g, donor_state, qs_env, do_os, do_inv)
1302 :
1303 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_g
1304 : TYPE(donor_state_type), POINTER :: donor_state
1305 : TYPE(qs_environment_type), POINTER :: qs_env
1306 : LOGICAL, INTENT(IN) :: do_os
1307 : LOGICAL, INTENT(IN), OPTIONAL :: do_inv
1308 :
1309 : CHARACTER(len=*), PARAMETER :: routineN = 'build_metric'
1310 :
1311 : INTEGER :: handle, i, iblk, jblk, nao, nblk_row, &
1312 : ndo_mo, nspins
1313 56 : INTEGER, DIMENSION(:), POINTER :: blk_size_g, row_blk_size
1314 : LOGICAL :: found_block, my_do_inv
1315 56 : REAL(dp), DIMENSION(:, :), POINTER :: work_block
1316 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1317 : TYPE(dbcsr_distribution_type), POINTER :: dist_g
1318 : TYPE(dbcsr_iterator_type) :: iter
1319 56 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1320 : TYPE(dbcsr_type) :: matrix_sinv
1321 : TYPE(mp_para_env_type), POINTER :: para_env
1322 :
1323 56 : NULLIFY (matrix_s, row_blk_size, work_block, para_env, blacs_env, dist_g, blk_size_g)
1324 :
1325 56 : CALL timeset(routineN, handle)
1326 :
1327 : ! Initialization
1328 56 : nspins = 1; IF (do_os) nspins = 2
1329 56 : ndo_mo = donor_state%ndo_mo
1330 56 : CALL get_qs_env(qs_env=qs_env, matrix_s=matrix_s)
1331 56 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size, nfullrows_total=nao)
1332 56 : nblk_row = SIZE(row_blk_size)
1333 56 : my_do_inv = .FALSE.
1334 56 : IF (PRESENT(do_inv)) my_do_inv = do_inv
1335 56 : dist_g => donor_state%dbcsr_dist
1336 56 : blk_size_g => donor_state%blk_size
1337 :
1338 : ! Creating the symmetric matrices G and G^-1 with the right size and distribution
1339 56 : ALLOCATE (matrix_g(1)%matrix)
1340 : CALL dbcsr_create(matrix=matrix_g(1)%matrix, name="MATRIX G", matrix_type=dbcsr_type_symmetric, &
1341 56 : dist=dist_g, row_blk_size=blk_size_g, col_blk_size=blk_size_g)
1342 :
1343 : ! Fill the matrices G by looping over the block of S and putting them on the diagonal
1344 56 : CALL dbcsr_iterator_start(iter, matrix_s(1)%matrix)
1345 9384 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1346 :
1347 9328 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
1348 :
1349 : ! Get the block
1350 9328 : CALL dbcsr_get_block_p(matrix_s(1)%matrix, iblk, jblk, work_block, found_block)
1351 :
1352 9328 : IF (found_block) THEN
1353 :
1354 : ! Go over the diagonal of G => donor MOs ii, spin ss
1355 18679 : DO i = 1, ndo_mo*nspins
1356 18679 : CALL dbcsr_put_block(matrix_g(1)%matrix, (i - 1)*nblk_row + iblk, (i - 1)*nblk_row + jblk, work_block)
1357 : END DO
1358 :
1359 : END IF
1360 9328 : NULLIFY (work_block)
1361 :
1362 : END DO ! dbcsr_iterator
1363 56 : CALL dbcsr_iterator_stop(iter)
1364 :
1365 : ! Finalize
1366 56 : CALL dbcsr_finalize(matrix_g(1)%matrix)
1367 :
1368 : ! If the inverse of G is required, do the same as above with the inverse
1369 56 : IF (my_do_inv) THEN
1370 :
1371 6 : CPASSERT(SIZE(matrix_g) == 2)
1372 :
1373 : ! Create the matrix
1374 6 : ALLOCATE (matrix_g(2)%matrix)
1375 : CALL dbcsr_create(matrix=matrix_g(2)%matrix, name="MATRIX GINV", &
1376 : matrix_type=dbcsr_type_symmetric, dist=dist_g, &
1377 6 : row_blk_size=blk_size_g, col_blk_size=blk_size_g)
1378 :
1379 : ! Invert the overlap matrix
1380 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
1381 6 : CALL dbcsr_copy(matrix_sinv, matrix_s(1)%matrix)
1382 6 : CALL cp_dbcsr_cholesky_decompose(matrix_sinv, para_env=para_env, blacs_env=blacs_env)
1383 6 : CALL cp_dbcsr_cholesky_invert(matrix_sinv, para_env=para_env, blacs_env=blacs_env, uplo_to_full=.TRUE.)
1384 :
1385 : ! Fill the matrices G^-1 by looping over the block of S^-1 and putting them on the diagonal
1386 6 : CALL dbcsr_iterator_start(iter, matrix_sinv)
1387 24 : DO WHILE (dbcsr_iterator_blocks_left(iter))
1388 :
1389 18 : CALL dbcsr_iterator_next_block(iter, row=iblk, column=jblk)
1390 :
1391 : ! Get the block
1392 18 : CALL dbcsr_get_block_p(matrix_sinv, iblk, jblk, work_block, found_block)
1393 :
1394 18 : IF (found_block) THEN
1395 :
1396 : ! Go over the diagonal of G => donor MOs ii spin ss
1397 36 : DO i = 1, ndo_mo*nspins
1398 36 : CALL dbcsr_put_block(matrix_g(2)%matrix, (i - 1)*nblk_row + iblk, (i - 1)*nblk_row + jblk, work_block)
1399 : END DO
1400 :
1401 : END IF
1402 18 : NULLIFY (work_block)
1403 :
1404 : END DO ! dbcsr_iterator
1405 6 : CALL dbcsr_iterator_stop(iter)
1406 :
1407 : ! Finalize
1408 6 : CALL dbcsr_finalize(matrix_g(2)%matrix)
1409 :
1410 : ! Clean-up
1411 6 : CALL dbcsr_release(matrix_sinv)
1412 : END IF !do_inv
1413 :
1414 56 : CALL timestop(handle)
1415 :
1416 56 : END SUBROUTINE build_metric
1417 :
1418 : ! **************************************************************************************************
1419 : !> \brief Builds the auxiliary matrix (A-D+E)^+0.5 needed for the transofrmation of the
1420 : !> full-TDDFT problem into an Hermitian one
1421 : !> \param threshold a threshold for allowed negative eigenvalues
1422 : !> \param sx the amount of exact exchange
1423 : !> \param matrix_a the ground state contribution matrix A
1424 : !> \param matrix_d the on-diagonal exchange kernel matrix (ab|IJ)
1425 : !> \param matrix_e the off-diagonal exchange kernel matrix (aJ|Ib)
1426 : !> \param do_hfx if exact exchange is included
1427 : !> \param proj_Q ...
1428 : !> \param work ...
1429 : !> \param donor_state ...
1430 : !> \param eps_filter for the dbcsr multiplication
1431 : !> \param qs_env ...
1432 : ! **************************************************************************************************
1433 6 : SUBROUTINE build_aux_matrix(threshold, sx, matrix_a, matrix_d, matrix_e, do_hfx, proj_Q, &
1434 : work, donor_state, eps_filter, qs_env)
1435 :
1436 : REAL(dp), INTENT(IN) :: threshold, sx
1437 : TYPE(dbcsr_type), INTENT(INOUT) :: matrix_a, matrix_d, matrix_e
1438 : LOGICAL, INTENT(IN) :: do_hfx
1439 : TYPE(dbcsr_type), INTENT(INOUT) :: proj_Q, work
1440 : TYPE(donor_state_type), POINTER :: donor_state
1441 : REAL(dp), INTENT(IN) :: eps_filter
1442 : TYPE(qs_environment_type), POINTER :: qs_env
1443 :
1444 : CHARACTER(len=*), PARAMETER :: routineN = 'build_aux_matrix'
1445 :
1446 : INTEGER :: handle, ndep
1447 : REAL(dp) :: evals(2)
1448 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1449 : TYPE(dbcsr_type) :: tmp_mat
1450 : TYPE(mp_para_env_type), POINTER :: para_env
1451 :
1452 6 : NULLIFY (blacs_env, para_env)
1453 :
1454 6 : CALL timeset(routineN, handle)
1455 :
1456 6 : CALL dbcsr_copy(tmp_mat, matrix_a)
1457 6 : IF (do_hfx) THEN
1458 6 : CALL dbcsr_add(tmp_mat, matrix_d, 1.0_dp, -1.0_dp*sx) !scaled hfx
1459 6 : CALL dbcsr_add(tmp_mat, matrix_e, 1.0_dp, 1.0_dp*sx)
1460 : END IF
1461 :
1462 : ! Take the product with the Q projector:
1463 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, proj_Q, tmp_mat, 0.0_dp, work, filter_eps=eps_filter)
1464 6 : CALL dbcsr_multiply('N', 'T', 1.0_dp, work, proj_Q, 0.0_dp, tmp_mat, filter_eps=eps_filter)
1465 :
1466 : ! Actually computing and storing the auxiliary matrix
1467 6 : ALLOCATE (donor_state%matrix_aux)
1468 6 : CALL dbcsr_create(matrix=donor_state%matrix_aux, template=matrix_a, name="MAT AUX")
1469 :
1470 6 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
1471 :
1472 : ! good quality sqrt
1473 6 : CALL cp_dbcsr_power(tmp_mat, 0.5_dp, threshold, ndep, para_env, blacs_env, eigenvalues=evals)
1474 :
1475 6 : CALL dbcsr_copy(donor_state%matrix_aux, tmp_mat)
1476 :
1477 : ! Warn the user if matrix not positive semi-definite
1478 6 : IF (evals(1) < 0.0_dp .AND. ABS(evals(1)) > threshold) THEN
1479 0 : CPWARN("The full TDDFT problem might not have been soundly turned Hermitian. Try TDA.")
1480 : END IF
1481 :
1482 : ! clean-up
1483 6 : CALL dbcsr_release(tmp_mat)
1484 :
1485 6 : CALL timestop(handle)
1486 :
1487 6 : END SUBROUTINE build_aux_matrix
1488 :
1489 : ! **************************************************************************************************
1490 : !> \brief Includes the SOC effects on the precomputed spin-conserving and spin-flip excitations
1491 : !> from an open-shell calculation (UKS or ROKS). This is a perturbative treatment
1492 : !> \param donor_state ...
1493 : !> \param xas_tdp_env ...
1494 : !> \param xas_tdp_control ...
1495 : !> \param qs_env ...
1496 : !> \note Using AMEWs, build an hermitian matrix with all excited states SOC coupling + the
1497 : !> excitation energies on the diagonal. Then diagonalize it to get the new excitation
1498 : !> energies and corresponding linear combinations of lr_coeffs.
