
LIBXSMM

LIBXSMM is a library for small dense and small sparse matrix-matrix multiplications targeting Intel Architecture
(x86). The library is generating code for the following instruction set extensions: Intel SSE, Intel AVX, Intel AVX2,
IMCI (KNCni) for Intel Xeon Phi coprocessors (“KNC”), and Intel AVX-512 as found in the Intel Xeon Phi proces-
sor family (“KNL”) and future Intel Xeon processors. Historically the library was solely targeting the Intel Many
Integrated Core Architecture “MIC”) using intrinsic functions, meanwhile optimized assembly code is targeting all
aforementioned instruction set extensions (static code generation), and Just-In-Time (JIT) code generation is target-
ing Intel AVX and beyond.

What is a small matrix-matrix multiplication? When characterizing the problem size using the M, N, and K
parameters, a problem size suitable for LIBXSMM falls approximately within (M N K)1/3 <= 80 (which illustrates
that non-square matrices or even “tall and skinny” shapes are covered as well). However the code generator only
generates code up to the specified threshold. Raising the threshold may not only generate excessive amounts of code
(due to unrolling in M and K dimension), but also miss to implement a tiling scheme to effectively utilize the L2 cache.
For problem sizes above the configurable threshold, LIBXSMM is falling back to BLAS.

How to determine whether an application can benefit from using LIBXSMM or not? Given the application
uses BLAS to carry out matrix multiplications, one may link against Intel MKL 11.2 (or higher), set the environment
variable MKL_VERBOSE=1, and run the application using a representative workload (env MKL_VERBOSE=1
./workload > verbose.txt). The collected output is the starting point for evaluating the problem sizes as imposed by
the workload (grep -a “MKL_VERBOSE DGEMM” verbose.txt | cut -d, -f3-5).

Interface
The interface of the library is generated according to the Build Instructions, and is therefore not stored in the code
repository. Instead, one may have a look at the code generation template files for C/C++ and FORTRAN.

In order to initialize the dispatch-table or other internal resources, one may call an explicit initialization routine in
order to avoid lazy initialization overhead when calling LIBXSMM for the first time. The library deallocates internal
resources automatically, but also provides a companion to the aforementioned initialization (finalize).
/** Initialize the library; pay for setup cost at a specific point. */
void libxsmm_init();
/** Uninitialize the library and free internal memory (optional). */
void libxsmm_finalize();

To perform the dense matrix-matrix multiplication Cm�x�n = alpha · Am�x�k · Bk�x�n + beta · Cm�x�n, the full-blown
GEMM interface can be treated with “default arguments” (which is deviating from LAPACK/BLAS standard however
without compromising the binary compatibility).
/** Call automatically dispatched dense matrix multiplication (single/double-precision , C code). */
libxsmm_?gemm(NULL/*transa*/, NULL/*transb*/, &m/*required*/, &n/*required*/, &k/*required*/,

NULL/*alpha*/, a/*required*/, NULL/*lda*/, b/*required*/, NULL/*ldb*/,
NULL/*beta*/, c/*required*/, NULL/*ldc*/);

/** Call automatically dispatched dense matrix multiplication (C++ code). */
libxsmm_gemm(NULL/*transa*/, NULL/*transb*/, m/*required*/, n/*required*/, k/*required*/,

NULL/*alpha*/, a/*required*/, NULL/*lda*/, b/*required*/, NULL/*ldb*/,
NULL/*beta*/, c/*required*/, NULL/*ldc*/);

For the C interface (with type prefix ‘s’ or ‘d’), all arguments and in particular m, n, and k are passed by pointer.
This is needed for binary compatibility with the original GEMM/BLAS interface. In contrast, the C++ interface is
supplying overloaded versions which allow to passing m, n, and k by-value (which makes it clearer that m, n, and k
are non-optional arguments).

The Fortran interface supports optional arguments (without affecting the binary compatibility with the original
LAPACK/BLAS interface) by allowing to omit arguments (where the C/C++ interface is allowing NULL to be passed).
For convenience, a similar BLAS-based dense matrix multiplication (libxsmm_blas_gemm instead of libxsmm_gemm)
is provided for all supported languages which is simply re-exposing the underlying GEMM/BLAS implementation.
However, the re-exposed functions perform argument twiddling to account for ROW_MAJOR storage order (if
enabled). The BLAS-based GEMM might be useful for validation/benchmark purposes, and more important as
a fallback implementation when building an application-specific dispatch mechanism.
! Call automatically dispatched dense matrix multiplication (single/double-precision).
CALL libxsmm_?gemm(m=m, n=n, k=k, a=a, b=b, c=c)
! Call automatically dispatched dense matrix multiplication (generic interface).
CALL libxsmm_gemm(m=m, n=n, k=k, a=a, b=b, c=c)

https://github.com/hfp/libxsmm/blob/master/src/libxsmm.template.h
https://github.com/hfp/libxsmm/blob/master/src/libxsmm.template.f

