This is an old revision of the document!
Table of Contents
Hartree-Fock exchange
The purpose of this section is to explain how to compute hybrid functionals (or Hartree-Fock exchange, HFX) with CP2K in condensed phase systems. It is based on the developments described in 10.1021/ct900494g and 10.1063/1.2931945, and its efficient extension (ADMM) described in 10.1021/ct1002225.
Hartree-Fock exchange in CP2K is based on four center integrals, these are computed with an external library (libint). Do these exercises, CP2K must be linked to this library.
This approach has a computational cost that depends strongly on the nature of the basis, unless combined with ADMM (see below), do not use MOLOPT basis sets with HFX. We use basis sets from HFX_BASIS, which are suitable.
Truncated Coulomb operator
To enable HFX in the condensed phase (described at the Gamma point only), CP2K employs a truncated Coulomb operator for the exchange part. The physical picture is that we do not want to have 'self-exchange interactions' of an electron with its image in neighboring unit cells. As a rule of thumb, the maximum range (truncation radius) is L/2 where L is the smallest edge of the unit cell.
1st task : GGA restart wfn
using the water input from the previous exercise, we will perform a single point GGA calculation to generate an initial wavefunction (wfn) restart. HFX calculations benefit from this.
Change the input to:
RUN_TYPE ENERGYIOLEVEL MEDIUMRESTART ON- comment section
&EXT_RESTART
Run the input and rename the generated wfn file (WATER-RESTART.wfn) to WATER-RESTART-GGA.wfn.
Also make a note of the HOMO - LUMO gap [eV]
2nd task: PBE0-D3 water
To do a hybrid calculation, we just change the &XC section. Various examples can be found in the regtests, but here we employ a section equivalent to PBE0-D3.
Change the input to:
SCF_GUESS RESTARTWFN_RESTART_FILE_NAME WATER-RESTART-GGA.wfn
And employ the following &XC section:
! specify the exchange and correlation treatment
&XC
! use a PBE0 functional
&XC_FUNCTIONAL
&PBE
! 75% GGA exchange
SCALE_X 0.75
! 100% GGA correlation
SCALE_C 1.0
&END PBE
&END XC_FUNCTIONAL
&HF
! 25 % HFX exchange
FRACTION 0.25
&SCREENING
! important parameter to get stable HFX calcs
EPS_SCHWARZ 1.0E-6
! needs a good (GGA) initial guess
SCREEN_ON_INITIAL_P TRUE
&END
&INTERACTION_POTENTIAL
! for condensed phase systems
POTENTIAL_TYPE TRUNCATED
! should be less than halve the cell
CUTOFF_RADIUS 6.0
! data file needed with the truncated operator
T_C_G_DATA ./t_c_g.dat
&END
&MEMORY
! In MB per MPI rank.. use as much as need to get in-core operation
MAX_MEMORY 4000
EPS_STORAGE_SCALING 0.1
&END
&END
! adding Grimme's D3 correction (by default without C9 terms)
&VDW_POTENTIAL
POTENTIAL_TYPE PAIR_POTENTIAL
&PAIR_POTENTIAL
PARAMETER_FILE_NAME dftd3.dat
TYPE DFTD3
REFERENCE_FUNCTIONAL PBE0
R_CUTOFF [angstrom] 16
&END
&END VDW_POTENTIAL
&END XC