1499 : !> The AMEWs are normalized
1500 : !> Only for open-shell calculations
1501 : ! **************************************************************************************************
1502 2 : SUBROUTINE include_os_soc(donor_state, xas_tdp_env, xas_tdp_control, qs_env)
1503 :
1504 : TYPE(donor_state_type), POINTER :: donor_state
1505 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1506 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
1507 : TYPE(qs_environment_type), POINTER :: qs_env
1508 :
1509 : CHARACTER(len=*), PARAMETER :: routineN = 'include_os_soc'
1510 :
1511 : INTEGER :: group, handle, homo, iex, isc, isf, nao, &
1512 : ndo_mo, ndo_so, nex, npcols, nprows, &
1513 : nsc, nsf, ntot, tas(2), tbs(2)
1514 2 : INTEGER, DIMENSION(:), POINTER :: col_blk_size, col_dist, row_blk_size, &
1515 2 : row_dist, row_dist_new
1516 2 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1517 : LOGICAL :: do_roks, do_uks
1518 : REAL(dp) :: eps_filter, gs_sum, soc
1519 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, tmp_evals
1520 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_soc_x, domo_soc_y, domo_soc_z, &
1521 2 : gsex_block
1522 2 : REAL(dp), DIMENSION(:), POINTER :: sc_evals, sf_evals
1523 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1524 : TYPE(cp_cfm_type) :: evecs_cfm, pert_cfm
1525 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsex_struct, prod_struct, &
1526 : vec_struct, work_struct
1527 : TYPE(cp_fm_type) :: gsex_fm, img_fm, prod_work, real_fm, &
1528 : vec_soc_x, vec_soc_y, vec_soc_z, &
1529 : vec_work, work_fm
1530 : TYPE(cp_fm_type), POINTER :: gs_coeffs, mo_coeff, sc_coeffs, sf_coeffs
1531 : TYPE(dbcsr_distribution_type), POINTER :: coeffs_dist, dbcsr_dist, prod_dist
1532 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1533 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
1534 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp, dbcsr_prod, dbcsr_sc, &
1535 : dbcsr_sf, dbcsr_tmp, dbcsr_work, &
1536 : orb_soc_x, orb_soc_y, orb_soc_z
1537 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
1538 : TYPE(mp_para_env_type), POINTER :: para_env
1539 :
1540 2 : NULLIFY (gs_coeffs, sc_coeffs, sf_coeffs, matrix_s, orb_soc_x, orb_soc_y, orb_soc_z, mos)
1541 2 : NULLIFY (full_struct, para_env, blacs_env, mo_coeff, sc_evals, sf_evals, vec_struct, prod_struct)
1542 2 : NULLIFY (work_struct, gsex_struct, col_dist, row_dist)
1543 2 : NULLIFY (col_blk_size, row_blk_size, row_dist_new, pgrid, dbcsr_sc, dbcsr_sf, dbcsr_work)
1544 2 : NULLIFY (dbcsr_tmp, dbcsr_ovlp, dbcsr_prod)
1545 :
1546 2 : CALL timeset(routineN, handle)
1547 :
1548 : ! Initialization
1549 2 : sc_coeffs => donor_state%sc_coeffs
1550 2 : sf_coeffs => donor_state%sf_coeffs
1551 2 : sc_evals => donor_state%sc_evals
1552 2 : sf_evals => donor_state%sf_evals
1553 2 : nsc = SIZE(sc_evals)
1554 2 : nsf = SIZE(sf_evals)
1555 2 : ntot = 1 + nsc + nsf
1556 2 : nex = nsc !by contrutciotn nsc == nsf, but keep 2 counts for clarity
1557 2 : ndo_mo = donor_state%ndo_mo
1558 2 : ndo_so = 2*ndo_mo
1559 2 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env, mos=mos, matrix_s=matrix_s)
1560 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
1561 2 : orb_soc_x => xas_tdp_env%orb_soc(1)%matrix
1562 2 : orb_soc_y => xas_tdp_env%orb_soc(2)%matrix
1563 2 : orb_soc_z => xas_tdp_env%orb_soc(3)%matrix
1564 2 : do_roks = xas_tdp_control%do_roks
1565 2 : do_uks = xas_tdp_control%do_uks
1566 2 : eps_filter = xas_tdp_control%eps_filter
1567 :
1568 : ! For the GS coeffs, we use the same structure both for ROKS and UKS here => allows us to write
1569 : ! general code later on, and not use IF (do_roks) statements every second line
1570 2 : IF (do_uks) gs_coeffs => donor_state%gs_coeffs
1571 2 : IF (do_roks) THEN
1572 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
1573 0 : nrow_global=nao, ncol_global=ndo_so)
1574 0 : ALLOCATE (gs_coeffs)
1575 0 : CALL cp_fm_create(gs_coeffs, vec_struct)
1576 :
1577 : ! only alpha donor MOs are stored, need to copy them intoboth the alpha and the beta slot
1578 : CALL cp_fm_to_fm_submat(msource=donor_state%gs_coeffs, mtarget=gs_coeffs, nrow=nao, &
1579 : ncol=ndo_mo, s_firstrow=1, s_firstcol=1, t_firstrow=1, &
1580 0 : t_firstcol=1)
1581 : CALL cp_fm_to_fm_submat(msource=donor_state%gs_coeffs, mtarget=gs_coeffs, nrow=nao, &
1582 : ncol=ndo_mo, s_firstrow=1, s_firstcol=1, t_firstrow=1, &
1583 0 : t_firstcol=ndo_mo + 1)
1584 :
1585 0 : CALL cp_fm_struct_release(vec_struct)
1586 : END IF
1587 :
1588 : ! Creating the real and the imaginary part of the SOC perturbation matrix
1589 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
1590 2 : nrow_global=ntot, ncol_global=ntot)
1591 2 : CALL cp_fm_create(real_fm, full_struct)
1592 2 : CALL cp_fm_create(img_fm, full_struct)
1593 :
1594 : ! Put the excitation energies on the diagonal of the real matrix. Element 1,1 is the ground state
1595 26 : DO isc = 1, nsc
1596 26 : CALL cp_fm_set_element(real_fm, 1 + isc, 1 + isc, sc_evals(isc))
1597 : END DO
1598 26 : DO isf = 1, nsf
1599 26 : CALL cp_fm_set_element(real_fm, 1 + nsc + isf, 1 + nsc + isf, sf_evals(isf))
1600 : END DO
1601 :
1602 : ! Create the bdcsr machinery
1603 2 : CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist)
1604 : CALL dbcsr_distribution_get(dbcsr_dist, group=group, row_dist=row_dist, pgrid=pgrid, &
1605 2 : npcols=npcols, nprows=nprows)
1606 8 : ALLOCATE (col_dist(nex), row_dist_new(nex))
1607 26 : DO iex = 1, nex
1608 24 : col_dist(iex) = MODULO(npcols - iex, npcols)
1609 26 : row_dist_new(iex) = MODULO(nprows - iex, nprows)
1610 : END DO
1611 2 : ALLOCATE (coeffs_dist, prod_dist)
1612 : CALL dbcsr_distribution_new(coeffs_dist, group=group, pgrid=pgrid, row_dist=row_dist, &
1613 2 : col_dist=col_dist)
1614 : CALL dbcsr_distribution_new(prod_dist, group=group, pgrid=pgrid, row_dist=row_dist_new, &
1615 2 : col_dist=col_dist)
1616 :
1617 : !Create the matrices
1618 4 : ALLOCATE (col_blk_size(nex))
1619 26 : col_blk_size = ndo_so
1620 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
1621 :
1622 2 : ALLOCATE (dbcsr_sc, dbcsr_sf, dbcsr_work, dbcsr_ovlp, dbcsr_tmp, dbcsr_prod)
1623 : CALL dbcsr_create(matrix=dbcsr_sc, name="SPIN CONS", matrix_type=dbcsr_type_no_symmetry, &
1624 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1625 : CALL dbcsr_create(matrix=dbcsr_sf, name="SPIN FLIP", matrix_type=dbcsr_type_no_symmetry, &
1626 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1627 : CALL dbcsr_create(matrix=dbcsr_work, name="WORK", matrix_type=dbcsr_type_no_symmetry, &
1628 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
1629 : CALL dbcsr_create(matrix=dbcsr_prod, name="PROD", matrix_type=dbcsr_type_no_symmetry, &
1630 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1631 : CALL dbcsr_create(matrix=dbcsr_ovlp, name="OVLP", matrix_type=dbcsr_type_no_symmetry, &
1632 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1633 :
1634 26 : col_blk_size = 1
1635 : CALL dbcsr_create(matrix=dbcsr_tmp, name="TMP", matrix_type=dbcsr_type_no_symmetry, &
1636 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
1637 2 : CALL dbcsr_reserve_all_blocks(dbcsr_tmp)
1638 :
1639 2 : dbcsr_soc_package%dbcsr_sc => dbcsr_sc
1640 2 : dbcsr_soc_package%dbcsr_sf => dbcsr_sf
1641 2 : dbcsr_soc_package%dbcsr_work => dbcsr_work
1642 2 : dbcsr_soc_package%dbcsr_ovlp => dbcsr_ovlp
1643 2 : dbcsr_soc_package%dbcsr_prod => dbcsr_prod
1644 2 : dbcsr_soc_package%dbcsr_tmp => dbcsr_tmp
1645 :
1646 : !Filling the coeffs matrices by copying from the stored fms
1647 2 : CALL copy_fm_to_dbcsr(sc_coeffs, dbcsr_sc)
1648 2 : CALL copy_fm_to_dbcsr(sf_coeffs, dbcsr_sf)
1649 :
1650 : ! Precompute what we can before looping over excited states.
1651 : ! Need to compute the scalar: sum_i sum_sigma <phi^0_i,sigma|SOC|phi^0_i,sigma>, where all
1652 : ! occupied MOs are taken into account
1653 :
1654 : !start with the alpha MOs
1655 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, homo=homo)
1656 6 : ALLOCATE (diag(homo))
1657 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
1658 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1659 2 : nrow_global=homo, ncol_global=homo)
1660 2 : CALL cp_fm_create(vec_work, vec_struct)
1661 2 : CALL cp_fm_create(prod_work, prod_struct)
1662 :
1663 : ! <alpha|SOC_z|alpha> => spin integration yields +1
1664 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, mo_coeff, vec_work, ncol=homo)
1665 2 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
1666 2 : CALL cp_fm_get_diag(prod_work, diag)
1667 20 : gs_sum = SUM(diag)
1668 :
1669 2 : CALL cp_fm_release(vec_work)
1670 2 : CALL cp_fm_release(prod_work)
1671 2 : CALL cp_fm_struct_release(prod_struct)
1672 2 : DEALLOCATE (diag)
1673 2 : NULLIFY (vec_struct)
1674 :
1675 : ! Now do the same with the beta gs coeffs
1676 2 : CALL get_mo_set(mos(2), mo_coeff=mo_coeff, homo=homo)
1677 6 : ALLOCATE (diag(homo))
1678 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
1679 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1680 2 : nrow_global=homo, ncol_global=homo)
1681 2 : CALL cp_fm_create(vec_work, vec_struct)
1682 2 : CALL cp_fm_create(prod_work, prod_struct)
1683 :
1684 : ! <beta|SOC_z|beta> => spin integration yields -1
1685 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, mo_coeff, vec_work, ncol=homo)
1686 2 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
1687 2 : CALL cp_fm_get_diag(prod_work, diag)
1688 20 : gs_sum = gs_sum - SUM(diag) ! -1 because of spin integration
1689 :
1690 2 : CALL cp_fm_release(vec_work)
1691 2 : CALL cp_fm_release(prod_work)
1692 2 : CALL cp_fm_struct_release(prod_struct)
1693 2 : DEALLOCATE (diag)
1694 :
1695 : ! Need to compute: <phi^0_Isigma|SOC|phi^0_Jtau> for the donor MOs
1696 :
1697 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
1698 2 : nrow_global=nao, ncol_global=ndo_so)
1699 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
1700 2 : nrow_global=ndo_so, ncol_global=ndo_so)
1701 2 : CALL cp_fm_create(vec_soc_x, vec_struct) ! for SOC_x*gs_coeffs
1702 2 : CALL cp_fm_create(vec_soc_y, vec_struct) ! for SOC_y*gs_coeffs
1703 2 : CALL cp_fm_create(vec_soc_z, vec_struct) ! for SOC_z*gs_coeffs
1704 2 : CALL cp_fm_create(prod_work, prod_struct)
1705 6 : ALLOCATE (diag(ndo_so))
1706 :
1707 16 : ALLOCATE (domo_soc_x(ndo_so, ndo_so), domo_soc_y(ndo_so, ndo_so), domo_soc_z(ndo_so, ndo_so))
1708 :
1709 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_x, gs_coeffs, vec_soc_x, ncol=ndo_so)
1710 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_x, 0.0_dp, prod_work)
1711 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_x)
1712 :
1713 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_y, gs_coeffs, vec_soc_y, ncol=ndo_so)
1714 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_y, 0.0_dp, prod_work)
1715 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_y)
1716 :
1717 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, gs_coeffs, vec_soc_z, ncol=ndo_so)
1718 2 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_soc_z, 0.0_dp, prod_work)
1719 2 : CALL cp_fm_get_submatrix(prod_work, domo_soc_z)
1720 :
1721 : ! some more useful work matrices
1722 : CALL cp_fm_struct_create(work_struct, context=blacs_env, para_env=para_env, &
1723 2 : nrow_global=nex, ncol_global=nex)
1724 2 : CALL cp_fm_create(work_fm, work_struct)
1725 :
1726 : ! Looping over the excited states, computing the SOC and filling the perturbation matrix
1727 : ! There are 3 loops to do: sc-sc, sc-sf and sf-sf
1728 : ! The final perturbation matrix is Hermitian, only the upper diagonal is needed
1729 :
1730 : !need some work matrices for the GS stuff
1731 : CALL cp_fm_struct_create(gsex_struct, context=blacs_env, para_env=para_env, &
1732 2 : nrow_global=nex*ndo_so, ncol_global=ndo_so)
1733 2 : CALL cp_fm_create(gsex_fm, gsex_struct)
1734 6 : ALLOCATE (gsex_block(ndo_so, ndo_so))
1735 :
1736 : ! Start with ground-state/spin-conserving SOC:
1737 : ! <Psi_0|SOC|Psi_Jsc> = sum_k,sigma <phi^0_k,sigma|SOC|phi^Jsc_k,sigma>
1738 :
1739 : !compute -sc_coeffs*SOC_Z*gs_coeffs, minus sign because SOC_z antisymmetric
1740 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_z, 0.0_dp, gsex_fm)
1741 :
1742 26 : DO isc = 1, nsc
1743 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isc - 1)*ndo_so + 1, &
1744 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1745 24 : diag(:) = get_diag(gsex_block)
1746 168 : soc = SUM(diag(1:ndo_mo)) - SUM(diag(ndo_mo + 1:ndo_so)) !minus sign because of spin integration
1747 :
1748 : !purely imaginary contribution
1749 26 : CALL cp_fm_set_element(img_fm, 1, 1 + isc, soc)
1750 : END DO !isc
1751 :
1752 : ! Then ground-state/spin-flip SOC:
1753 : !<Psi_0|SOC|Psi_Jsf> = sum_k,sigma <phi^0_k,sigma|SOC|phi^Jsc_k,tau> sigma != tau
1754 :
1755 : !compute -sc_coeffs*SOC_x*gs_coeffs, imaginary contribution
1756 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_x, 0.0_dp, gsex_fm)
1757 :
1758 26 : DO isf = 1, nsf
1759 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isf - 1)*ndo_so + 1, &
1760 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1761 24 : diag(:) = get_diag(gsex_block)
1762 168 : soc = SUM(diag) !alpha and beta parts are simply added due to spin integration
1763 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsc + isf, soc)
1764 : END DO !isf
1765 :
1766 : !compute -sc_coeffs*SOC_y*gs_coeffs, real contribution
1767 2 : CALL parallel_gemm('T', 'N', nex*ndo_so, ndo_so, nao, -1.0_dp, sc_coeffs, vec_soc_y, 0.0_dp, gsex_fm)
1768 :
1769 26 : DO isf = 1, nsf
1770 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isf - 1)*ndo_so + 1, &
1771 24 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
1772 24 : diag(:) = get_diag(gsex_block)
1773 96 : soc = SUM(diag(1:ndo_mo)) ! alpha-beta
1774 96 : soc = soc - SUM(diag(ndo_mo + 1:ndo_so)) !beta-alpha
1775 26 : CALL cp_fm_set_element(real_fm, 1, 1 + nsc + isf, soc)
1776 : END DO !isf
1777 :
1778 : !ground-state cleanup
1779 2 : CALL cp_fm_release(gsex_fm)
1780 2 : CALL cp_fm_release(vec_soc_x)
1781 2 : CALL cp_fm_release(vec_soc_y)
1782 2 : CALL cp_fm_release(vec_soc_z)
1783 2 : CALL cp_fm_release(prod_work)
1784 2 : CALL cp_fm_struct_release(gsex_struct)
1785 2 : CALL cp_fm_struct_release(prod_struct)
1786 2 : CALL cp_fm_struct_release(vec_struct)
1787 2 : DEALLOCATE (gsex_block)
1788 :
1789 : ! Then spin-conserving/spin-conserving SOC
1790 : ! <Psi_Isc|SOC|Psi_Jsc> =
1791 : ! sum_k,sigma [<psi^Isc_k,sigma|SOC|psi^Jsc_k,sigma> + <psi^Isc_k,sigma|psi^Jsc_k,sigma> * gs_sum]
1792 : ! - sum_k,l,sigma <psi^0_k,sigma|SOC|psi^0_l,sigma> * <psi^Isc_l,sigma|psi^Jsc_k,sigma>
1793 :
1794 : !Same spin integration => only SOC_z matters, and the contribution is purely imaginary
1795 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1796 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1797 :
1798 : !the overlap as well
1799 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sc, 0.0_dp, dbcsr_work, &
1800 2 : filter_eps=eps_filter)
1801 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1802 :
1803 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, pref_diaga=1.0_dp, &
1804 : pref_diagb=-1.0_dp, pref_tracea=-1.0_dp, pref_traceb=1.0_dp, &
1805 2 : pref_diags=gs_sum, symmetric=.TRUE.)