Successively calling a particular kernel (i.e., multiple times) allows for amortizing the cost of the code dispatch.
Moreover in order to customize the dispatch mechanism, one can rely on the following interface.
/** If non-zero function pointer is returned, call (*function_ptr)(a, b, c). */
libxsmm_smmfunction libxsmm_smmdispatch(int m, int n, int k,

int lda, int ldb, int ldc,
/* supply NULL as a default for alpha or beta */
const float* alpha, const float* beta);

/** If non-zero function pointer is returned, call (*function_ptr)(a, b, c). */
libxsmm_dmmfunction libxsmm_dmmdispatch(int m, int n, int k,

int lda, int ldb, int ldc,
/* supply NULL as a default for alpha or beta */
const double* alpha, const double* beta);

A variety of overloaded function signatures is provided allowing to omit arguments not deviating from the
configured defaults. Moreover, in C++ a type ‘libxsmm_mmfunction<type>’ can be used to instantiate a
functor rather than making a distinction for the numeric type in ‘libxsmm_?mmdispatch’. Similarly in Fortran,
when calling the generic interface (libxsmm_mmdispatch) the given LIBXSMM_?MMFUNCTION is dispatched
such that libxsmm_call can be used to actually perform the function call using the PROCEDURE POINTER
wrapped by LIBXSMM_?MMFUNCTION. Beside of dispatching code, one can also call a specific kernel (e.g.,
‘libxsmm_dmm_4_4_4’) using the prototype functions included for statically generated kernels.

Build Instructions
To generate the interface inside of the ‘include’ directory and to build the static library (by default, STATIC=1 is
activated), simply run the following command:
make

By default, only the non-coprocessor targets are built (OFFLOAD=0 and MIC=0). In general, the subfolders of
the ‘lib’ directory are separating the build targets where the ‘mic’ folder is containing the native library (MIC=1)
targeting the Intel Xeon Phi coprocessor (“KNC”), and the ‘intel64’ folder is storing either the hybrid archive made
of CPU and coprocessor code (OFFLOAD=1), or an archive which is only containing the CPU code. By default, an
OFFLOAD=1 implies MIC=1.

To remove intermediate files, or to remove all generated files and folders (including the interface and the library
archives), run one of the following commands:
make clean
make realclean

The library can be configured to accept row-major or column-major (default) order matrices. The row-major storage
scheme is accomplished by setting ROW_MAJOR=1 (0 for column-major, and row-major otherwise):
make ROW_MAJOR=1

By default, LIBXSMM uses the JIT backend which is automatically building optimized code. However, one can also
statically specialize for particular matrix sizes (M, N, and K values):
make M="2 4" N="1" K="$(echo $(seq 2 5))"

The above example is generating the following set of (M,N,K) triplets:
(2,1,2), (2,1,3), (2,1,4), (2,1,5),
(4,1,2), (4,1,3), (4,1,4), (4,1,5)

The index sets are in a loop-nest relationship (M(N(K))) when generating the indices. Moreover, an empty index
set resolves to the next non-empty outer index set of the loop nest (including to wrap around from the M to K set).
An empty index set is not participating anymore in the loop-nest relationship. Here is an example of generating
multiplication routines which are “squares” with respect to M and N (N inherits the current value of the “M loop”):
make M="$(echo $(seq 2 5))" K="$(echo $(seq 2 5))"

An even more flexible specialization is possible by using the MNK variable when building the library. It takes a list
of indexes which are eventually grouped (using commas):
make MNK="2 3, 23"

Each group of the above indexes is combined into all possible triplets generating the following set of (M,N,K) values:

(2,2,2), (2,2,3), (2,3,2), (2,3,3),
(3,2,2), (3,2,3), (3,3,2), (3,3,3), (23,23,23)

Of course, both mechanisms (M/N/K and MNK based) can be combined using the same command line (make). Static
optimization and JIT can also be combined (no need to turn off the JIT backend).

