User Tools

Site Tools


exercises:2018_ethz_mmm:lennard_jones_cluster_2018

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
exercises:2018_ethz_mmm:lennard_jones_cluster_2018 [2018/02/22 14:33] โ€“ dpasseroneexercises:2018_ethz_mmm:lennard_jones_cluster_2018 [2020/08/21 10:15] (current) โ€“ external edit 127.0.0.1
Line 6: Line 6:
  
  
 +<note tip>
 +All files of this exercise be downloaded directly from the wiki: {{exercise_1.1.zip|}} 
 +</note>
 +
 +Download the 1.1 exercise into your **EXERCISES** folder and unzip it. 
 +
 +<code>
 +max@qmobile:~$ cd ; cd EXERCISES
 +max@qmobile:~$ wget http://www.cp2k.org/_media/exercises:2018_ethz_mmm:exercise_1.1.zip
 +max@qmobile:~$ unzip exercises:2018_ethz_mmm:exercise_1.1.zip
 +max@qmobile:~$ cd exercise_1.1
 +</code>
 +
 +
 +
 +In this exercise you will test the Lennard-Jones potential. In particular, we will focus on the system described in the following paper about the energy landscape of the 38 atom Lennard-Jones cluster:
 +<note tip>[[doi>10.1063/1.478595]]
 +</note>
 +
 +The command to run cp2k is the following (with a generic **file.inp** input file):
  