1806 :
1807 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1808 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1809 2 : s_firstcol=1, t_firstrow=2, t_firstcol=2)
1810 :
1811 : ! Then spin-flip/spin-flip SOC
1812 : ! <Psi_Isf|SOC|Psi_Jsf> =
1813 : ! sum_k,sigma [<psi^Isf_k,tau|SOC|psi^Jsf_k,tau> + <psi^Isf_k,tau|psi^Jsf_k,tau> * gs_sum]
1814 : ! - sum_k,l,sigma <psi^0_k,sigma|SOC|psi^0_l,sigma> * <psi^Isf_l,tau|psi^Jsf_k,tau> , tau != sigma
1815 :
1816 : !Same spin integration => only SOC_z matters, and the contribution is purely imaginary
1817 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1818 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1819 :
1820 : !the overlap as well
1821 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
1822 2 : dbcsr_work, filter_eps=eps_filter)
1823 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1824 :
1825 : !note: the different prefactors are derived from the fact that because of spin-flip, we have
1826 : !alpha-gs and beta-lr interaction
1827 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, pref_diaga=-1.0_dp, &
1828 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=1.0_dp, &
1829 2 : pref_diags=gs_sum, symmetric=.TRUE.)
1830 :
1831 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1832 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1833 2 : s_firstcol=1, t_firstrow=1 + nsc + 1, t_firstcol=1 + nsc + 1)
1834 :
1835 : ! Finally the spin-conserving/spin-flip interaction
1836 : ! <Psi_Isc|SOC|Psi_Jsf> = sum_k,sigma <psi^Isc_k,sigma|SOC|psi^Isf_k,tau>
1837 : ! - sum_k,l,sigma <psi^0_k,tau|SOC|psi^0_l,sigma
1838 :
1839 2 : tas(1) = ndo_mo + 1; tbs(1) = 1
1840 2 : tas(2) = 1; tbs(2) = ndo_mo + 1
1841 :
1842 : !the overlap
1843 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
1844 2 : dbcsr_work, filter_eps=eps_filter)
1845 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
1846 :
1847 : !start with the imaginary contribution
1848 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1849 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1850 :
1851 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, pref_diaga=1.0_dp, &
1852 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
1853 2 : tracea_start=tas, traceb_start=tbs)
1854 :
1855 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1856 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1857 2 : s_firstcol=1, t_firstrow=2, t_firstcol=1 + nsc + 1)
1858 :
1859 : !follow up with the real contribution
1860 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
1861 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
1862 :
1863 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, pref_diaga=1.0_dp, &
1864 : pref_diagb=-1.0_dp, pref_tracea=1.0_dp, pref_traceb=-1.0_dp, &
1865 2 : tracea_start=tas, traceb_start=tbs)
1866 :
1867 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, work_fm)
1868 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=real_fm, nrow=nex, ncol=nex, s_firstrow=1, &
1869 2 : s_firstcol=1, t_firstrow=2, t_firstcol=1 + nsc + 1)
1870 :
1871 : ! Setting up the complex Hermitian perturbed matrix
1872 2 : CALL cp_cfm_create(pert_cfm, full_struct)
1873 2 : CALL cp_fm_to_cfm(real_fm, img_fm, pert_cfm)
1874 :
1875 2 : CALL cp_fm_release(real_fm)
1876 2 : CALL cp_fm_release(img_fm)
1877 :
1878 : ! Diagonalize the perturbed matrix
1879 6 : ALLOCATE (tmp_evals(ntot))
1880 2 : CALL cp_cfm_create(evecs_cfm, full_struct)
1881 2 : CALL cp_cfm_heevd(pert_cfm, evecs_cfm, tmp_evals)
1882 :
1883 : !shift the energies such that the GS has zero and store all that in soc_evals (\wo the GS)
1884 6 : ALLOCATE (donor_state%soc_evals(ntot - 1))
1885 50 : donor_state%soc_evals(:) = tmp_evals(2:ntot) - tmp_evals(1)
1886 :
1887 : ! The SOC dipole oscillator strengths
1888 : CALL compute_soc_dipole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
1889 2 : xas_tdp_control, qs_env, gs_coeffs=gs_coeffs)
1890 :
1891 : ! And quadrupole
1892 2 : IF (xas_tdp_control%do_quad) THEN
1893 : CALL compute_soc_quadrupole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
1894 0 : xas_tdp_control, qs_env, gs_coeffs=gs_coeffs)
1895 : END IF
1896 :
1897 : ! Clean-up
1898 2 : CALL cp_cfm_release(pert_cfm)
1899 2 : CALL cp_cfm_release(evecs_cfm)
1900 2 : CALL cp_fm_struct_release(full_struct)
1901 2 : IF (do_roks) THEN
1902 0 : CALL cp_fm_release(gs_coeffs)
1903 0 : DEALLOCATE (gs_coeffs)
1904 : END IF
1905 2 : CALL dbcsr_distribution_release(coeffs_dist)
1906 2 : CALL dbcsr_distribution_release(prod_dist)
1907 2 : CALL dbcsr_release(dbcsr_sc)
1908 2 : CALL dbcsr_release(dbcsr_sf)
1909 2 : CALL dbcsr_release(dbcsr_prod)
1910 2 : CALL dbcsr_release(dbcsr_ovlp)
1911 2 : CALL dbcsr_release(dbcsr_tmp)
1912 2 : CALL dbcsr_release(dbcsr_work)
1913 2 : CALL cp_fm_release(work_fm)
1914 2 : CALL cp_fm_struct_release(work_struct)
1915 2 : DEALLOCATE (coeffs_dist, prod_dist, col_dist, col_blk_size, row_dist_new)
1916 2 : DEALLOCATE (dbcsr_sc, dbcsr_sf, dbcsr_work, dbcsr_prod, dbcsr_ovlp, dbcsr_tmp)
1917 :
1918 2 : CALL timestop(handle)
1919 :
1920 30 : END SUBROUTINE include_os_soc
1921 :
1922 : ! **************************************************************************************************
1923 : !> \brief Includes the SOC effects on the precomputed restricted closed-shell singlet and triplet
1924 : !> excitations. This is a perturbative treatmnent
1925 : !> \param donor_state ...
1926 : !> \param xas_tdp_env ...
1927 : !> \param xas_tdp_control ...
1928 : !> \param qs_env ...
1929 : !> \note Using AMEWs, build an hermitian matrix with all excited states SOC coupling + the
1930 : !> excitation energies on the diagonal. Then diagonalize it to get the new excitation
1931 : !> energies and corresponding linear combinations of lr_coeffs.
1932 : !> The AMEWs are normalized
1933 : !> Only for spin-restricted calculations
1934 : !> The ms=-1,+1 triplets are not explicitely computed in the first place. Assume they have
1935 : !> the same energy as the ms=0 triplets and apply the spin raising and lowering operators
1936 : !> on the latter to get their AMEWs => this is the qusi-degenerate perturbation theory
1937 : !> approach by Neese (QDPT)
1938 : ! **************************************************************************************************
1939 2 : SUBROUTINE include_rcs_soc(donor_state, xas_tdp_env, xas_tdp_control, qs_env)
1940 :
1941 : TYPE(donor_state_type), POINTER :: donor_state
1942 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
1943 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
1944 : TYPE(qs_environment_type), POINTER :: qs_env
1945 :
1946 : CHARACTER(len=*), PARAMETER :: routineN = 'include_rcs_soc'
1947 :
1948 : INTEGER :: group, handle, iex, isg, itp, nao, &
1949 : ndo_mo, nex, npcols, nprows, nsg, &
1950 : ntot, ntp
1951 2 : INTEGER, DIMENSION(:), POINTER :: col_blk_size, col_dist, row_blk_size, &
1952 2 : row_dist, row_dist_new
1953 2 : INTEGER, DIMENSION(:, :), POINTER :: pgrid
1954 : REAL(dp) :: eps_filter, soc_gst, sqrt2
1955 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, tmp_evals
1956 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_soc_x, domo_soc_y, domo_soc_z, &
1957 2 : gstp_block
1958 2 : REAL(dp), DIMENSION(:), POINTER :: sg_evals, tp_evals
1959 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
1960 : TYPE(cp_cfm_type) :: evecs_cfm, hami_cfm
1961 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gstp_struct, prod_struct, &
1962 : vec_struct, work_struct
1963 : TYPE(cp_fm_type) :: gstp_fm, img_fm, prod_fm, real_fm, &
1964 : tmp_fm, vec_soc_x, vec_soc_y, &
1965 : vec_soc_z, work_fm
1966 : TYPE(cp_fm_type), POINTER :: gs_coeffs, sg_coeffs, tp_coeffs
1967 : TYPE(dbcsr_distribution_type), POINTER :: coeffs_dist, dbcsr_dist, prod_dist
1968 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
1969 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
1970 : TYPE(dbcsr_type), POINTER :: dbcsr_ovlp, dbcsr_prod, dbcsr_sg, &
1971 : dbcsr_tmp, dbcsr_tp, dbcsr_work, &
1972 : orb_soc_x, orb_soc_y, orb_soc_z
1973 : TYPE(mp_para_env_type), POINTER :: para_env
1974 :
1975 2 : NULLIFY (sg_coeffs, tp_coeffs, gs_coeffs, sg_evals, tp_evals, full_struct)
1976 2 : NULLIFY (para_env, blacs_env, prod_struct, vec_struct, orb_soc_y, orb_soc_z)
1977 2 : NULLIFY (matrix_s, orb_soc_x)
1978 2 : NULLIFY (work_struct, dbcsr_dist, coeffs_dist, prod_dist, pgrid)
1979 2 : NULLIFY (col_dist, row_dist, col_blk_size, row_blk_size, row_dist_new, gstp_struct)
1980 2 : NULLIFY (dbcsr_tp, dbcsr_sg, dbcsr_prod, dbcsr_work, dbcsr_ovlp, dbcsr_tmp)
1981 :
1982 2 : CALL timeset(routineN, handle)
1983 :
1984 : ! Initialization
1985 2 : CPASSERT(ASSOCIATED(xas_tdp_control))
1986 2 : gs_coeffs => donor_state%gs_coeffs
1987 2 : sg_coeffs => donor_state%sg_coeffs
1988 2 : tp_coeffs => donor_state%tp_coeffs
1989 2 : sg_evals => donor_state%sg_evals
1990 2 : tp_evals => donor_state%tp_evals
1991 2 : nsg = SIZE(sg_evals)
1992 2 : ntp = SIZE(tp_evals)
1993 2 : ntot = 1 + nsg + 3*ntp
1994 2 : ndo_mo = donor_state%ndo_mo
1995 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s)
1996 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
1997 2 : orb_soc_x => xas_tdp_env%orb_soc(1)%matrix
1998 2 : orb_soc_y => xas_tdp_env%orb_soc(2)%matrix
1999 2 : orb_soc_z => xas_tdp_env%orb_soc(3)%matrix
2000 : !by construction nsg == ntp, keep those separate for more code clarity though
2001 2 : CPASSERT(nsg == ntp)
2002 2 : nex = nsg
2003 2 : eps_filter = xas_tdp_control%eps_filter
2004 :
2005 : ! Creating the real part and imaginary part of the final SOC fm
2006 2 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2007 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2008 2 : nrow_global=ntot, ncol_global=ntot)
2009 2 : CALL cp_fm_create(real_fm, full_struct)
2010 2 : CALL cp_fm_create(img_fm, full_struct)
2011 :
2012 : ! Put the excitation energies on the diagonal of the real matrix
2013 26 : DO isg = 1, nsg
2014 26 : CALL cp_fm_set_element(real_fm, 1 + isg, 1 + isg, sg_evals(isg))
2015 : END DO
2016 26 : DO itp = 1, ntp
2017 : ! first T^-1, then T^0, then T^+1
2018 24 : CALL cp_fm_set_element(real_fm, 1 + itp + nsg, 1 + itp + nsg, tp_evals(itp))
2019 24 : CALL cp_fm_set_element(real_fm, 1 + itp + ntp + nsg, 1 + itp + ntp + nsg, tp_evals(itp))
2020 26 : CALL cp_fm_set_element(real_fm, 1 + itp + 2*ntp + nsg, 1 + itp + 2*ntp + nsg, tp_evals(itp))
2021 : END DO
2022 :
2023 : ! Create the dbcsr machinery (for fast MM, the core of this routine)
2024 2 : CALL get_qs_env(qs_env, dbcsr_dist=dbcsr_dist)
2025 : CALL dbcsr_distribution_get(dbcsr_dist, group=group, row_dist=row_dist, pgrid=pgrid, &
2026 2 : npcols=npcols, nprows=nprows)
2027 8 : ALLOCATE (col_dist(nex), row_dist_new(nex))
2028 26 : DO iex = 1, nex
2029 24 : col_dist(iex) = MODULO(npcols - iex, npcols)
2030 26 : row_dist_new(iex) = MODULO(nprows - iex, nprows)
2031 : END DO
2032 2 : ALLOCATE (coeffs_dist, prod_dist)
2033 : CALL dbcsr_distribution_new(coeffs_dist, group=group, pgrid=pgrid, row_dist=row_dist, &
2034 2 : col_dist=col_dist)
2035 : CALL dbcsr_distribution_new(prod_dist, group=group, pgrid=pgrid, row_dist=row_dist_new, &
2036 2 : col_dist=col_dist)
2037 :
2038 : !Create the matrices
2039 4 : ALLOCATE (col_blk_size(nex))
2040 26 : col_blk_size = ndo_mo