Testing the generated cases can be accomplished by capturing the console output of the cp2k code sample:
make MNK="2 3, 23" test

The recorded output file can be further evaluated (see also cp2k-test.sh). For example:
grep "diff" samples/cp2k/cp2k-perf.txt | grep -v "diff=0.000"

Installation
Installing LIBXSMM makes the most sense if the JIT backend (enabled by default) and the static SSE (default is
“arch-native” rather than SSE=1, or AVX=1|2|3!) code path have been enabled, because an only statically specialized
library is more application-specific as well as system-specific. Statically specialized functions cannot be retargeted to
a different instruction set extension. However, in particular the Intel SSE code path receives special treatment when
the JIT backend is not disabled: SSE-code is only registered for dispatch if the CPUID is not showing support for any
kind of Intel AVX. This way a reasonable compromise is possible when deploying into an unknown or heterogeneous
system environment.

There are two main mechanisms to install LIBXSMM (both mechanisms can be combined): (1) building the library
in an out-of-tree fashion, and (2) installing into a certain location. Building in an out-of-tree fashion looks like:
cd libxsmm-install
make -f /path/to/libxsmm/Makefile
make clean

For example, installing the library into a specific location (including some selection of statically generated Intel SSE
kernels) looks like:
make SSE=1 MNK="1 2 3 4 5" PREFIX=/path/to/libxsmm-install install
make clean

Performing make install-minimal omits the documentation (PREFIX/share/libxsmm).

Performance
Tuning

By default all supported host code paths are generated (with the compiler picking the one according to the feature
bits of the host). Specifying a particular code path will not only save some time when generating the static code
(“printing”), but also enable cross-compilation for a target that is different from the compiler’s host. The build system
allows to conveniently select the target system when invoking ‘make’: SSE=3 (in fact SSE!=0), AVX=1, AVX=2 (with
FMA), and AVX=3 are supported. The latter is targeting the Intel Knights Landing processor family (“KNL”) and
future Intel Xeon processors using foundational Intel AVX-512 instructions (AVX-512F):
make AVX=3

An extended interface can generated which allows to perform software prefetches. Prefetching data might be helpful
when processing batches of matrix multiplications where the next operands are farther away or otherwise unpredictable
in their memory location. The prefetch strategy can be specified similar as shown in the section Generator driver i.e.,
by either using the number of the shown enumeration, or by exactly using the name of the prefetch strategy. The
only exception is PREFETCH=1 which is enabling a default strategy (“AL2_BL2viaC” rather than “nopf”). The
following example is requesting the “AL2jpst” strategy:
make PREFETCH=8

The prefetch interface is extending the signature of all kernels by three arguments (pa, pb, and pc). These additional
three arguments are specifying the locations of the operands of the next multiplication (the next a, b, and c).

Further, the generated interface of the library also encodes the parameters the library was built for (static information).
This helps optimizing client code related to the library’s functionality. For example, the LIBXSMM_MAX_* and
LIBXSMM_AVG_* information can be used with the LIBXSMM_PRAGMA_LOOP_COUNT macro in order to
hint loop trip counts when handling matrices related to the problem domain of LIBXSMM.

https://github.com/hfp/libxsmm/blob/master/samples/cp2k/cp2k.cpp
https://github.com/hfp/libxsmm/blob/master/samples/cp2k/cp2k-test.sh

Auto-dispatch

The function ‘libxsmm_?mmdispatch’ helps amortizing the cost of the dispatch when multiple calls with the same
M, N, and K are needed. The automatic code dispatch is orchestrating two levels:

1. Specialized routine (implemented in assembly code),
2. LAPACK/BLAS library call (fallback).

Both levels are accessible directly (see Interface) allowing to customize the code dispatch. The fallback level may be
supplied by the Intel Math Kernel Library (Intel MKL) 11.2 DIRECT CALL feature.
Further, a preprocessor symbol denotes the largest problem size (M x N x K) that belongs to the first level, and
therefore determines if a matrix multiplication falls back to calling into the LAPACK/BLAS library alongside of
LIBXSMM. The problem size threshold can be configured by using for example:
make THRESHOLD=$((60 * 60 * 60))

The maximum of the given threshold and the largest requested specialization refines the value of the threshold. If a
problem size is below the threshold, dispatching the code requires to figure out whether a specialized routine exists
or not.
In order to minimize the probability of key collisions (code cache), the preferred precision of the statically generated
code can be selected:
make PRECISION=2

The default preference is to generate and register both single and double-precision code, and therefore no space in
the dispatch table is saved (PRECISION=0). Specifying PRECISION=1|2 is only generating and registering either
single-precision or double-precision code.