 <code> <code>
 max@qmobile:~$ cp2k.ssmp -i file.inp -o file.out max@qmobile:~$ cp2k.ssmp -i file.inp -o file.out
 </code>  </code> 
 +
 +
 +===== Geometry optimization  =====
 +In this first part you will perform a simple energy optimization, to find the two lowest lying minima in the potential energy surface. 
 +
 +The input file structure of the template is the following:
 +
 +<code - geo_opt.inp>
 +&GLOBAL
 + FLUSH_SHOULD_FLUSH
 + PRINT_LEVEL low
 + PROJECT geo_opt_bfgs
 + RUN_TYPE geo_opt
 + WALLTIME 600
 +&END GLOBAL
 +
 +&MOTION
 + &GEO_OPT
 +  OPTIMIZER BFGS
 +  MAX_ITER  200
 +  MAX_DR    0.001
 +  RMS_DR    0.0003
 +  MAX_FORCE 0.0001
 +  RMS_FORCE 0.00003
 +  &BFGS
 +   USE_MODEL_HESSIAN yes
 +  &END BFGS
 + &END GEO_OPT
 + &PRINT
 +  &TRAJECTORY on
 +   FORMAT xyz
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END TRAJECTORY
 + &END PRINT
 +&END MOTION
 +
 +&FORCE_EVAL
 + METHOD Fist
 + STRESS_TENSOR ANALYTICAL
 + &MM
 +    &FORCEFIELD
 +      &CHARGE
 +        ATOM Ar
 +        CHARGE 0.0
 +      &END
 +      &NONBONDED
 +        &LENNARD-JONES
 +          atoms Ar Ar
 +          EPSILON 119.8
 +          SIGMA 3.405
 +          RCUT 8.4
 +        &END LENNARD-JONES
 +      &END NONBONDED
 +      &CHARGE
 +        ATOM Kr
 +        CHARGE 0.0
 +      &END CHARGE
 +    &END FORCEFIELD
 +  &POISSON
 +   PERIODIC NONE
 +   &EWALD
 +    EWALD_TYPE none
 +   &END EWALD
 +  &END POISSON
 +  &PRINT
 +   &FF_INFO OFF
 +    SPLINE_DATA
 +    SPLINE_INFO
 +   &END FF_INFO
 +  &END PRINT
 + &END MM
 + &PRINT
 +  &FORCES off
 +  &END FORCES
 +  &GRID_INFORMATION
 +  &END GRID_INFORMATION
 +  &PROGRAM_RUN_INFO
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END PROGRAM_RUN_INFO
 +  &STRESS_TENSOR
 +   &EACH
 +    GEO_OPT 1
 +   &END EACH
 +  &END STRESS_TENSOR
 + &END PRINT
 + &SUBSYS
 +  &CELL
 +        100 0 0
 +        0   100 0
 +        0 0 100
 +   PERIODIC NONE
 +  &END CELL
 +  &TOPOLOGY
 +      COORD_FILE_NAME in.xyz
 +      COORDINATE xyz
 +  &END
 +  &PRINT
 +   &CELL
 +   &END CELL
 +   &KINDS
 +   &END KINDS
 +   &MOLECULES OFF
 +   &END MOLECULES
 +   &SYMMETRY
 +   &END SYMMETRY
 +  &END PRINT
 + &END SUBSYS
 +&END FORCE_EVAL
 +                                                                                                                                                                                            
 +</code>
 +<note important>NOTE ON THE UNITS: CP2K USES SO CALLED "atomic units". Meaning that the resulting energies are expressed in Hartree, 
 +**1 Hartree=27.2114 eV**. 
 +In the input file, the epsilon value (depth of the well) is expressed in KT units, namely, in "temperature" units (there is a Boltzmann constant K_b to make units work...). <code>1 Kelvin*K_b=3.2E-6 Hartree</code>. Using this conversion factor you can transform the epsilon value into Hartree, and the total energy can be expressed in units of epsilon.  **The sigma value is in Angstrom.**
 +</note>
 +<note tip>
 +  - randomize the coordinate files **fcc.xyz** (which represents the "cubic" structure) <code>m_xyzrand 1.0 < fcc.xyz > fcc_rand.xyz</code>Do the same with **ico.xyz** which represents the icosahedral structure. You can look at all files with **vmd**.
 +  - extract the q4 order parameter from **fcc.xyz** and from **fcc_rand.xyz** and compare the values.
 +  - <code> python stein.py file.xyz </code>You will be asked the cutoff radius for the neighbors, it is **1.391** in sigma units. **You should input it in Angstrom**. You will also be asked **"value of l"** This means the symmetry of the order parameter, which is **l=4** in this case.
 +  - before running the simulation, copy the input coordinate file into in.xyz <code>cp fcc_rand.xyz in.xyz</code>
 +  - Before running cp2k, check if the file **OPT-pos-1.xyz** is already present from a previous run. In that case remove or delete it accordingly. It contains the trajectory of the optimization.
 +  - run cp2k  <code>cp2k.ssmp -i geo_opt.inp | tee geo_opt.out </code> (to see the output on the screen as well), or **AS AN ALTERNATIVE** <code>cp2k.ssmp -i geo_opt.inp > geo_opt.out </code> (to retain the output in the geo_opt.out file only) 
 +  - in the output file, grep the final energy <code>grep "ENERGY|โ€œ geo_opt.out</code> and transform it in the unit of the paper (epsilon units)
 +  - Open vmd and play with the optimization trajectory <code>vmd OPT-pos-1.xyz</code> (ask the teacher)
 +  - apply the script **myq4** to the optimization trajectory: this generates a list of q4 and energies for the whole trajectory. <code>./myq4 OPT-pos-1.xyz > fcc.ene.q4</code> 
 +  - plot q4 and energies with **gnuplot** (ask the teacher)
 +  - have a look at the myq4 script <code>nano myq4</code>
 +  - repeat for the ico.xyz starting point, don't forget to first copy/remove the files appropriately. For example: <code>mkdir FCC ; mv OPT* FCC ; mv geo_opt.out FCC</code>
 +  - Run the bash script <code>./curve</code>Look inside, and try to understand what you get. 
 +  - create a FCC_OUT subdirectory (**mkdir FCC_OUT ; cd FCC_OUT**) and copy there the files you want to keep; then go back one dir (**cd ..**), delete all the OPT* files (**rm OPT* **) and repeat the exercise with ico.xyz
 +
 +</note>
 +
 +
 +
 +
  
  
Line 21: Line 180:
 <note tip>Assignment:  <note tip>Assignment: 
   - Report the energy of the minima, compare it with the ones of the initial configurations.    - Report the energy of the minima, compare it with the ones of the initial configurations. 
 +  - After converting the energy into "epsilon" units, estimate the number of bonds in the cluster, assuming a pairwise interaction.
   - Plot q4 vs. energy and q4 vs. optimization steps, for the two cases. Discuss the results. Are the minima in two separate basins?   - Plot q4 vs. energy and q4 vs. optimization steps, for the two cases. Discuss the results. Are the minima in two separate basins?
   - Report the value of the order parameter of the minumum, and discuss what you see   - Report the value of the order parameter of the minumum, and discuss what you see
   - Use "gnuplot" to make the output of "./curve" understandable, discuss the results.   - Use "gnuplot" to make the output of "./curve" understandable, discuss the results.
 </note> </note>
--->+
exercises/2018_ethz_mmm/lennard_jones_cluster_2018.1519310029.txt.gz ยท Last modified: 2020/08/21 10:15 (external edit)