2041 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, row_blk_size=row_blk_size)
2042 :
2043 2 : ALLOCATE (dbcsr_sg, dbcsr_tp, dbcsr_work, dbcsr_ovlp, dbcsr_tmp, dbcsr_prod)
2044 : CALL dbcsr_create(matrix=dbcsr_sg, name="SINGLETS", matrix_type=dbcsr_type_no_symmetry, &
2045 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2046 : CALL dbcsr_create(matrix=dbcsr_tp, name="TRIPLETS", matrix_type=dbcsr_type_no_symmetry, &
2047 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2048 : CALL dbcsr_create(matrix=dbcsr_work, name="WORK", matrix_type=dbcsr_type_no_symmetry, &
2049 2 : dist=coeffs_dist, row_blk_size=row_blk_size, col_blk_size=col_blk_size)
2050 : CALL dbcsr_create(matrix=dbcsr_prod, name="PROD", matrix_type=dbcsr_type_no_symmetry, &
2051 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2052 : CALL dbcsr_create(matrix=dbcsr_ovlp, name="OVLP", matrix_type=dbcsr_type_no_symmetry, &
2053 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2054 :
2055 26 : col_blk_size = 1
2056 : CALL dbcsr_create(matrix=dbcsr_tmp, name="TMP", matrix_type=dbcsr_type_no_symmetry, &
2057 2 : dist=prod_dist, row_blk_size=col_blk_size, col_blk_size=col_blk_size)
2058 2 : CALL dbcsr_reserve_all_blocks(dbcsr_tmp)
2059 :
2060 2 : dbcsr_soc_package%dbcsr_sg => dbcsr_sg
2061 2 : dbcsr_soc_package%dbcsr_tp => dbcsr_tp
2062 2 : dbcsr_soc_package%dbcsr_work => dbcsr_work
2063 2 : dbcsr_soc_package%dbcsr_ovlp => dbcsr_ovlp
2064 2 : dbcsr_soc_package%dbcsr_prod => dbcsr_prod
2065 2 : dbcsr_soc_package%dbcsr_tmp => dbcsr_tmp
2066 :
2067 : !Filling the coeffs matrices by copying from the stored fms
2068 2 : CALL copy_fm_to_dbcsr(sg_coeffs, dbcsr_sg)
2069 2 : CALL copy_fm_to_dbcsr(tp_coeffs, dbcsr_tp)
2070 :
2071 : ! Create the work and helper fms
2072 2 : CALL cp_fm_get_info(gs_coeffs, matrix_struct=vec_struct)
2073 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2074 2 : nrow_global=ndo_mo, ncol_global=ndo_mo)
2075 2 : CALL cp_fm_create(prod_fm, prod_struct)
2076 2 : CALL cp_fm_create(vec_soc_x, vec_struct)
2077 2 : CALL cp_fm_create(vec_soc_y, vec_struct)
2078 2 : CALL cp_fm_create(vec_soc_z, vec_struct)
2079 : CALL cp_fm_struct_create(work_struct, context=blacs_env, para_env=para_env, &
2080 2 : nrow_global=nex, ncol_global=nex)
2081 2 : CALL cp_fm_create(work_fm, work_struct)
2082 2 : CALL cp_fm_create(tmp_fm, work_struct)
2083 6 : ALLOCATE (diag(ndo_mo))
2084 :
2085 : ! Precompute everything we can before looping over excited states
2086 2 : sqrt2 = SQRT(2.0_dp)
2087 :
2088 : ! The subset of the donor MOs matrix elements: <phi_I^0|Hsoc|phi_J^0> (kept as global array, small)
2089 16 : ALLOCATE (domo_soc_x(ndo_mo, ndo_mo), domo_soc_y(ndo_mo, ndo_mo), domo_soc_z(ndo_mo, ndo_mo))
2090 :
2091 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_x, gs_coeffs, vec_soc_x, ncol=ndo_mo)
2092 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_x, 0.0_dp, prod_fm)
2093 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_x)
2094 :
2095 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_y, gs_coeffs, vec_soc_y, ncol=ndo_mo)
2096 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_y, 0.0_dp, prod_fm)
2097 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_y)
2098 :
2099 2 : CALL cp_dbcsr_sm_fm_multiply(orb_soc_z, gs_coeffs, vec_soc_z, ncol=ndo_mo)
2100 2 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_soc_z, 0.0_dp, prod_fm)
2101 2 : CALL cp_fm_get_submatrix(prod_fm, domo_soc_z)
2102 :
2103 : ! Only have SOC between singlet-triplet triplet-triplet and ground_state-triplet, the resulting
2104 : ! matrix is Hermitian i.e. the real part is symmetric and the imaginary part is anti-symmetric.
2105 : ! Can only fill upper half
2106 :
2107 : !Start with the ground state/triplet SOC, SOC*gs_coeffs already computed above
2108 : !note: we are computing <0|H|T>, but have SOC*gs_coeffs instead of gs_coeffs*SOC in store. Since
2109 : ! the SOC Hamiltonian is anti-symmetric, a - signs pops up in the gemms below
2110 :
2111 : CALL cp_fm_struct_create(gstp_struct, context=blacs_env, para_env=para_env, &
2112 2 : nrow_global=ntp*ndo_mo, ncol_global=ndo_mo)
2113 2 : CALL cp_fm_create(gstp_fm, gstp_struct)
2114 6 : ALLOCATE (gstp_block(ndo_mo, ndo_mo))
2115 :
2116 : !gs-triplet with Ms=+-1, imaginary part
2117 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_x, 0.0_dp, gstp_fm)
2118 :
2119 26 : DO itp = 1, ntp
2120 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2121 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2122 24 : diag(:) = get_diag(gstp_block)
2123 96 : soc_gst = SUM(diag)
2124 24 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + itp, -1.0_dp*soc_gst) ! <0|H_x|T^-1>
2125 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + 2*ntp + itp, soc_gst) ! <0|H_x|T^+1>
2126 : END DO
2127 :
2128 : !gs-triplet with Ms=+-1, real part
2129 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_y, 0.0_dp, gstp_fm)
2130 :
2131 26 : DO itp = 1, ntp
2132 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2133 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2134 24 : diag(:) = get_diag(gstp_block)
2135 96 : soc_gst = SUM(diag)
2136 24 : CALL cp_fm_set_element(real_fm, 1, 1 + nsg + itp, -1.0_dp*soc_gst) ! <0|H_y|T^-1>
2137 26 : CALL cp_fm_set_element(real_fm, 1, 1 + nsg + 2*ntp + itp, -1.0_dp*soc_gst) ! <0|H_y|T^+1>
2138 : END DO
2139 :
2140 : !gs-triplet with Ms=0, purely imaginary
2141 2 : CALL parallel_gemm('T', 'N', ndo_mo*ntp, ndo_mo, nao, -1.0_dp, tp_coeffs, vec_soc_z, 0.0_dp, gstp_fm)
2142 :
2143 26 : DO itp = 1, ntp
2144 : CALL cp_fm_get_submatrix(fm=gstp_fm, target_m=gstp_block, start_row=(itp - 1)*ndo_mo + 1, &
2145 24 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2146 24 : diag(:) = get_diag(gstp_block)
2147 96 : soc_gst = sqrt2*SUM(diag)
2148 26 : CALL cp_fm_set_element(img_fm, 1, 1 + nsg + ntp + itp, soc_gst)
2149 : END DO
2150 :
2151 : !gs clean-up
2152 2 : CALL cp_fm_release(prod_fm)
2153 2 : CALL cp_fm_release(vec_soc_x)
2154 2 : CALL cp_fm_release(vec_soc_y)
2155 2 : CALL cp_fm_release(vec_soc_z)
2156 2 : CALL cp_fm_release(gstp_fm)
2157 2 : CALL cp_fm_struct_release(gstp_struct)
2158 2 : CALL cp_fm_struct_release(prod_struct)
2159 2 : DEALLOCATE (gstp_block)
2160 :
2161 : !Now do the singlet-triplet SOC
2162 : !start by computing the singlet-triplet overlap
2163 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2164 2 : dbcsr_work, filter_eps=eps_filter)
2165 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2166 :
2167 : !singlet-triplet with Ms=+-1, imaginary part
2168 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2169 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2170 :
2171 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, &
2172 2 : pref_trace=-1.0_dp, pref_overall=-0.5_dp*sqrt2)
2173 :
2174 : !<S|H_x|T^-1>
2175 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2176 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2177 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2178 2 : t_firstcol=1 + nsg + 1)
2179 :
2180 : !<S|H_x|T^+1> takes a minus sign
2181 2 : CALL cp_fm_scale(-1.0_dp, tmp_fm)
2182 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2183 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2184 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2185 :
2186 : !singlet-triplet with Ms=+-1, real part
2187 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2188 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2189 :
2190 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, &
2191 2 : pref_trace=-1.0_dp, pref_overall=-0.5_dp*sqrt2)
2192 :
2193 : !<S|H_y|T^-1>
2194 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2195 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2196 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2197 2 : t_firstcol=1 + nsg + 1)
2198 :
2199 : !<S|H_y|T^+1>
2200 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2201 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2202 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2203 :
2204 : !singlet-triplet with Ms=0, purely imaginary
2205 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2206 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2207 :
2208 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, &
2209 2 : pref_trace=-1.0_dp, pref_overall=1.0_dp)
2210 :
2211 : !<S|H_z|T^0>
2212 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2213 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2214 : s_firstrow=1, s_firstcol=1, t_firstrow=2, &
2215 2 : t_firstcol=1 + nsg + ntp + 1)
2216 :
2217 : !Now the triplet-triplet SOC
2218 : !start by computing the overlap
2219 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2220 2 : dbcsr_work, filter_eps=eps_filter)
2221 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2222 :
2223 : !Ms=0 to Ms=+-1 SOC, imaginary part
2224 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_x, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2225 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2226 :
2227 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_x, &
2228 2 : pref_trace=1.0_dp, pref_overall=-0.5_dp*sqrt2)
2229 :
2230 : !<T^0|H_x|T^+1>
2231 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2232 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2233 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2234 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2235 :
2236 : !<T^-1|H_x|T^0>, takes a minus sign and a transpose (because computed <T^0|H_x|T^-1>)
2237 2 : CALL cp_fm_transpose(tmp_fm, work_fm)
2238 2 : CALL cp_fm_scale(-1.0_dp, work_fm)
2239 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2240 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2241 2 : t_firstcol=1 + nsg + ntp + 1)
2242 :
2243 : !Ms=0 to Ms=+-1 SOC, real part
2244 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_y, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2245 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2246 :
2247 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_y, &
2248 2 : pref_trace=1.0_dp, pref_overall=0.5_dp*sqrt2)
2249 :
2250 : !<T^0|H_y|T^+1>
2251 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2252 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2253 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2254 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2255 :
2256 : !<T^-1|H_y|T^0>, takes a minus sign and a transpose
2257 2 : CALL cp_fm_transpose(tmp_fm, work_fm)
2258 2 : CALL cp_fm_scale(-1.0_dp, work_fm)
2259 : CALL cp_fm_to_fm_submat(msource=work_fm, mtarget=real_fm, nrow=nex, ncol=nex, &
2260 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2261 2 : t_firstcol=1 + nsg + ntp + 1)
2262 :
2263 : !Ms=1 to Ms=1 and Ms=-1 to Ms=-1 SOC, purely imaginary
2264 2 : CALL dbcsr_multiply('N', 'N', 1.0_dp, orb_soc_z, dbcsr_tp, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2265 2 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2266 :
2267 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_soc_z, &
2268 2 : pref_trace=1.0_dp, pref_overall=1.0_dp)
2269 :
2270 : !<T^+1|H_z|T^+1>
2271 2 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2272 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2273 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 2*ntp + 1, &