JIT Backend

There might be situations in which it is up-front not clear which problem sizes will be needed when running an
application. In order to leverage LIBXSMM’s high-performance kernels, the library implements a JIT (Just-In-Time)
code generation backend which generates the requested kernels on the fly (in-memory). This is accomplished by
emitting the corresponding byte-code directly into an executable buffer. The actual JIT code is generated according
to the CPUID flags, and therefore does not rely on the code path selected when building the library. In the current
implementation, some limitations apply to the JIT backend specifically:

1. In order to stay agnostic to any threading model used, Pthread mutexes are guarding the updates of the JITted
code cache (link line with -lpthread is required); building with OMP=1 employs an OpenMP critical section as
an alternative locking mechanism.

2. There is no support for the Intel SSE (Intel Xeon 5500/5600 series) and IMCI (Intel Xeon Phi coprocessor code-
named Knights Corner) instruction set extensions. However, statically generated SSE-kernels can be leveraged
without disabling support for JITting AVX kernels.

3. There is no support for the Windows calling convention.

The JIT backend can also be disabled at build time (make JIT=0) as well as at runtime (LIBXSMM_JIT=0).
The latter is an environment variable which also allows it to set a code path independent of the CPUID
(LIBXSMM_JIT=0|1|snb|hsw|knl). Please note that LIBXSMM_JIT=1 is only supported for symmetry, and this
environment setup cannot enable the JIT backend if it was disabled at build time (JIT=0).
One can use the aforementioned THRESHOLD parameter to control the matrix sizes for which the JIT compilation
will be automatically performed. However, explicitly requested kernels (by calling libxsmm_?mmdispatch) are not
subject to a problem size threshold. In any case, JIT code generation can be used for accompanying statically
generated code.
Note: Modern Linux kernels are supporting transparent huge pages (THP). LIBXSMM is sanitizing this feature when
setting the permissions for pages holding the executable code. However, we measured up to 30% slowdown when
running JITted code in cases where THP decided to deliver a huge page. For systems with Linux kernel 2.6.38 (or
later) THP will be automatically disabled for the mmap’ed regions (using madvise).

Generator driver

In rare situations it might be useful to directly incorporate generated C code (with inline assembly regions). This is
accomplished by invoking a driver program (with certain command line arguments). The driver program is built as
part of LIBXSMM’s build process (when requesting static code generation), but also available via a separate build
target:

make generator
bin/libxsmm_generator

The code generator driver program accepts the following arguments:

1. dense/dense_asm/sparse (dense creates C code, dense_asm creates ASM)
2. Filename of a file to append to
3. Routine name to be created
4. M parameter
5. N parameter
6. K parameter
7. LDA (0 when 1. is “sparse” indicates A is sparse)
8. LDB (0 when 1. is “sparse” indicates B is sparse)
9. LDC parameter
10. alpha (-1 or 1)
11. beta (0 or 1)
12. Alignment override for A (1 auto, 0 no alignment)
13. Alignment override for C (1 auto, 0 no alignment)
14. Architecture (noarch, wsm, snb, hsw, knc, knl)
15. Prefetch strategy, see below enumeration (dense/dense_asm only)
16. single precision (SP), or double precision (DP)
17. CSC file (just required when 1. is “sparse”). Matrix market format.

The prefetch strategy can be:

1. “nopf”: no prefetching at all, just 3 inputs (*A, *B, *C)
2. “pfsigonly”: just prefetching signature, 6 inputs (*A, *B, *C, *A’, *B’, *C’)
3. “BL2viaC”: uses accesses to *C to prefetch *B’
4. “AL2”: uses accesses to *A to prefetch *A’
5. “curAL2”: prefetches current *A ahead in the kernel
6. “AL2_BL2viaC”: combines AL2 and BL2viaC
7. “curAL2_BL2viaC”: combines curAL2 and BL2viaC
8. “AL2jpst”: aggressive *A’ prefetch of first rows without any structure
9. “AL2jpst_BL2viaC”: combines AL2jpst and BL2viaC

Here are some examples of invoking the driver program:
bin/libxsmm_generator dense foo.c foo 16 16 16 32 32 32 1 1 1 1 hsw nopf DP
bin/libxsmm_generator dense_asm foo.c foo 16 16 16 32 32 32 1 1 1 1 knl AL2_BL2viaC DP
bin/libxsmm_generator sparse foo.c foo 16 16 16 32 0 32 1 1 1 1 hsw nopf DP bar.csc

Please note, there are additional examples given in samples/generator and samples/seissol.

Results

The library does not claim to be “optimal” or “best-performing”, and the presented results are modeling a certain
application which might be not representative in general. Instead, information on how to reproduce the results is
given underneath of the presented results (figure 1-3).