2274 2 : t_firstcol=1 + nsg + 2*ntp + 1)
2275 :
2276 : !<T^-1|H_z|T^-1>, takes a minus sign
2277 2 : CALL cp_fm_scale(-1.0_dp, tmp_fm)
2278 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=img_fm, nrow=nex, ncol=nex, &
2279 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, &
2280 2 : t_firstcol=1 + nsg + 1)
2281 :
2282 : ! Intermediate clean-up
2283 2 : CALL cp_fm_struct_release(work_struct)
2284 2 : CALL cp_fm_release(work_fm)
2285 2 : CALL cp_fm_release(tmp_fm)
2286 2 : DEALLOCATE (diag, domo_soc_x, domo_soc_y, domo_soc_z)
2287 :
2288 : ! Set-up the complex hermitian perturbation matrix
2289 2 : CALL cp_cfm_create(hami_cfm, full_struct)
2290 2 : CALL cp_fm_to_cfm(real_fm, img_fm, hami_cfm)
2291 :
2292 2 : CALL cp_fm_release(real_fm)
2293 2 : CALL cp_fm_release(img_fm)
2294 :
2295 : ! Diagonalize the Hamiltonian
2296 6 : ALLOCATE (tmp_evals(ntot))
2297 2 : CALL cp_cfm_create(evecs_cfm, full_struct)
2298 2 : CALL cp_cfm_heevd(hami_cfm, evecs_cfm, tmp_evals)
2299 :
2300 : ! Adjust the energies so the GS has zero, and store in the donor_state (without the GS)
2301 6 : ALLOCATE (donor_state%soc_evals(ntot - 1))
2302 98 : donor_state%soc_evals(:) = tmp_evals(2:ntot) - tmp_evals(1)
2303 :
2304 : ! Compute the dipole oscillator strengths
2305 : CALL compute_soc_dipole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2306 2 : xas_tdp_control, qs_env)
2307 :
2308 : ! And the quadrupole (if needed)
2309 2 : IF (xas_tdp_control%do_quad) THEN
2310 : CALL compute_soc_quadrupole_fosc(evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2311 0 : xas_tdp_control, qs_env)
2312 : END IF
2313 :
2314 : ! Clean-up
2315 2 : CALL cp_fm_struct_release(full_struct)
2316 2 : CALL cp_cfm_release(hami_cfm)
2317 2 : CALL cp_cfm_release(evecs_cfm)
2318 2 : CALL dbcsr_distribution_release(coeffs_dist)
2319 2 : CALL dbcsr_distribution_release(prod_dist)
2320 2 : CALL dbcsr_release(dbcsr_sg)
2321 2 : CALL dbcsr_release(dbcsr_tp)
2322 2 : CALL dbcsr_release(dbcsr_prod)
2323 2 : CALL dbcsr_release(dbcsr_ovlp)
2324 2 : CALL dbcsr_release(dbcsr_tmp)
2325 2 : CALL dbcsr_release(dbcsr_work)
2326 2 : DEALLOCATE (coeffs_dist, prod_dist, col_dist, col_blk_size, row_dist_new)
2327 2 : DEALLOCATE (dbcsr_sg, dbcsr_tp, dbcsr_work, dbcsr_prod, dbcsr_ovlp, dbcsr_tmp)
2328 :
2329 2 : CALL timestop(handle)
2330 :
2331 22 : END SUBROUTINE include_rcs_soc
2332 :
2333 : ! **************************************************************************************************
2334 : !> \brief Computes the matrix elements of a one-body operator (given wrt AOs) in the basis of the
2335 : !> excited state AMEWs with ground state, for the open-shell case
2336 : !> \param amew_op the operator in the basis of the AMEWs (array because could have x,y,z components)
2337 : !> \param ao_op the operator in the basis of the atomic orbitals
2338 : !> \param gs_coeffs the coefficient of the GS donor MOs. Ecplicitely passed because of special
2339 : !> format in the ROKS case (see include_os_soc routine)
2340 : !> \param dbcsr_soc_package inhertited from the main SOC routine
2341 : !> \param donor_state ...
2342 : !> \param eps_filter ...
2343 : !> \param qs_env ...
2344 : !> \note The ordering of the AMEWs is consistent with SOC and is gs, sc, sf
2345 : !> We assume that the operator is spin-independent => only <0|0>, <0|sc>, <sc|sc> and <sf|sf>
2346 : !> yield non-zero matrix elements
2347 : !> Only for open-shell calculations
2348 : ! **************************************************************************************************
2349 2 : SUBROUTINE get_os_amew_op(amew_op, ao_op, gs_coeffs, dbcsr_soc_package, donor_state, &
2350 : eps_filter, qs_env)
2351 :
2352 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
2353 : INTENT(OUT) :: amew_op
2354 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ao_op
2355 : TYPE(cp_fm_type), INTENT(IN) :: gs_coeffs
2356 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2357 : TYPE(donor_state_type), POINTER :: donor_state
2358 : REAL(dp), INTENT(IN) :: eps_filter
2359 : TYPE(qs_environment_type), POINTER :: qs_env
2360 :
2361 : INTEGER :: dim_op, homo, i, isc, nao, ndo_mo, &
2362 : ndo_so, nex, nsc, nsf, ntot
2363 : REAL(dp) :: op
2364 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, gsgs_op
2365 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_op, gsex_block, tmp
2366 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2367 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsex_struct, prod_struct, &
2368 : tmp_struct, vec_struct
2369 : TYPE(cp_fm_type) :: gsex_fm, prod_work, tmp_fm, vec_work, &
2370 : work_fm
2371 : TYPE(cp_fm_type), POINTER :: mo_coeff, sc_coeffs, sf_coeffs
2372 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
2373 : TYPE(dbcsr_type), POINTER :: ao_op_i, dbcsr_ovlp, dbcsr_prod, &
2374 : dbcsr_sc, dbcsr_sf, dbcsr_tmp, &
2375 : dbcsr_work
2376 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
2377 : TYPE(mp_para_env_type), POINTER :: para_env
2378 :
2379 2 : NULLIFY (matrix_s, para_env, blacs_env, full_struct, vec_struct, prod_struct, mos)
2380 2 : NULLIFY (mo_coeff, ao_op_i, tmp_struct)
2381 2 : NULLIFY (dbcsr_sc, dbcsr_sf, dbcsr_ovlp, dbcsr_work, dbcsr_tmp, dbcsr_prod)
2382 :
2383 : ! Iinitialization
2384 2 : dim_op = SIZE(ao_op)
2385 2 : sc_coeffs => donor_state%sc_coeffs
2386 2 : sf_coeffs => donor_state%sf_coeffs
2387 2 : nsc = SIZE(donor_state%sc_evals)
2388 2 : nsf = SIZE(donor_state%sf_evals)
2389 2 : nex = nsc
2390 2 : ntot = 1 + nsc + nsf
2391 2 : ndo_mo = donor_state%ndo_mo
2392 2 : ndo_so = 2*donor_state%ndo_mo !open-shell => nspins = 2
2393 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env, blacs_env=blacs_env, mos=mos)
2394 2 : CALL dbcsr_get_info(matrix_s(1)%matrix, nfullrows_total=nao)
2395 :
2396 2 : dbcsr_sc => dbcsr_soc_package%dbcsr_sc
2397 2 : dbcsr_sf => dbcsr_soc_package%dbcsr_sf
2398 2 : dbcsr_work => dbcsr_soc_package%dbcsr_work
2399 2 : dbcsr_tmp => dbcsr_soc_package%dbcsr_tmp
2400 2 : dbcsr_prod => dbcsr_soc_package%dbcsr_prod
2401 2 : dbcsr_ovlp => dbcsr_soc_package%dbcsr_ovlp
2402 :
2403 : ! Create the amew_op matrix set
2404 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2405 2 : nrow_global=ntot, ncol_global=ntot)
2406 12 : ALLOCATE (amew_op(dim_op))
2407 8 : DO i = 1, dim_op
2408 8 : CALL cp_fm_create(amew_op(i), full_struct)
2409 : END DO
2410 :
2411 : ! Before looping, need to evaluate sum_j,sigma <phi^0_j,sgima|op|phi^0_j,sigma>, for each dimension
2412 : ! of the operator
2413 6 : ALLOCATE (gsgs_op(dim_op))
2414 :
2415 : !start with the alpha MOs
2416 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, homo=homo)
2417 6 : ALLOCATE (diag(homo))
2418 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
2419 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2420 2 : nrow_global=homo, ncol_global=homo)
2421 2 : CALL cp_fm_create(vec_work, vec_struct)
2422 2 : CALL cp_fm_create(prod_work, prod_struct)
2423 :
2424 8 : DO i = 1, dim_op
2425 :
2426 6 : ao_op_i => ao_op(i)%matrix
2427 :
2428 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, vec_work, ncol=homo)
2429 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
2430 6 : CALL cp_fm_get_diag(prod_work, diag)
2431 62 : gsgs_op(i) = SUM(diag)
2432 :
2433 : END DO !i
2434 :
2435 2 : CALL cp_fm_release(vec_work)
2436 2 : CALL cp_fm_release(prod_work)
2437 2 : CALL cp_fm_struct_release(prod_struct)
2438 2 : DEALLOCATE (diag)
2439 2 : NULLIFY (vec_struct)
2440 :
2441 : !then beta orbitals
2442 2 : CALL get_mo_set(mos(2), mo_coeff=mo_coeff, homo=homo)
2443 6 : ALLOCATE (diag(homo))
2444 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=vec_struct)
2445 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2446 2 : nrow_global=homo, ncol_global=homo)
2447 2 : CALL cp_fm_create(vec_work, vec_struct)
2448 2 : CALL cp_fm_create(prod_work, prod_struct)
2449 :
2450 8 : DO i = 1, dim_op
2451 :
2452 6 : ao_op_i => ao_op(i)%matrix
2453 :
2454 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, vec_work, ncol=homo)
2455 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, vec_work, 0.0_dp, prod_work)
2456 6 : CALL cp_fm_get_diag(prod_work, diag)
2457 62 : gsgs_op(i) = gsgs_op(i) + SUM(diag)
2458 :
2459 : END DO !i
2460 :
2461 2 : CALL cp_fm_release(vec_work)
2462 2 : CALL cp_fm_release(prod_work)
2463 2 : CALL cp_fm_struct_release(prod_struct)
2464 2 : DEALLOCATE (diag)
2465 2 : NULLIFY (vec_struct)
2466 :
2467 : ! Before looping over excited AMEWs, define some work matrices and structures
2468 : CALL cp_fm_struct_create(vec_struct, context=blacs_env, para_env=para_env, &
2469 2 : nrow_global=nao, ncol_global=ndo_so)
2470 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2471 2 : nrow_global=ndo_so, ncol_global=ndo_so)
2472 : CALL cp_fm_struct_create(gsex_struct, context=blacs_env, para_env=para_env, &
2473 2 : nrow_global=ndo_so*nex, ncol_global=ndo_so)
2474 : CALL cp_fm_struct_create(tmp_struct, context=blacs_env, para_env=para_env, &
2475 2 : nrow_global=nex, ncol_global=nex)
2476 2 : CALL cp_fm_create(vec_work, vec_struct) !for op*|phi>
2477 2 : CALL cp_fm_create(prod_work, prod_struct) !for any <phi|op|phi>
2478 2 : CALL cp_fm_create(work_fm, full_struct)
2479 2 : CALL cp_fm_create(gsex_fm, gsex_struct)
2480 2 : CALL cp_fm_create(tmp_fm, tmp_struct)
2481 6 : ALLOCATE (diag(ndo_so))
2482 8 : ALLOCATE (domo_op(ndo_so, ndo_so))
2483 6 : ALLOCATE (tmp(ndo_so, ndo_so))
2484 6 : ALLOCATE (gsex_block(ndo_so, ndo_so))
2485 :
2486 : ! Loop over the dimensions of the operator
2487 8 : DO i = 1, dim_op
2488 :
2489 6 : ao_op_i => ao_op(i)%matrix
2490 :
2491 : !put the gs-gs contribution
2492 6 : CALL cp_fm_set_element(amew_op(i), 1, 1, gsgs_op(i))
2493 :
2494 : ! Precompute what we can before looping over excited states
2495 : ! Need the operator in the donor MOs basis <phi^0_I,sigma|op_i|phi^0_J,tau>
2496 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, gs_coeffs, vec_work, ncol=ndo_so)
2497 6 : CALL parallel_gemm('T', 'N', ndo_so, ndo_so, nao, 1.0_dp, gs_coeffs, vec_work, 0.0_dp, prod_work)
2498 6 : CALL cp_fm_get_submatrix(prod_work, domo_op)
2499 :
2500 : ! Do the ground-state/spin-conserving operator
2501 6 : CALL parallel_gemm('T', 'N', ndo_so*nsc, ndo_so, nao, 1.0_dp, sc_coeffs, vec_work, 0.0_dp, gsex_fm)
2502 78 : DO isc = 1, nsc
2503 : CALL cp_fm_get_submatrix(fm=gsex_fm, target_m=gsex_block, start_row=(isc - 1)*ndo_so + 1, &
2504 72 : start_col=1, n_rows=ndo_so, n_cols=ndo_so)
2505 72 : diag(:) = get_diag(gsex_block)
2506 504 : op = SUM(diag)
2507 78 : CALL cp_fm_set_element(amew_op(i), 1, 1 + isc, op)
2508 : END DO !isc
2509 :
2510 : ! The spin-conserving/spin-conserving operator
2511 : !overlap
2512 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sc, 0.0_dp, &
2513 6 : dbcsr_work, filter_eps=eps_filter)
2514 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2515 :
2516 : !operator in SC LR-orbital basis
2517 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sc, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2518 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sc, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2519 :
2520 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_diaga=1.0_dp, &
2521 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
2522 6 : pref_diags=gsgs_op(i), symmetric=.TRUE.)
2523 :
2524 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2525 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2526 6 : s_firstrow=1, s_firstcol=1, t_firstrow=2, t_firstcol=2)
2527 :
2528 : ! The spin-flip/spin-flip operator
2529 : !overlap
2530 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sf, 0.0_dp, &
2531 6 : dbcsr_work, filter_eps=eps_filter)
2532 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2533 :
2534 : !operator in SF LR-orbital basis
2535 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sf, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2536 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sf, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2537 :
2538 : !need to reorganize the domo_op array by swapping the alpha-alpha and the beta-beta quarter
2539 78 : tmp(1:ndo_mo, 1:ndo_mo) = domo_op(ndo_mo + 1:ndo_so, ndo_mo + 1:ndo_so)
2540 78 : tmp(ndo_mo + 1:ndo_so, ndo_mo + 1:ndo_so) = domo_op(1:ndo_mo, 1:ndo_mo)
2541 :
2542 : CALL os_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, tmp, pref_diaga=1.0_dp, &
2543 : pref_diagb=1.0_dp, pref_tracea=-1.0_dp, pref_traceb=-1.0_dp, &
2544 6 : pref_diags=gsgs_op(i), symmetric=.TRUE.)
2545 :
2546 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2547 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2548 6 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsc + 1, t_firstcol=1 + nsc + 1)
2549 :
2550 : !Symmetry => only upper diag explicitly built
2551 8 : CALL cp_fm_uplo_to_full(amew_op(i), work_fm)
2552 :
2553 : END DO !i
2554 :
2555 : ! Clean-up
2556 2 : CALL cp_fm_struct_release(full_struct)
2557 2 : CALL cp_fm_struct_release(prod_struct)
2558 2 : CALL cp_fm_struct_release(vec_struct)
2559 2 : CALL cp_fm_struct_release(tmp_struct)
2560 2 : CALL cp_fm_struct_release(gsex_struct)
2561 2 : CALL cp_fm_release(work_fm)
2562 2 : CALL cp_fm_release(tmp_fm)
2563 2 : CALL cp_fm_release(vec_work)
2564 2 : CALL cp_fm_release(prod_work)
2565 2 : CALL cp_fm_release(gsex_fm)
2566 :
2567 14 : END SUBROUTINE get_os_amew_op
2568 :
2569 : ! **************************************************************************************************
2570 : !> \brief Computes the matrix elements of a one-body operator (given wrt AOs) in the basis of the
2571 : !> excited state AMEWs with ground state, singlet and triplet with Ms = -1,0,+1
2572 : !> \param amew_op the operator in the basis of the AMEWs (array because could have x,y,z components)
2573 : !> \param ao_op the operator in the basis of the atomic orbitals
2574 : !> \param dbcsr_soc_package inherited from the main SOC routine
2575 : !> \param donor_state ...
2576 : !> \param eps_filter for dbcsr multiplication
2577 : !> \param qs_env ...
2578 : !> \note The ordering of the AMEWs is consistent with SOC and is gs, sg, tp(-1), tp(0). tp(+1)
2579 : !> We assume that the operator is spin-independent => only <0|0>, <0|S>, <S|S> and <T|T>
2580 : !> yield non-zero matrix elements
2581 : !> Only for spin-restricted calculations
2582 : ! **************************************************************************************************
2583 2 : SUBROUTINE get_rcs_amew_op(amew_op, ao_op, dbcsr_soc_package, donor_state, eps_filter, qs_env)
2584 :
2585 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:), &
2586 : INTENT(OUT) :: amew_op
2587 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: ao_op
2588 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2589 : TYPE(donor_state_type), POINTER :: donor_state
2590 : REAL(dp), INTENT(IN) :: eps_filter
2591 : TYPE(qs_environment_type), POINTER :: qs_env
2592 :
2593 : INTEGER :: dim_op, homo, i, isg, nao, ndo_mo, nex, &
2594 : nsg, ntot, ntp
2595 : REAL(dp) :: op, sqrt2
2596 2 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag, gs_diag, gsgs_op
2597 2 : REAL(dp), ALLOCATABLE, DIMENSION(:, :) :: domo_op, sggs_block
2598 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2599 : TYPE(cp_fm_struct_type), POINTER :: full_struct, gsgs_struct, prod_struct, &
2600 : sggs_struct, std_struct, tmp_struct, &
2601 : vec_struct
2602 : TYPE(cp_fm_type) :: gs_fm, prod_fm, sggs_fm, tmp_fm, vec_op, &
2603 : work_fm
2604 : TYPE(cp_fm_type), POINTER :: gs_coeffs, mo_coeff, sg_coeffs
2605 2 : TYPE(dbcsr_p_type), DIMENSION(:), POINTER :: matrix_s
2606 : TYPE(dbcsr_type), POINTER :: ao_op_i, dbcsr_ovlp, dbcsr_prod, &
2607 : dbcsr_sg, dbcsr_tmp, dbcsr_tp, &
2608 : dbcsr_work
2609 2 : TYPE(mo_set_type), DIMENSION(:), POINTER :: mos
2610 : TYPE(mp_para_env_type), POINTER :: para_env
2611 :
2612 2 : NULLIFY (gs_coeffs, sg_coeffs, matrix_s, full_struct, prod_struct, vec_struct, blacs_env)
2613 2 : NULLIFY (para_env, mo_coeff, mos, gsgs_struct, std_struct, tmp_struct, sggs_struct)
2614 2 : NULLIFY (ao_op_i, dbcsr_tp, dbcsr_sg, dbcsr_ovlp, dbcsr_work, dbcsr_tmp, dbcsr_prod)
2615 :
2616 : ! Initialization
2617 2 : gs_coeffs => donor_state%gs_coeffs
2618 2 : sg_coeffs => donor_state%sg_coeffs
2619 2 : nsg = SIZE(donor_state%sg_evals)
2620 2 : ntp = nsg; nex = nsg !all the same by construction, keep them separate for clarity
2621 2 : ntot = 1 + nsg + 3*ntp
2622 2 : ndo_mo = donor_state%ndo_mo
2623 2 : CALL get_qs_env(qs_env, matrix_s=matrix_s, para_env=para_env, blacs_env=blacs_env, mos=mos)
2624 2 : sqrt2 = SQRT(2.0_dp)
2625 2 : dim_op = SIZE(ao_op)
2626 :
2627 2 : dbcsr_sg => dbcsr_soc_package%dbcsr_sg
2628 2 : dbcsr_tp => dbcsr_soc_package%dbcsr_tp
2629 2 : dbcsr_work => dbcsr_soc_package%dbcsr_work
2630 2 : dbcsr_prod => dbcsr_soc_package%dbcsr_prod
2631 2 : dbcsr_ovlp => dbcsr_soc_package%dbcsr_ovlp
2632 2 : dbcsr_tmp => dbcsr_soc_package%dbcsr_tmp
2633 :
2634 : ! Create the amew_op matrix
2635 : CALL cp_fm_struct_create(full_struct, context=blacs_env, para_env=para_env, &
2636 2 : nrow_global=ntot, ncol_global=ntot)
2637 12 : ALLOCATE (amew_op(dim_op))
2638 8 : DO i = 1, dim_op
2639 8 : CALL cp_fm_create(amew_op(i), full_struct)
2640 : END DO !i
2641 :
2642 : ! Deal with the GS-GS contribution <0|0> = 2*sum_j <phi_j|op|phi_j>
2643 2 : CALL get_mo_set(mos(1), mo_coeff=mo_coeff, nao=nao, homo=homo)
2644 : CALL cp_fm_struct_create(gsgs_struct, context=blacs_env, para_env=para_env, &
2645 2 : nrow_global=homo, ncol_global=homo)
2646 2 : CALL cp_fm_get_info(mo_coeff, matrix_struct=std_struct)
2647 2 : CALL cp_fm_create(gs_fm, gsgs_struct)
2648 2 : CALL cp_fm_create(work_fm, std_struct)
2649 6 : ALLOCATE (gsgs_op(dim_op))
2650 6 : ALLOCATE (gs_diag(homo))
2651 :
2652 8 : DO i = 1, dim_op
2653 :
2654 6 : ao_op_i => ao_op(i)%matrix
2655 :
2656 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, mo_coeff, work_fm, ncol=homo)
2657 6 : CALL parallel_gemm('T', 'N', homo, homo, nao, 1.0_dp, mo_coeff, work_fm, 0.0_dp, gs_fm)
2658 6 : CALL cp_fm_get_diag(gs_fm, gs_diag)
2659 62 : gsgs_op(i) = 2.0_dp*SUM(gs_diag)
2660 :
2661 : END DO !i
2662 :
2663 2 : CALL cp_fm_release(gs_fm)
2664 2 : CALL cp_fm_release(work_fm)
2665 2 : CALL cp_fm_struct_release(gsgs_struct)
2666 2 : DEALLOCATE (gs_diag)
2667 :
2668 : ! Create the work and helper fms
2669 2 : CALL cp_fm_get_info(gs_coeffs, matrix_struct=vec_struct)
2670 : CALL cp_fm_struct_create(prod_struct, context=blacs_env, para_env=para_env, &
2671 2 : nrow_global=ndo_mo, ncol_global=ndo_mo)
2672 2 : CALL cp_fm_create(prod_fm, prod_struct)
2673 2 : CALL cp_fm_create(vec_op, vec_struct)
2674 : CALL cp_fm_struct_create(tmp_struct, context=blacs_env, para_env=para_env, &
2675 2 : nrow_global=nex, ncol_global=nex)
2676 : CALL cp_fm_struct_create(sggs_struct, context=blacs_env, para_env=para_env, &
2677 2 : nrow_global=ndo_mo*nsg, ncol_global=ndo_mo)
2678 2 : CALL cp_fm_create(tmp_fm, tmp_struct)
2679 2 : CALL cp_fm_create(work_fm, full_struct)
2680 2 : CALL cp_fm_create(sggs_fm, sggs_struct)
2681 6 : ALLOCATE (diag(ndo_mo))
2682 8 : ALLOCATE (domo_op(ndo_mo, ndo_mo))
2683 6 : ALLOCATE (sggs_block(ndo_mo, ndo_mo))
2684 :
2685 : ! Iterate over the dimensions of the operator
2686 : ! Note: operator matrices are asusmed symmetric, can only do upper half
2687 8 : DO i = 1, dim_op
2688 :
2689 6 : ao_op_i => ao_op(i)%matrix
2690 :
2691 : ! The GS-GS contribution
2692 6 : CALL cp_fm_set_element(amew_op(i), 1, 1, gsgs_op(i))
2693 :
2694 : ! Compute the operator in the donor MOs basis
2695 6 : CALL cp_dbcsr_sm_fm_multiply(ao_op_i, gs_coeffs, vec_op, ncol=ndo_mo)
2696 6 : CALL parallel_gemm('T', 'N', ndo_mo, ndo_mo, nao, 1.0_dp, gs_coeffs, vec_op, 0.0_dp, prod_fm)
2697 6 : CALL cp_fm_get_submatrix(prod_fm, domo_op)
2698 :
2699 : ! Compute the ground-state/singlet components. ao_op*gs_coeffs already stored in vec_op
2700 6 : CALL parallel_gemm('T', 'N', ndo_mo*nsg, ndo_mo, nao, 1.0_dp, sg_coeffs, vec_op, 0.0_dp, sggs_fm)
2701 78 : DO isg = 1, nsg
2702 : CALL cp_fm_get_submatrix(fm=sggs_fm, target_m=sggs_block, start_row=(isg - 1)*ndo_mo + 1, &
2703 72 : start_col=1, n_rows=ndo_mo, n_cols=ndo_mo)
2704 72 : diag(:) = get_diag(sggs_block)
2705 288 : op = sqrt2*SUM(diag)
2706 78 : CALL cp_fm_set_element(amew_op(i), 1, 1 + isg, op)
2707 : END DO
2708 :
2709 : ! do the singlet-singlet components
2710 : !start with the overlap
2711 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_sg, 0.0_dp, &
2712 6 : dbcsr_work, filter_eps=eps_filter)
2713 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2714 :
2715 : !then the operator in the LR orbital basis
2716 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sg, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2717 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2718 :
2719 : !use the soc routine, it is compatible
2720 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_trace=-1.0_dp, &
2721 6 : pref_overall=1.0_dp, pref_diags=gsgs_op(i), symmetric=.TRUE.)