Please note that comparing performance results depends on whether or not streaming the operands of the matrix
multiplication. For example, running a matrix multiplication code many time with all operands covered by the L1
cache may have an emphasis towards an implementation which actually performs worse for the real workload (if this
real workload needs to stream some or all operands from the main memory).

Implementation
Limitations

The statically generated code is depending on a single code path which is selected at build time of the library whereas
the JITted code depends on the actual CPUID flags of the target system executing the library. For the statically
generated code and without a specific flag (SSE=1, AVX=1|2|3), the code generator emits code for all supported
instruction set extensions. However, the compiler is picking only one of the generated code paths according to its
code generation flags (or according to what is native with respect to the compiler-host).

Figure 1: This plot shows the performance (based on LIBXSMM 1.0) for a dual-socket Intel Xeon E5-2699v3
(“Haswell”) shows a “compact selection” (to make the plot visually more appealing) out of 386 special-
izations as useful for CP2K Open Source Molecular Dynamics [1]. The code has been generated and built
by running “./make.sh -cp2k AVX=2 test -j”. This and below plots were generated by running “cd sam-
ples/cp2k ; ./cp2k-plot.sh specialized cp2k-specialized.png -1”. Please note, that larger problem sizes (MNK)
carry a higher arithmetic intensity which usually leads to higher performance (less bottlenecked by memory
bandwidth).

Applications and References
[1] http://cp2k.org/: Open Source Molecular Dynamics with its DBCSR component generating batches of small
matrix multiplications (“matrix stacks”) out of a problem-specific distributed block-sparse matrix. The idea and the
interface of LIBXSMM is sharing some origin with CP2K’s “libsmm” library which can be substituted by LIBXSMM
(see https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf).

[2] https://github.com/SeisSol/SeisSol/: SeisSol is one of the leading codes for earthquake scenarios, in partic-
ular for simulating dynamic rupture processes. LIBXSMM provides highly optimized assembly kernels which form
the computational back-bone of SeisSol (see https://github.com/TUM-I5/seissol_kernels/).

[3] http://software.intel.com/xeonphicatalog: Intel Xeon Phi Applications and Solutions Catalog.

[4] http://goo.gl/qsnOOf: Intel 3rd Party Tools and Libraries.

https://github.com/hfp/libxsmm/blob/master/make.sh
https://github.com/hfp/libxsmm/blob/master/samples/cp2k/cp2k-plot.sh
http://cp2k.org/
https://github.com/hfp/libxsmm/raw/master/documentation/cp2k.pdf
https://github.com/SeisSol/SeisSol/
https://github.com/TUM-I5/seissol_kernels/
http://software.intel.com/xeonphicatalog
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-with-support-for-intelr-xeon-phitm

Figure 2: This plot summarizes the performance (based on LIBXSMM 1.0) of the generated kernels by averaging
the results over K (and therefore the bar on the right hand side may not show the same maximum when
compared to other plots). The performance is well-tuned across the parameter space with no “cold islands”,
and the lower left “cold” corner is fairly limited. Please refer to the first figure on how to reproduce the
results.

Figure 3: This plot shows the arithmetic average (non-sliding) of the performance (based on LIBXSMM 1.0) with
respect to groups of problem sizes (MNK). The problem sizes are binned into three groups according to the
shown intervals: “Small”, “Medium”, and “Larger” (notice that “larger” may still not be a large problem
size). Please refer to the first figure on how to reproduce the results.

Figure 4: In order to further summarize the previous plots, this graph shows the cumulative distribution function
(CDF) of the performance (based on LIBXSMM 1.0) across all cases. Similar to the median value at 50%,
one can read for example that 100% of the cases are yielding less or equal the largest discovered value. The
value highlighted by the arrows is usually the median value, the plot script however attempts to highlight
a single “fair performance value” representing all cases by linearly fitting the CDF, projecting onto the
x-axis, and taking the midpoint of the projection (usually at 50%). Please note, that this diagram shows a
statistical distribution and does not allow to identify any particular kernel. Moreover at any point of the
x-axis (“Probability”), the “Compute Performance” and the “Memory Bandwidth” graph do not necessarily
belong to the same kernel! Please refer to the first figure on how to reproduce the results.

https://github.com/hfp/libxsmm/blob/master/samples/cp2k/cp2k-perf.plt

	LIBXSMM
	Interface
	Build Instructions
	Installation
	Performance
	Tuning
	Auto-dispatch
	JIT Backend
	Generator driver
	Results

	Implementation
	Limitations

	Applications and References