2722 :
2723 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2724 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2725 6 : s_firstrow=1, s_firstcol=1, t_firstrow=2, t_firstcol=2)
2726 :
2727 : ! compute the triplet-triplet components
2728 : !the overlap
2729 : CALL dbcsr_multiply('N', 'N', 1.0_dp, matrix_s(1)%matrix, dbcsr_tp, 0.0_dp, &
2730 6 : dbcsr_work, filter_eps=eps_filter)
2731 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_tp, dbcsr_work, 0.0_dp, dbcsr_ovlp, filter_eps=eps_filter)
2732 :
2733 : !the operator in the LR orbital basis
2734 6 : CALL dbcsr_multiply('N', 'N', 1.0_dp, ao_op_i, dbcsr_sg, 0.0_dp, dbcsr_work, filter_eps=eps_filter)
2735 6 : CALL dbcsr_multiply('T', 'N', 1.0_dp, dbcsr_sg, dbcsr_work, 0.0_dp, dbcsr_prod, filter_eps=eps_filter)
2736 :
2737 : CALL rcs_amew_soc_elements(dbcsr_tmp, dbcsr_prod, dbcsr_ovlp, domo_op, pref_trace=-1.0_dp, &
2738 6 : pref_overall=1.0_dp, pref_diags=gsgs_op(i), symmetric=.TRUE.)
2739 :
2740 6 : CALL copy_dbcsr_to_fm(dbcsr_tmp, tmp_fm)
2741 : !<T^-1|op|T^-1>
2742 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2743 6 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 1, t_firstcol=1 + nsg + 1)
2744 : !<T^0|op|T^0>
2745 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2746 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + ntp + 1, &
2747 6 : t_firstcol=1 + nsg + ntp + 1)
2748 : !<T^-1|op|T^-1>
2749 : CALL cp_fm_to_fm_submat(msource=tmp_fm, mtarget=amew_op(i), nrow=nex, ncol=nex, &
2750 : s_firstrow=1, s_firstcol=1, t_firstrow=1 + nsg + 2*ntp + 1, &
2751 6 : t_firstcol=1 + nsg + 2*ntp + 1)
2752 :
2753 : ! Symmetrize the matrix (only upper triangle built)
2754 8 : CALL cp_fm_uplo_to_full(amew_op(i), work_fm)
2755 :
2756 : END DO !i
2757 :
2758 : ! Clean-up
2759 2 : CALL cp_fm_release(prod_fm)
2760 2 : CALL cp_fm_release(work_fm)
2761 2 : CALL cp_fm_release(tmp_fm)
2762 2 : CALL cp_fm_release(vec_op)
2763 2 : CALL cp_fm_release(sggs_fm)
2764 2 : CALL cp_fm_struct_release(prod_struct)
2765 2 : CALL cp_fm_struct_release(full_struct)
2766 2 : CALL cp_fm_struct_release(tmp_struct)
2767 2 : CALL cp_fm_struct_release(sggs_struct)
2768 :
2769 12 : END SUBROUTINE get_rcs_amew_op
2770 :
2771 : ! **************************************************************************************************
2772 : !> \brief Computes the os SOC matrix elements between excited states AMEWs based on the LR orbitals
2773 : !> \param amew_soc output dbcsr matrix with the SOC in the AMEW basis (needs to be fully resereved)
2774 : !> \param lr_soc dbcsr matrix with the SOC wrt the LR orbitals
2775 : !> \param lr_overlap dbcsr matrix with the excited states LR orbital overlap
2776 : !> \param domo_soc the SOC in the basis of the donor MOs
2777 : !> \param pref_diaga ...
2778 : !> \param pref_diagb ...
2779 : !> \param pref_tracea ...
2780 : !> \param pref_traceb ...
2781 : !> \param pref_diags see notes
2782 : !> \param symmetric if the outcome is known to be symmetric, only elements with iex <= jex are done
2783 : !> \param tracea_start the indices where to start in the trace part for alpha
2784 : !> \param traceb_start the indices where to start in the trace part for beta
2785 : !> \note For an excited states pair i,j, the AMEW SOC matrix element is:
2786 : !> soc_ij = pref_diaga*SUM(alpha part of diag of lr_soc_ij)
2787 : !> + pref_diagb*SUM(beta part of diag of lr_soc_ij)
2788 : !> + pref_tracea*SUM(alpha part of lr_ovlp_ij*TRANSPOSE(domo_soc))
2789 : !> + pref_traceb*SUM(beta part of lr_ovlp_ij*TRANSPOSE(domo_soc))
2790 : !> optinally, one can add pref_diags*SUM(diag lr_ovlp_ij)
2791 : ! **************************************************************************************************
2792 20 : SUBROUTINE os_amew_soc_elements(amew_soc, lr_soc, lr_overlap, domo_soc, pref_diaga, &
2793 : pref_diagb, pref_tracea, pref_traceb, pref_diags, &
2794 : symmetric, tracea_start, traceb_start)
2795 :
2796 : TYPE(dbcsr_type) :: amew_soc, lr_soc, lr_overlap
2797 : REAL(dp), DIMENSION(:, :) :: domo_soc
2798 : REAL(dp) :: pref_diaga, pref_diagb, pref_tracea, &
2799 : pref_traceb
2800 : REAL(dp), OPTIONAL :: pref_diags
2801 : LOGICAL, OPTIONAL :: symmetric
2802 : INTEGER, DIMENSION(2), OPTIONAL :: tracea_start, traceb_start
2803 :
2804 : INTEGER :: iex, jex, ndo_mo, ndo_so
2805 : INTEGER, DIMENSION(2) :: tas, tbs
2806 : LOGICAL :: do_diags, found, my_symm
2807 : REAL(dp) :: soc_elem
2808 20 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
2809 20 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
2810 : TYPE(dbcsr_iterator_type) :: iter
2811 :
2812 20 : ndo_so = SIZE(domo_soc, 1)
2813 20 : ndo_mo = ndo_so/2
2814 60 : ALLOCATE (diag(ndo_so))
2815 20 : my_symm = .FALSE.
2816 20 : IF (PRESENT(symmetric)) my_symm = symmetric
2817 20 : do_diags = .FALSE.
2818 20 : IF (PRESENT(pref_diags)) do_diags = .TRUE.
2819 :
2820 : !by default, alpha part is (1:ndo_mo,1:ndo_mo) and beta is (ndo_mo+1:ndo_so,ndo_mo+1:ndo_so)
2821 : !note: in some SF cases, that might change, mainly because the spin-flip LR-coeffs have
2822 : !inverse order, that is: the beta-coeffs in the alpha spot and the alpha coeffs in the
2823 : !beta spot
2824 60 : tas = 1
2825 60 : tbs = ndo_mo + 1
2826 20 : IF (PRESENT(tracea_start)) tas = tracea_start
2827 20 : IF (PRESENT(traceb_start)) tbs = traceb_start
2828 :
2829 20 : CALL dbcsr_set(amew_soc, 0.0_dp)
2830 : !loop over the excited states pairs as the block of amew_soc (which are all reserved)
2831 20 : CALL dbcsr_iterator_start(iter, amew_soc)
2832 1460 : DO WHILE (dbcsr_iterator_blocks_left(iter))
2833 :
2834 1440 : CALL dbcsr_iterator_next_block(iter, row=iex, column=jex)
2835 :
2836 1440 : IF (my_symm .AND. iex > jex) CYCLE
2837 :
2838 : !compute the soc matrix element
2839 912 : soc_elem = 0.0_dp
2840 912 : CALL dbcsr_get_block_p(lr_soc, iex, jex, pblock, found)
2841 912 : IF (found) THEN
2842 444 : diag(:) = get_diag(pblock)
2843 3108 : soc_elem = soc_elem + pref_diaga*SUM(diag(1:ndo_mo)) + pref_diagb*(SUM(diag(ndo_mo + 1:ndo_so)))
2844 : END IF
2845 :
2846 912 : CALL dbcsr_get_block_p(lr_overlap, iex, jex, pblock, found)
2847 912 : IF (found) THEN
2848 : soc_elem = soc_elem &
2849 : + pref_tracea*SUM(pblock(tas(1):tas(1) + ndo_mo - 1, tas(2):tas(2) + ndo_mo - 1)* &
2850 : domo_soc(tas(1):tas(1) + ndo_mo - 1, tas(2):tas(2) + ndo_mo - 1)) &
2851 : + pref_traceb*SUM(pblock(tbs(1):tbs(1) + ndo_mo - 1, tbs(2):tbs(2) + ndo_mo - 1)* &
2852 12000 : domo_soc(tbs(1):tbs(1) + ndo_mo - 1, tbs(2):tbs(2) + ndo_mo - 1))
2853 :
2854 480 : IF (do_diags) THEN
2855 336 : diag(:) = get_diag(pblock)
2856 2352 : soc_elem = soc_elem + pref_diags*SUM(diag)
2857 : END IF
2858 : END IF
2859 :
2860 912 : CALL dbcsr_get_block_p(amew_soc, iex, jex, pblock, found)
2861 3284 : pblock = soc_elem
2862 :
2863 : END DO
2864 20 : CALL dbcsr_iterator_stop(iter)
2865 :
2866 60 : END SUBROUTINE os_amew_soc_elements
2867 :
2868 : ! **************************************************************************************************
2869 : !> \brief Computes the rcs SOC matrix elements between excited states AMEWs based on the LR orbitals
2870 : !> \param amew_soc output dbcsr matrix with the SOC in the AMEW basis (needs to be fully resereved)
2871 : !> \param lr_soc dbcsr matrix with the SOC wrt the LR orbitals
2872 : !> \param lr_overlap dbcsr matrix with the excited states LR orbital overlap
2873 : !> \param domo_soc the SOC in the basis of the donor MOs
2874 : !> \param pref_trace see notes
2875 : !> \param pref_overall see notes
2876 : !> \param pref_diags see notes
2877 : !> \param symmetric if the outcome is known to be symmetric, only elements with iex <= jex are done
2878 : !> \note For an excited states pair i,j, the AMEW SOC matrix element is:
2879 : !> soc_ij = pref_overall*(SUM(diag(lr_soc_ij)) + pref_trace*SUM(lr_overlap_ij*TRANSPOSE(domo_soc)))
2880 : !> optionally, the value pref_diags*SUM(diag(lr_overlap_ij)) can be added (before pref_overall)
2881 : ! **************************************************************************************************
2882 120 : SUBROUTINE rcs_amew_soc_elements(amew_soc, lr_soc, lr_overlap, domo_soc, pref_trace, &
2883 : pref_overall, pref_diags, symmetric)
2884 :
2885 : TYPE(dbcsr_type) :: amew_soc, lr_soc, lr_overlap
2886 : REAL(dp), DIMENSION(:, :) :: domo_soc
2887 : REAL(dp) :: pref_trace, pref_overall
2888 : REAL(dp), OPTIONAL :: pref_diags
2889 : LOGICAL, OPTIONAL :: symmetric
2890 :
2891 : INTEGER :: iex, jex
2892 : LOGICAL :: do_diags, found, my_symm
2893 : REAL(dp) :: soc_elem
2894 120 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: diag
2895 120 : REAL(dp), DIMENSION(:, :), POINTER :: pblock
2896 : TYPE(dbcsr_iterator_type) :: iter
2897 :
2898 360 : ALLOCATE (diag(SIZE(domo_soc, 1)))
2899 120 : my_symm = .FALSE.
2900 120 : IF (PRESENT(symmetric)) my_symm = symmetric
2901 120 : do_diags = .FALSE.
2902 120 : IF (PRESENT(pref_diags)) do_diags = .TRUE.
2903 :
2904 120 : CALL dbcsr_set(amew_soc, 0.0_dp)
2905 : !loop over the excited states pairs as the block of amew_soc (which are all reserved)
2906 120 : CALL dbcsr_iterator_start(iter, amew_soc)
2907 2220 : DO WHILE (dbcsr_iterator_blocks_left(iter))
2908 :
2909 2100 : CALL dbcsr_iterator_next_block(iter, row=iex, column=jex)
2910 :
2911 2100 : IF (my_symm .AND. iex > jex) CYCLE
2912 :
2913 : !compute the soc matrix element
2914 1644 : soc_elem = 0.0_dp
2915 1644 : CALL dbcsr_get_block_p(lr_soc, iex, jex, pblock, found)
2916 1644 : IF (found) THEN
2917 1008 : diag(:) = get_diag(pblock)
2918 5328 : soc_elem = soc_elem + SUM(diag)
2919 : END IF
2920 :
2921 1644 : CALL dbcsr_get_block_p(lr_overlap, iex, jex, pblock, found)
2922 1644 : IF (found) THEN
2923 31050 : soc_elem = soc_elem + pref_trace*SUM(pblock*TRANSPOSE(domo_soc))
2924 :
2925 1158 : IF (do_diags) THEN
2926 432 : diag(:) = get_diag(pblock)
2927 2250 : soc_elem = soc_elem + pref_diags*SUM(diag)
2928 : END IF
2929 : END IF
2930 :
2931 1644 : CALL dbcsr_get_block_p(amew_soc, iex, jex, pblock, found)
2932 5508 : pblock = pref_overall*soc_elem
2933 :
2934 : END DO
2935 120 : CALL dbcsr_iterator_stop(iter)
2936 :
2937 360 : END SUBROUTINE rcs_amew_soc_elements
2938 :
2939 : ! **************************************************************************************************
2940 : !> \brief Computes the dipole oscillator strengths in the AMEWs basis for SOC
2941 : !> \param soc_evecs_cfm the complex AMEWs coefficients
2942 : !> \param dbcsr_soc_package ...
2943 : !> \param donor_state ...
2944 : !> \param xas_tdp_env ...
2945 : !> \param xas_tdp_control ...
2946 : !> \param qs_env ...
2947 : !> \param gs_coeffs the ground state coefficients, given for open-shell because in ROKS, the gs_coeffs
2948 : !> are stored slightly differently within SOC for efficiency and code uniquness
2949 : ! **************************************************************************************************
2950 4 : SUBROUTINE compute_soc_dipole_fosc(soc_evecs_cfm, dbcsr_soc_package, donor_state, xas_tdp_env, &
2951 : xas_tdp_control, qs_env, gs_coeffs)
2952 :
2953 : TYPE(cp_cfm_type), INTENT(IN) :: soc_evecs_cfm
2954 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
2955 : TYPE(donor_state_type), POINTER :: donor_state
2956 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
2957 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
2958 : TYPE(qs_environment_type), POINTER :: qs_env
2959 : TYPE(cp_fm_type), INTENT(IN), OPTIONAL :: gs_coeffs
2960 :
2961 : CHARACTER(len=*), PARAMETER :: routineN = 'compute_soc_dipole_fosc'
2962 :
2963 4 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:, :) :: transdip
2964 : INTEGER :: handle, i, nosc, ntot
2965 : LOGICAL :: do_os, do_rcs
2966 4 : REAL(dp), ALLOCATABLE, DIMENSION(:) :: osc_xyz
2967 4 : REAL(dp), DIMENSION(:), POINTER :: soc_evals
2968 4 : REAL(dp), DIMENSION(:, :), POINTER :: osc_str
2969 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
2970 : TYPE(cp_cfm_type) :: dip_cfm, work1_cfm, work2_cfm
2971 : TYPE(cp_fm_struct_type), POINTER :: dip_struct, full_struct
2972 4 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: amew_dip
2973 : TYPE(mp_para_env_type), POINTER :: para_env
2974 :
2975 4 : NULLIFY (para_env, blacs_env, dip_struct, full_struct, osc_str)
2976 4 : NULLIFY (soc_evals)
2977 :
2978 4 : CALL timeset(routineN, handle)
2979 :
2980 : !init
2981 4 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
2982 4 : do_os = xas_tdp_control%do_spin_cons
2983 4 : do_rcs = xas_tdp_control%do_singlet
2984 4 : soc_evals => donor_state%soc_evals
2985 4 : nosc = SIZE(soc_evals)
2986 4 : ntot = nosc + 1 !because GS AMEW is in there
2987 12 : ALLOCATE (donor_state%soc_osc_str(nosc, 4))
2988 4 : osc_str => donor_state%soc_osc_str
2989 596 : osc_str(:, :) = 0.0_dp
2990 4 : IF (do_os .AND. .NOT. PRESENT(gs_coeffs)) CPABORT("Need to pass gs_coeffs for open-shell")
2991 :
2992 : !get some work arrays/matrix
2993 : CALL cp_fm_struct_create(dip_struct, context=blacs_env, para_env=para_env, &
2994 4 : nrow_global=ntot, ncol_global=1)
2995 4 : CALL cp_cfm_get_info(soc_evecs_cfm, matrix_struct=full_struct)
2996 4 : CALL cp_cfm_create(dip_cfm, dip_struct)
2997 4 : CALL cp_cfm_create(work1_cfm, full_struct)
2998 4 : CALL cp_cfm_create(work2_cfm, full_struct)
2999 12 : ALLOCATE (transdip(ntot, 1))
3000 :
3001 : !get the dipole in the AMEW basis
3002 4 : IF (do_os) THEN
3003 : CALL get_os_amew_op(amew_dip, xas_tdp_env%dipmat, gs_coeffs, dbcsr_soc_package, &
3004 2 : donor_state, xas_tdp_control%eps_filter, qs_env)
3005 : ELSE
3006 : CALL get_rcs_amew_op(amew_dip, xas_tdp_env%dipmat, dbcsr_soc_package, donor_state, &
3007 2 : xas_tdp_control%eps_filter, qs_env)
3008 : END IF
3009 :
3010 12 : ALLOCATE (osc_xyz(nosc))
3011 16 : DO i = 1, 3 !cartesian coord x, y, z
3012 :
3013 : !Convert the real dipole into the cfm format for calculations
3014 12 : CALL cp_fm_to_cfm(msourcer=amew_dip(i), mtarget=work1_cfm)
3015 :
3016 : !compute amew_coeffs^dagger * amew_dip * amew_gs to get the transition moments
3017 : CALL parallel_gemm('C', 'N', ntot, ntot, ntot, (1.0_dp, 0.0_dp), soc_evecs_cfm, work1_cfm, &
3018 12 : (0.0_dp, 0.0_dp), work2_cfm)
3019 : CALL parallel_gemm('N', 'N', ntot, 1, ntot, (1.0_dp, 0.0_dp), work2_cfm, soc_evecs_cfm, &
3020 12 : (0.0_dp, 0.0_dp), dip_cfm)
3021 :
3022 12 : CALL cp_cfm_get_submatrix(dip_cfm, transdip)
3023 :
3024 : !transition dipoles are real numbers
3025 444 : osc_xyz(:) = REAL(transdip(2:ntot, 1))**2 + AIMAG(transdip(2:ntot, 1))**2
3026 444 : osc_str(:, 4) = osc_str(:, 4) + osc_xyz(:)
3027 448 : osc_str(:, i) = osc_xyz(:)
3028 :
3029 : END DO !i
3030 :
3031 : !multiply with appropriate prefac depending in the rep
3032 20 : DO i = 1, 4
3033 20 : IF (xas_tdp_control%dipole_form == xas_dip_len) THEN
3034 0 : osc_str(:, i) = 2.0_dp/3.0_dp*soc_evals(:)*osc_str(:, i)
3035 : ELSE
3036 1184 : osc_str(:, i) = 2.0_dp/3.0_dp/soc_evals(:)*osc_str(:, i)
3037 : END IF
3038 : END DO
3039 :
3040 : !clean-up
3041 4 : CALL cp_fm_struct_release(dip_struct)
3042 4 : CALL cp_cfm_release(work1_cfm)
3043 4 : CALL cp_cfm_release(work2_cfm)
3044 4 : CALL cp_cfm_release(dip_cfm)
3045 16 : DO i = 1, 3
3046 16 : CALL cp_fm_release(amew_dip(i))
3047 : END DO
3048 4 : DEALLOCATE (amew_dip, transdip)
3049 :
3050 4 : CALL timestop(handle)
3051 :
3052 12 : END SUBROUTINE compute_soc_dipole_fosc
3053 :
3054 : ! **************************************************************************************************
3055 : !> \brief Computes the quadrupole oscillator strengths in the AMEWs basis for SOC
3056 : !> \param soc_evecs_cfm the complex AMEWs coefficients
3057 : !> \param dbcsr_soc_package inherited from the main SOC routine
3058 : !> \param donor_state ...
3059 : !> \param xas_tdp_env ...
3060 : !> \param xas_tdp_control ...
3061 : !> \param qs_env ...
3062 : !> \param gs_coeffs the ground state coefficients, given for open-shell because in ROKS, the gs_coeffs
3063 : !> are stored slightly differently within SOC for efficiency and code uniquness
3064 : ! **************************************************************************************************
3065 0 : SUBROUTINE compute_soc_quadrupole_fosc(soc_evecs_cfm, dbcsr_soc_package, donor_state, &
3066 : xas_tdp_env, xas_tdp_control, qs_env, gs_coeffs)
3067 :
3068 : TYPE(cp_cfm_type), INTENT(IN) :: soc_evecs_cfm
3069 : TYPE(dbcsr_soc_package_type) :: dbcsr_soc_package
3070 : TYPE(donor_state_type), POINTER :: donor_state
3071 : TYPE(xas_tdp_env_type), POINTER :: xas_tdp_env
3072 : TYPE(xas_tdp_control_type), POINTER :: xas_tdp_control
3073 : TYPE(qs_environment_type), POINTER :: qs_env
3074 : TYPE(cp_fm_type), INTENT(IN), OPTIONAL :: gs_coeffs
3075 :
3076 : CHARACTER(len=*), PARAMETER :: routineN = 'compute_soc_quadrupole_fosc'
3077 :
3078 0 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:) :: trace
3079 : COMPLEX(dp), ALLOCATABLE, DIMENSION(:, :) :: transquad
3080 : INTEGER :: handle, i, nosc, ntot
3081 : LOGICAL :: do_os, do_rcs
3082 0 : REAL(dp), DIMENSION(:), POINTER :: osc_str, soc_evals
3083 : TYPE(cp_blacs_env_type), POINTER :: blacs_env
3084 : TYPE(cp_cfm_type) :: quad_cfm, work1_cfm, work2_cfm
3085 : TYPE(cp_fm_struct_type), POINTER :: full_struct, quad_struct
3086 0 : TYPE(cp_fm_type), ALLOCATABLE, DIMENSION(:) :: amew_quad
3087 : TYPE(mp_para_env_type), POINTER :: para_env
3088 :
3089 0 : NULLIFY (para_env, blacs_env, quad_struct, full_struct, osc_str)
3090 0 : NULLIFY (soc_evals)
3091 :
3092 0 : CALL timeset(routineN, handle)
3093 :
3094 : !init
3095 0 : CALL get_qs_env(qs_env, para_env=para_env, blacs_env=blacs_env)
3096 0 : do_os = xas_tdp_control%do_spin_cons
3097 0 : do_rcs = xas_tdp_control%do_singlet
3098 0 : soc_evals => donor_state%soc_evals
3099 0 : nosc = SIZE(soc_evals)
3100 0 : ntot = nosc + 1 !because GS AMEW is in there
3101 0 : ALLOCATE (donor_state%soc_quad_osc_str(nosc))
3102 0 : osc_str => donor_state%soc_quad_osc_str
3103 0 : osc_str(:) = 0.0_dp
3104 0 : IF (do_os .AND. .NOT. PRESENT(gs_coeffs)) CPABORT("Need to pass gs_coeffs for open-shell")
3105 :
3106 : !get some work arrays/matrix
3107 : CALL cp_fm_struct_create(quad_struct, context=blacs_env, para_env=para_env, &
3108 0 : nrow_global=ntot, ncol_global=1)
3109 0 : CALL cp_cfm_get_info(soc_evecs_cfm, matrix_struct=full_struct)
3110 0 : CALL cp_cfm_create(quad_cfm, quad_struct)
3111 0 : CALL cp_cfm_create(work1_cfm, full_struct)
3112 0 : CALL cp_cfm_create(work2_cfm, full_struct)
3113 0 : ALLOCATE (transquad(ntot, 1))
3114 0 : ALLOCATE (trace(nosc))
3115 0 : trace = (0.0_dp, 0.0_dp)
3116 :
3117 : !get the quadrupole in the AMEWs basis
3118 0 : IF (do_os) THEN
3119 : CALL get_os_amew_op(amew_quad, xas_tdp_env%quadmat, gs_coeffs, dbcsr_soc_package, &
3120 0 : donor_state, xas_tdp_control%eps_filter, qs_env)
3121 : ELSE
3122 : CALL get_rcs_amew_op(amew_quad, xas_tdp_env%quadmat, dbcsr_soc_package, donor_state, &
3123 0 : xas_tdp_control%eps_filter, qs_env)
3124 : END IF
3125 :
3126 0 : DO i = 1, 6 ! x2, xy, xz, y2, yz, z2
3127 :
3128 : !Convert the real quadrupole into a cfm for further calculation
3129 0 : CALL cp_fm_to_cfm(msourcer=amew_quad(i), mtarget=work1_cfm)
3130 :
3131 : !compute amew_coeffs^dagger * amew_quad * amew_gs to get the transition moments
3132 : CALL parallel_gemm('C', 'N', ntot, ntot, ntot, (1.0_dp, 0.0_dp), soc_evecs_cfm, work1_cfm, &
3133 0 : (0.0_dp, 0.0_dp), work2_cfm)
3134 : CALL parallel_gemm('N', 'N', ntot, 1, ntot, (1.0_dp, 0.0_dp), work2_cfm, soc_evecs_cfm, &
3135 0 : (0.0_dp, 0.0_dp), quad_cfm)
3136 :
3137 0 : CALL cp_cfm_get_submatrix(quad_cfm, transquad)
3138 :
3139 : !if x2, y2 or z2, need to keep track of trace
3140 0 : IF (i == 1 .OR. i == 4 .OR. i == 6) THEN
3141 0 : osc_str(:) = osc_str(:) + REAL(transquad(2:ntot, 1))**2 + AIMAG(transquad(2:ntot, 1))**2
3142 0 : trace(:) = trace(:) + transquad(2:ntot, 1)
3143 :
3144 : !if xy, xz, or yz, need to count twice (for yx, zx and zy)
3145 : ELSE
3146 0 : osc_str(:) = osc_str(:) + 2.0_dp*(REAL(transquad(2:ntot, 1))**2 + AIMAG(transquad(2:ntot, 1))**2)
3147 : END IF
3148 :
3149 : END DO !i
3150 :
3151 : !remove a third of the trace
3152 0 : osc_str(:) = osc_str(:) - 1._dp/3._dp*(REAL(trace(:))**2 + AIMAG(trace(:))**2)
3153 :
3154 : !multiply by the prefactor
3155 0 : osc_str(:) = osc_str(:)*1._dp/20._dp*a_fine**2*soc_evals(:)**3
3156 :
3157 : !clean-up
3158 0 : CALL cp_fm_struct_release(quad_struct)
3159 0 : CALL cp_cfm_release(work1_cfm)
3160 0 : CALL cp_cfm_release(work2_cfm)
3161 0 : CALL cp_cfm_release(quad_cfm)
3162 0 : CALL cp_fm_release(amew_quad)
3163 0 : DEALLOCATE (transquad, trace)
3164 :
3165 0 : CALL timestop(handle)
3166 :
3167 0 : END SUBROUTINE compute_soc_quadrupole_fosc
3168 :
3169 0 : END MODULE xas_tdp_utils
3170 :
|